Physics 1A. Lecture 3B

Size: px
Start display at page:

Download "Physics 1A. Lecture 3B"

Transcription

1 Physics 1A Lecture 3B

2 Review of Last Lecture For constant acceleration, motion along different axes act independently from each other (independent kinematic equations) One is free to choose a coordinate system that simplifies these equations (e.g., aligned with acceleration vector) Time of flight depends on maximum height of object, maximum for vertical trajectory Range depends on horizontal velocity and time of flight, maximum for 45º angle Circular motion is an accelerated motion due to change in velocity vector direction (even for constant speed)

3 Uniform circular motion R A special type of motion is circular motion at constant speed measured in radians spin rate (radians/second)

4 Uniform circular motion Is this accelerated motion? R YES! Acceleration is a change in velocity with respect to time change can be in magnitude or direction In this case it is a change in direction (magnitude = const.)

5 Acceleration and directional change of motion v 0 aδt : length of v changes by aδt (speed up/slow down) v

6 Acceleration and directional change of motion v v 0 aδt : length of v changes by aδt (speed up/slow down) : direction of v changes (if Δt -> dt small, no speed change)

7 Centripetal acceleration R In constant circular motion the acceleration is inward toward center of circle => centripetal acceleration What is?

8 Derive equation by dimensional analysis! Things we know: [v] = L T -1 [R] = L Thing we want: [a c ]= L T -2 Set up power-law equation: a c = v A R B L T -2 = L A T -A L B length dimension: 1 = A+B time dimension: -2 = -A => A = 2, B = -1 => a c = v 2 /R

9 Centripetal acceleration R In constant circular motion the acceleration is inward toward center of circle = centripetal acceleration What is?

10 Example: earth orbiting the sun E Period T time interval for one complete revolution: S Let s calculate the value of centripetal acceleration:

11 Tangential and radial acceleration A more general situation Velocity is not constant (both magnitude and direction) Curvature is not constant (radius R depends on position/time)

12 Tangential and radial acceleration The velocity is always tangent to the path The acceleration is at some angle to the path At each instant, motion can be approximated as circular The radius of that circular path is the radius of curvature of the path at that instant Total acceleration can be represented as a sum of two components (radial and tangential):

13 Tangential and radial acceleration Tangential component: rate of change in speed of the particle Radial component is a result of the change in direction of the velocity vector of the particle Total acceleration is a sum of two components:

14 Relative velocity Two observers moving relative to each other generally do not agree on the outcome of an experiment For example, the observer on the side of the road observes a different speed for the red car than does the observer in the blue car

15 Relative velocity, generalized Reference frame S is stationary Reference frame S is moving Define time t = 0 as that time when the origins coincide

16 Galilean transformation equations The positions as seen from the two reference frames are related through the velocity The derivative of the position equation will give the velocity equation This can also be expressed in terms of the observer O

17 Relative velocity: example Observer O is standing; observer O is in the blue car Both observers are measuring the speed of the red car, which is located at point P

18 Galilean transformation equations Although observers in two reference frames measure different velocities for the particle, they measure the same acceleration (if their relative velocity is constant) Hence: Such frames are called inertial reference frames

19 For Next Time (FNT) Check your Quiz 1 scores online Quiz 2 will cover Chapters 3 and 4 Start Reading Chapter 4 Finish the homework for Chapter 3

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

Physics 1A. Lecture 10B

Physics 1A. Lecture 10B Physics 1A Lecture 10B Review of Last Lecture Rotational motion is independent of translational motion A free object rotates around its center of mass Objects can rotate around different axes Natural unit

More information

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

More information

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

More information

Physics 1A. Lecture 3B. "More than anything else... any guy here would love to have a monkey. A pet monkey." -- Dane Cook

Physics 1A. Lecture 3B. More than anything else... any guy here would love to have a monkey. A pet monkey. -- Dane Cook Physics 1A Lecture 3B "More than anything else... any guy here would love to have a monkey. A pet monkey." -- Dane Cook Trajectories Since there is no horizontal acceleration (a x = 0) the horizontal position,

More information

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

More information

Motion in a Plane Uniform Circular Motion

Motion in a Plane Uniform Circular Motion Lecture 11 Chapter 8 Physics I Motion in a Plane Uniform Circular Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will learn to solve problems about

More information

2D and 3D Motion. with constant (uniform) acceleration

2D and 3D Motion. with constant (uniform) acceleration 2D and 3D Motion with constant (uniform) acceleration 1 Dimension 2 or 3 Dimensions x x v : position : position : displacement r : displacement : velocity v : velocity a : acceleration a r : acceleration

More information

Its SI unit is rad/s and is an axial vector having its direction given by right hand thumb rule.

Its SI unit is rad/s and is an axial vector having its direction given by right hand thumb rule. Circular motion An object is said to be having circular motion if it moves along a circular path. For example revolution of moon around earth, the revolution of an artificial satellite in circular orbit

More information

Lecture 6. Circular Motion. Pre-reading: KJF 6.1 and 6.2. Please take a clicker CIRCULAR MOTION KJF

Lecture 6. Circular Motion. Pre-reading: KJF 6.1 and 6.2. Please take a clicker CIRCULAR MOTION KJF Lecture 6 Circular Motion Pre-reading: KJF 6.1 and 6.2 Please take a clicker CIRCULAR MOTION KJF 6.1 6.4 Angular position If an object moves in a circle of radius r, then after travelling a distance s

More information

Chapter 8: Dynamics in a plane

Chapter 8: Dynamics in a plane 8.1 Dynamics in 2 Dimensions p. 210-212 Chapter 8: Dynamics in a plane 8.2 Velocity and Acceleration in uniform circular motion (a review of sec. 4.6) p. 212-214 8.3 Dynamics of Uniform Circular Motion

More information

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION Chapter 4 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight CHAPTER4_LECTURE4_2 1 QUICK REVIEW What we ve done so far A quick review: So far, we ve looked

More information

When the ball reaches the break in the circle, which path will it follow?

When the ball reaches the break in the circle, which path will it follow? Checking Understanding: Circular Motion Dynamics When the ball reaches the break in the circle, which path will it follow? Slide 6-21 Answer When the ball reaches the break in the circle, which path will

More information

CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS

CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS Today s Objectives: Students will be able to: 1. Determine the normal and tangential components of velocity and acceleration of a particle traveling

More information

PHYSICS 220 LAB #6: CIRCULAR MOTION

PHYSICS 220 LAB #6: CIRCULAR MOTION Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

Dynamics: Forces. Lecture 7. Chapter 5. Course website:

Dynamics: Forces. Lecture 7. Chapter 5. Course website: Lecture 7 Chapter 5 Dynamics: Forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Some leftovers from rotational motion Ch.4 Force,

More information

Rotational Motion and Angular Displacement

Rotational Motion and Angular Displacement Physics 20 AP - Assignment #5 Angular Velocity and Acceleration There are many examples of rotational motion in everyday life (i.e. spinning propeller blades, CD players, tires on a moving car ). In this

More information

Kinematics: Circular Motion Mechanics: Forces

Kinematics: Circular Motion Mechanics: Forces Kinematics: Circular Motion Mechanics: Forces Lana heridan De Anza College Oct 11, 2018 Last time projectile trajectory equation projectile examples projectile motion and relative motion Overview circular

More information

Kinematics (2) - Motion in Three Dimensions

Kinematics (2) - Motion in Three Dimensions Kinematics (2) - Motion in Three Dimensions 1. Introduction Kinematics is a branch of mechanics which describes the motion of objects without consideration of the circumstances leading to the motion. 2.

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

ME 230 Kinematics and Dynamics

ME 230 Kinematics and Dynamics ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Lecture 6: Particle Kinetics Kinetics of a particle (Chapter 13) - 13.4-13.6 Chapter 13: Objectives

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Lesson 8 Kinematics V - Circular Motion

Lesson 8 Kinematics V - Circular Motion I. Circular Motion and Polar Coordinates Lesson 8 Kinematics V - Circular Motion A. Consider the motion of ball on a circle from point A to point B as shown below. We could describe the path of the ball

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s Objectives: Students will be able to: 1. Apply the equation of motion using normal and tangential coordinates. In-Class Activities: Check

More information

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 8 Lecture RANDALL D. KNIGHT Chapter 8. Dynamics II: Motion in a Plane IN THIS CHAPTER, you will learn to solve problems about motion

More information

Motion In Two Dimensions

Motion In Two Dimensions Motion In Two Dimensions 1. Projectile motion is: (a) One dimensional (b) Two dimensional (c) Three dimensional (d) Multi-dimensional 2. For projectile motion: (a) A body must be thrown vertically (b)

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS (12.7)

CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS (12.7) 19 / 36 CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS (12.7) Today s objectives: Students will be able to 1 Determine the normal and tangential components of velocity and acceleration of a particle

More information

3) Uniform circular motion: to further understand acceleration in polar coordinates

3) Uniform circular motion: to further understand acceleration in polar coordinates Physics 201 Lecture 7 Reading Chapter 5 1) Uniform circular motion: velocity in polar coordinates No radial velocity v = dr = dr Angular position: θ Angular velocity: ω Period: T = = " dθ dθ r + r θ =

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES

More information

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Feeling of apparent weight: Caused your body's reaction to the push that the

More information

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

Concepts in Physics. Wednesday, September 23

Concepts in Physics. Wednesday, September 23 1206 - Concepts in Physics Wednesday, September 23 NOTES Additional Tutorial available: THURSDAY 16:30 to 18:00 F536 this is for all first year physics students, so bring specific questions you have Tutorial

More information

Classical Mechanics Lecture 4

Classical Mechanics Lecture 4 Classical Mechanics Lecture 4 Homework 3 and Midterm Exam 1 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference

More information

Recall the basic equation connecting period and frequency, developed in Chapter 5 for uniform circular motion:

Recall the basic equation connecting period and frequency, developed in Chapter 5 for uniform circular motion: Chapter 8: Rotational Kinematics Tuesday, September 17, 2013 10:00 PM Rotational Kinematics We discussed the basics of rotational kinematics in Chapter 5; we complete the story here, including the kinematics

More information

Text PHYSJC and your answer to 22333

Text PHYSJC and your answer to 22333 Text PHYSJC and your answer to 22333 You have a slingshot that fires balls at a constant initial speed. At what angle of firing will you be able to maximize the range of the slingshot? Assume any targets

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapter 8 Accelerated Circular Motion 8.1 Rotational Motion and Angular Displacement A new unit, radians, is really useful for angles. Radian measure θ(radians) = s = rθ s (arc length) r (radius) (s in

More information

PHYSICS - CLUTCH CH 10: ROTATIONAL KINEMATICS.

PHYSICS - CLUTCH CH 10: ROTATIONAL KINEMATICS. !! www.clutchprep.com ROTATIONAL POSITION & DISPLACEMENT Rotational Motion is motion around a point, that is, in a path. - The rotational equivalent of linear POSITION ( ) is Rotational/Angular position

More information

Homework #19 (due Friday 5/6)

Homework #19 (due Friday 5/6) Homework #19 (due Friday 5/6) Physics ID number Group Letter One issue that people often have trouble with at this point is distinguishing between tangential acceleration and centripetal acceleration for

More information

Mechanics Lecture Notes

Mechanics Lecture Notes Mechanics Lecture Notes Lectures 0 and : Motion in a circle. Introduction The important result in this lecture concerns the force required to keep a particle moving on a circular path: if the radius of

More information

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Chapter 5 Circular Motion; Gravitation Units of Chapter 5 Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Newton s Law of Universal Gravitation

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

where R represents the radius of the circle and T represents the period.

where R represents the radius of the circle and T represents the period. Chapter 3 Circular Motion Uniform circular motion is the motion of an object in a circle with a constant or uniform speed. Speed When moving in a circle, an object traverses a distance around the perimeter

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes

AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes AP Physics 1 Lesson 10.a Law of Universal Gravitation Homework Outcomes 1. Use Law of Universal Gravitation to solve problems involving different masses. 2. Determine changes in gravitational and kinetic

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Rotations What s on the exam? Relative motion Physics 211 Fall 2012 Lecture 04-1 1 Assignments due this week: Prelecture 4-2: Ch 5.1-5.7 Complete short quiz

More information

Kinematics in Two-Dimensions

Kinematics in Two-Dimensions Slide 1 / 92 Slide 2 / 92 Kinematics in Two-Dimensions www.njctl.org Slide 3 / 92 How to Use this File Each topic is composed of brief direct instruction There are formative assessment questions after

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS GIANCOLI CHAPTER 5: CIRCULAR MOTION; GRAVITATION LSN 5-1: KINEMATICS OF UNIFORM CIRCULAR MOTION LSN 5-2: DYNAMICS OF UNIFORM CIRCULAR MOTION LSN 5-3:

More information

LECTURE 20: Rotational kinematics

LECTURE 20: Rotational kinematics Lectures Page 1 LECTURE 20: Rotational kinematics Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be

More information

Chapter 3 Motion in two or three dimensions

Chapter 3 Motion in two or three dimensions Chapter 3 Motion in two or three dimensions Lecture by Dr. Hebin Li Announcements As requested by the Disability Resource Center: In this class there is a student who is a client of Disability Resource

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane A roller coaster doing a loop-the-loop is a dramatic example of circular motion. But why doesn t the car fall off the track when it s upside down at the top of

More information

Circular Motion Ch. 10 in your text book

Circular Motion Ch. 10 in your text book Circular Motion Ch. 10 in your text book Objectives Students will be able to: 1) Define rotation and revolution 2) Calculate the rotational speed of an object 3) Calculate the centripetal acceleration

More information

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed

Circular Motion. Conceptual Physics 11 th Edition. Circular Motion Tangential Speed Conceptual Physics 11 th Edition Circular Motion Rotational Inertia Torque Center of Mass and Center of Gravity Centripetal Force Centrifugal Force Chapter 8: ROTATION Rotating Reference Frames Simulated

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC_W05D1 ConcepTests

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC_W05D1 ConcepTests Reading Question MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 IC_W05D1 ConcepTests Two objects are pushed on a frictionless surface from a starting line to a finish line with

More information

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion

Physics 207 Lecture 10. Lecture 10. Employ Newton s Laws in 2D problems with circular motion Lecture 10 Goals: Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapters 8 & 9, due 3/4, Wednesday) For Tuesday: Finish reading Chapter 8, start Chapter 9. Physics 207: Lecture

More information

2/27/2018. Relative Motion. Reference Frames. Reference Frames

2/27/2018. Relative Motion. Reference Frames. Reference Frames Relative Motion The figure below shows Amy and Bill watching Carlos on his bicycle. According to Amy, Carlos s velocity is (v x ) CA 5 m/s. The CA subscript means C relative to A. According to Bill, Carlos

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Module 10 - Lecture 24 Kinematics of a particle moving on a curve Today,

More information

Motion Part 4: Projectile Motion

Motion Part 4: Projectile Motion Motion Part 4: Projectile Motion Last modified: 28/03/2017 CONTENTS Projectile Motion Uniform Motion Equations Projectile Motion Equations Trajectory How to Approach Problems Example 1 Example 2 Example

More information

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf =

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf = PHY 302 K. Solutions for problem set #9. Non-textbook problem #1: (a) Rotation frequency of 1 Hz means one revolution per second, or 60 revolutions per minute (RPM). The pre-lp vinyl disks rotated at 78

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fundamentals of Physics I Lectures 7 and 8 Motion in Two Dimensions Dr Tay Sen Chuan 1 Ground Rules Switch off your handphone and paer Switch off your laptop computer and keep it No talkin while lecture

More information

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 CFE Advanced Higher Physics Unit 1 Rotational Motion and Astrophysics Kinematic relationships 1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 a) Find

More information

Chapter 9 Uniform Circular Motion

Chapter 9 Uniform Circular Motion 9.1 Introduction Chapter 9 Uniform Circular Motion Special cases often dominate our study of physics, and circular motion is certainly no exception. We see circular motion in many instances in the world;

More information

AP Physics Daily Problem #31

AP Physics Daily Problem #31 AP Physics Daily Problem #31 A 10kg mass is whirled around on the end of a 3m long cord. The speed of the mass is 7m/s. Ignore gravitational forces. 3.0m 7.0m/s Draw a free body diagram of the mass. (hint:

More information

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION Today s Objectives : Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

Chapter 8: Rotational Motion

Chapter 8: Rotational Motion Lecture Outline Chapter 8: Rotational Motion This lecture will help you understand: Circular Motion Rotational Inertia Torque Center of Mass and Center of Gravity Centripetal Force Centrifugal Force Rotating

More information

Chapter 6 Review Answer Key

Chapter 6 Review Answer Key Chapter 6 Review Answer Key Understanding Vocabulary 1. displacement 2. trajectory 3. projectile 4. parabola 5. range 6. revolves 7. rotates 8. angular speed 9. centripetal force 10. law of universal gravitation

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws 2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform

More information

Rotational Kinematics Notes 3rd.notebook. March 20, 2017

Rotational Kinematics Notes 3rd.notebook. March 20, 2017 1 2 3 4 Rotational Kinematics Objectives: Students will understand how the Big 4 apply to rotational motion Students will know the variables used to describe rotational motion Students will be able to

More information

Circular Motion Tangential Speed. Conceptual Physics 11 th Edition. Circular Motion Rotational Speed. Circular Motion

Circular Motion Tangential Speed. Conceptual Physics 11 th Edition. Circular Motion Rotational Speed. Circular Motion Conceptual Physics 11 th Edition Circular Motion Tangential Speed The distance traveled by a point on the rotating object divided by the time taken to travel that distance is called its tangential speed

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

LECTURE 18: Uniform Circular Motion (UCM)

LECTURE 18: Uniform Circular Motion (UCM) Lectures Page 1 LECTURE 18: Uniform Circular Motion (UCM) Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. x. xi. xii. xiii. xiv. xv. Understand the definition of UCM, specifically that

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

Physics 101 Lab 6: Rotational Motion Dr. Timothy C. Black Fall, 2005

Physics 101 Lab 6: Rotational Motion Dr. Timothy C. Black Fall, 2005 Theoretical Discussion Physics 101 Lab 6: Rotational Motion Dr. Timothy C. Black Fall, 2005 An object moving in a circular orbit[1] at constant speed is said to be executing uniform circular motion. The

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

Strike. Physics 101: Lecture 13 Rotational Motion, Kinetic Energy and Rotational Inertia. Page 1. Reminders:

Strike. Physics 101: Lecture 13 Rotational Motion, Kinetic Energy and Rotational Inertia. Page 1. Reminders: Physics 101: Lecture 13 Rotational Motion, Kinetic Energy and Rotational Inertia Reminders: Strike Prelectures, checkpoints, lectures continue with no change. Please come to your discussion section. No

More information

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE ONLINE: MAHEMAICS EXENSION opic 6 MECHANICS 6.6 MOION IN A CICLE When a particle moes along a circular path (or cured path) its elocity must change een if its speed is constant, hence the particle must

More information

Lecture-XIV. Noninertial systems

Lecture-XIV. Noninertial systems Lecture-XIV Noninertial systems Accelerating frame Newton's second law F= maholds true only in inertial coordinate systems. However, there are many noninertial (that is, accelerating) frames that one needs

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces 2D Kinematics: Nonuniform Circular Motion Dynamics: Forces Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform circular motion Introduce forces

More information

Constant Acceleration. Physics General Physics Lecture 7 Uniform Circular Motion 9/13/2016. Fall 2016 Semester Prof.

Constant Acceleration. Physics General Physics Lecture 7 Uniform Circular Motion 9/13/2016. Fall 2016 Semester Prof. Physics 22000 General Physics Lecture 7 Uniform Circular Motion Fall 2016 Semester Prof. Matthew Jones 1 2 Constant Acceleration So far we have considered motion when the acceleration is constant in both

More information