هکانیک تحلیلی 1 درس اول صحرایی گر ه فیسیک دانشگاه رازی.

Size: px
Start display at page:

Download "هکانیک تحلیلی 1 درس اول صحرایی گر ه فیسیک دانشگاه رازی."

Transcription

1 هکانیک تحلیلی 1 درس اول صحرایی گر ه فیسیک دانشگاه رازی

2 References: هنابع: naltical Mechanics Grant R. Fowles هکانیک تحلیلی فا لس ترجوو دکتر جعفر قیصری هرکس نشر دانشگاىی چاپ ىشتن Mechanics Keith R. Smon هکانیک سایو ى هکانیک نظری ترجوو تک ک - بير زی - اشپیگل Internet

3 ssessment Mid semester eam ( Sat. 30 ar ): 40% Final eam: 50% Homework and Classroom ctivities: 10% 3

4 فيرست Content فصل ا ل: فصل د م: هفاىین بنیادی بردارىا Fundamental concepts, Vectors هکانیک نی تنی حرکت راست خط رره Newtonian Mechanics, Rectilinear Motion of a particle فصل س م: ن سانگر ىواىنگ The Harmonic Oscillator فصل چيارم: حرکت کلی رره در سو بعذ General Motion of a Particle in Three Dimensions فصل پنجن: دستگاىيای هرجع نالخت Noninertial Reference Sstems فصل ششن: نیر ىای هرکسی هکانیک سوا ی Central Forces and Celestial Mechanics 4

5 What is Mechanics? Mechanics is the science which describes and predicts the conditions of rest or motion of bodies under the action of forces. Categories of Mechanics: - Rigid bodies - Statics - Dnamics - Deformable bodies - Fluids Mechanics is an applied science - it is not an abstract or pure science but does not have the empiricism found in other engineering sciences. Mechanics is the foundation of most engineering sciences and is an indispensable prerequisite to their stud. 5

6 Fundamental Concepts Space - associated with the notion of the position of a point P given in terms of three coordinates measured from a reference point or origin. Time - definition of an event requires specification of the time and position at which it occurred. Mass - used to characterie and compare bodies, e.g., response to earth s gravitational attraction and resistance to changes in translational motion. 6

7 Problem Statement: Includes given data, specification of what is to be determined, and a figure showing all quantities involved. Free-od Diagrams: Create separate diagrams for each of the bodies involved with a clear indication of all forces acting on each bod. Method of Problem Solution Solution Check: - Test for errors in reasoning b verifing that the units of the computed results are correct, - test for errors in computation b substituting given data and computed results into previousl unused equations based on the si principles, - alwas appl eperience and phsical intuition to assess whether results seem reasonable Fundamental Principles: The si fundamental principles are applied to epress the conditions of rest or motion of each bod. The rules of algebra are applied to solve the equations for the unknown quantities. 7

8 VECTOR CLCULUS Some quantities that ou have studied in our earlier Phsics Courses volume mass densit energ pressure displacement velocit acceleration torque electric field 50 kg 40º C 8

9 What are vectors? vector has a both a magnitude and a direction. phsical quantit which has both a magnitude and a direction is represented b a vector. + Displacement Electric Field 9

10 Definition geometric analtic Vector Defined b its lgebra.(operation) *naltical representation. asic method to describe vector is Cartesian coordinate sstem. -D vector. magnitude length unit vector: i j basis vector: Vector: i, j 1 j ˆ [1,0] i P ˆ [0,1] j 0 i 10

11 D Delhi Mumbai C Chennai Kolkata D C 11

12 ddition of Vectors C E D C E ( ) C 1

13 ssociative Law C E C D E E ( C) 13

14 Subtraction of Vectors - C C = = +( ) 14

15 Vectors are geometrical objects independent of an coordinate sstem Look a two dimensional vector in a D Cartesian Coordinate Sstem Y 1 O 1 X 15

16 Y [, ] O X 1 1 iˆ cos cos ˆj The direction cosines of a vector are not independent. The satisf the following relation: cos cos 1 16

17 17 Propert sin, cos j i. 0 j i P k j i 3-D vector. asis vector k j i,, ˆ ˆ ˆ ˆ k j i n nˆ

18 i ( i j j = 1 = cos = 1 = cos Cartesian Coordinates (,, ) k k ) = 1 = cos ( i cos j cos k cos ) nˆ 1 î Z plane plane cos cos cos kˆ 1 ĵ ( 1, 1, 1) 1 [cos cos cos ] 1 Page

19 19 ddition and subtraction of vectors ],, [ ],, [ c c c ) ( Commutative law C C ) ( ) ( ssociative law d c d c ) ( Distributive law ],, [

20 Scalar product( Dot product). ( 4 i + 3 j + k ). ( 3 i - j + k ). = 1 + (- 6) + 4 = 10 0

21 i. i j. j k. k 1 i. j i. k j. k 0. cos 1/ 1/ ( ) ( ) Commutative law Distributive law Tpical eample in Phsics. Work (cos cos sin sin ) cos...( C). C. : w F. d, or, dw F. dr j 0 cos( ) i. Geometric Definition 1

22 Vector Product CROSS PRODUCT Magnitude : rea of the parallelogram generated b &

23 Magnitude : h sin h sin Direction : Perpendicular to both and. 3

24 Right-Hand Rule 4

25 Properties î î ĵ ngle between them 0º ĵ kˆ kˆ 0 j i k cclic î ĵ kˆ ; ĵ kˆ î; kˆ î ĵ ngle between them =90º ĵ î kˆ ;kˆ ĵ î ;î kˆ ĵ 5

26 Vector Product: Determinant î ĵ kˆ 6

27 7 k j i ) ( ) ( ) ( k j i Suppose 0 k ) ( k sin( ) 0 j i k j i ˆ ˆ ˆ k ) sin cos sin (cos

28 8 ). ( cos ) cos (1 sin sin Eample: prove

29 nti-commutative law Distributive law ( C) C Eamples in Phsics The torque produced b a force is r F τ r F 9

30 Eamples in Phsics O r L r p p mv The angular momentum of a particle with respect to O L r p 30

31 pplications Eample: simple cross product ( 5ˆ i ˆj kˆ) (ˆ i 3ˆj kˆ) -5 iˆ ˆj kˆ [( 1 1) 3 9 ] î 5 1 [ 5 1 ( )] ĵ 3 1 [ 53 ( 1)]kˆ 17 31

32 n Eample ( 5ˆ i ˆj kˆ) (ˆ i 3ˆj kˆ) 5iˆ 9 ˆj 17kˆ C H E C K ( ) a & b is perpendicular to (5ˆ i ˆj kˆ).( 5ˆ i 9 ˆj 17kˆ)

33 Eample Find a unit vector perpendicular to the plane containing two vectors & vector perpendicular to and is 33

34 Cross product ( 5ˆ i ˆj kˆ) ( ˆ i 3ˆj kˆ) 5iˆ 9 ˆj 17kˆ Magnitude Unit vector is n Eample Determine a unit vector perpendicular to the plane of and ( 5ˆ i 9 ˆj 17kˆ) 34

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

Physics 101. Vectors. Lecture 2. h0r33fy. EMU Physics Department. Assist. Prof. Dr. Ali ÖVGÜN

Physics 101. Vectors. Lecture 2. h0r33fy.   EMU Physics Department. Assist. Prof. Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors ssist. Prof. Dr. li ÖVGÜN EMU Phsics Department h0r33f www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem qfrom Cartesian to Polar coordinate

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem Januar 21, 2015 qfrom Cartesian to Polar coordinate

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

STATICS. Introduction Lecture Notes: J. Walt Oler Texas Tech University. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS:

STATICS. Introduction Lecture Notes: J. Walt Oler Texas Tech University. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental Concepts

More information

Introduction to vectors

Introduction to vectors Lecture 4 Introduction to vectors Course website: http://facult.uml.edu/andri_danlov/teaching/phsicsi Lecture Capture: http://echo360.uml.edu/danlov2013/phsics1fall.html 95.141, Fall 2013, Lecture 3 Outline

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

Figure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while the rod rotates about the center of mass.

Figure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while the rod rotates about the center of mass. 17.1 Introduction A body is called a rigid body if the distance between any two points in the body does not change in time. Rigid bodies, unlike point masses, can have forces applied at different points

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 What is phsics? Phsics deals with the behavior and composition of matter and its interactions at the most fundamental level. 1 Classical Phsics Classical phsics: (1600-1900)

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Conservation of Linear Momentum for a Differential Control Volume

Conservation of Linear Momentum for a Differential Control Volume Conservation of Linear Momentum for a Differential Control Volume When we applied the rate-form of the conservation of mass equation to a differential control volume (open sstem in Cartesian coordinates,

More information

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS 446.201 (Solid echanics) Professor Youn, eng Dong CH. 1 FUNDENTL PRINCIPLES OF ECHNICS Ch. 1 Fundamental Principles of echanics 1 / 14 446.201 (Solid echanics) Professor Youn, eng Dong 1.2 Generalied Procedure

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Start Chapter 1 1 the goal of this course is to develop your ability

More information

Vector Basics. Lecture 1 Vector Basics

Vector Basics. Lecture 1 Vector Basics Lecture 1 Vector Basics Vector Basics We will be using vectors a lot in this course. Remember that vectors have both magnitude and direction e.g. a, You should know how to find the components of a vector

More information

Module 3: Cartesian Coordinates and Vectors

Module 3: Cartesian Coordinates and Vectors Module 3: Cartesian Coordinates and Vectors Philosophy is written in this grand book, the universe which stands continually open to our gaze. But the book cannot be understood unless one first learns to

More information

Angular momentum Vector product.

Angular momentum Vector product. Lecture 19 Chapter 11 Physics I 04.09.2014 Angular momentum Vector product. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

CHAPTER 1 MEASUREMENTS AND VECTORS

CHAPTER 1 MEASUREMENTS AND VECTORS CHPTER 1 MESUREMENTS ND VECTORS 1 CHPTER 1 MESUREMENTS ND VECTORS 1.1 UNITS ND STNDRDS n phsical quantit must have, besides its numerical value, a standard unit. It will be meaningless to sa that the distance

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Spring Force and Power

Spring Force and Power Lecture 14 Chapter 9 Physics I Spring Force and Power Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will learn how to solve problems using two new concepts:

More information

Chapter 1. Units, Physical Quantities, and Vectors

Chapter 1. Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1.3 Standards and Units The metric system is also known as the S I system of units. (S I! Syst me International). A. Length The unit of length in the metric

More information

Work and Energy (Work Done by a Constant Force)

Work and Energy (Work Done by a Constant Force) Lecture 11 Chapter 7 Physics I 10.16.2013 Work and Energy (Work Done by a Constant Force) Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems JU 18/HL Dnamics and control of mechanical sstems Date Da 1 (3/5) 5/5 Da (7/5) Da 3 (9/5) Da 4 (11/5) Da 5 (14/5) Da 6 (16/5) Content Revie of the basics of mechanics. Kinematics of rigid bodies coordinate

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION

VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION The language used to describe motion is called kinematics. Surprisingl, ver few words are needed to full the describe the motion of a Sstem. Warning:

More information

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems Phsics for Scientists and Engineers Chapter 3 Vectors and Coordinate Sstems Spring, 2008 Ho Jung Paik Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists of a

More information

Solution 11. Kinetics of rigid body(newton s Second Law)

Solution 11. Kinetics of rigid body(newton s Second Law) Solution () urpose and Requirement Solution Kinetics of rigid bod(newton s Second Law) In rob, kinematics stud regarding acceleration of mass center should be done before Newton s second law is used to

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

Math Review Night: Work and the Dot Product

Math Review Night: Work and the Dot Product Math Review Night: Work and the Dot Product Dot Product A scalar quantity Magnitude: A B = A B cosθ The dot product can be positive, zero, or negative Two types of projections: the dot product is the parallel

More information

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ VI. Angular momentum Up to this point, we have been dealing primaril with one dimensional sstems. In practice, of course, most of the sstems we deal with live in three dimensions and 1D quantum mechanics

More information

Angular momentum Vector product.

Angular momentum Vector product. Lecture 19 Chapter 11 Physics I 11.20.2013 Angular momentum Vector product. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Chapter 3 Vectors 3-1

Chapter 3 Vectors 3-1 Chapter 3 Vectors Chapter 3 Vectors... 2 3.1 Vector Analysis... 2 3.1.1 Introduction to Vectors... 2 3.1.2 Properties of Vectors... 2 3.2 Cartesian Coordinate System... 6 3.2.1 Cartesian Coordinates...

More information

Lecture 5: 3-D Rotation Matrices.

Lecture 5: 3-D Rotation Matrices. 3.7 Transformation Matri and Stiffness Matri in Three- Dimensional Space. The displacement vector d is a real vector entit. It is independent of the frame used to define it. d = d i + d j + d k = dˆ iˆ+

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

Remark 3.2. The cross product only makes sense in R 3.

Remark 3.2. The cross product only makes sense in R 3. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

ARCH 631 Note Set 2.1 F2010abn. Statics Primer

ARCH 631 Note Set 2.1 F2010abn. Statics Primer RCH 631 Note Set.1 F010abn Statics Primer Notation: a = name for acceleration = area (net = with holes, bearing = in contact, etc...) (C) = shorthand for compression d = perpendicular distance to a force

More information

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples orces and Moments CIEG-125 Introduction to Civil Engineering all 2005 Lecture 3 Outline hwhat is mechanics? hscalars and vectors horces are vectors htransmissibilit of forces hresolution of colinear forces

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

Mechanics: Scalars and Vectors

Mechanics: Scalars and Vectors Mechanics: Scalars and Vectors Scalar Onl magnitude is associated with it Vector e.g., time, volume, densit, speed, energ, mass etc. Possess direction as well as magnitude Parallelogram law of addition

More information

Introduction to Engineering Mechanics

Introduction to Engineering Mechanics Introduction to Engineering Mechanics Statics October 2009 () Introduction 10/09 1 / 19 Engineering mechanics Engineering mechanics is the physical science that deals with the behavior of bodies under

More information

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis Fundamentals of pplied Electromagnetics Chapter - Vector nalsis Chapter Objectives Operations of vector algebra Dot product of two vectors Differential functions in vector calculus Divergence of a vector

More information

Let s try an example of Unit Analysis. Your friend gives you this formula: x=at. You have to figure out if it s right using Unit Analysis.

Let s try an example of Unit Analysis. Your friend gives you this formula: x=at. You have to figure out if it s right using Unit Analysis. Lecture 1 Introduction to Measurement - SI sstem Dimensional nalsis / Unit nalsis Unit Conversions Vectors and Mathematics International Sstem of Units (SI) Table 1.1, p.5 The Seven Base Units What is

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

College of Sciences PHYS 101 General Physics 1 F a l l S e m e s t e r Midterm1 Exam October 26, 2015 Monday, 19:00-21:00. Please read.

College of Sciences PHYS 101 General Physics 1 F a l l S e m e s t e r Midterm1 Exam October 26, 2015 Monday, 19:00-21:00. Please read. Name: Surname: Number: K O Ç U N I V E R S I T Y College of Sciences PHYS 101 General Phsics 1 F a l l S e m e s t e r 0 1 5 Midterm1 Exam October 6, 015 Monda, 19:00-1:00 Please read. Count to make sure

More information

Equilibrium at a Point

Equilibrium at a Point Equilibrium at a Point Never slap a man who's chewing tobacco. - Will Rogers Objec3ves Understand the concept of sta3c equilibrium Understand the use of the free- bod diagram to isolate a sstem for analsis

More information

Lecture 20 Chapter 12 Angular Momentum Course website:

Lecture 20 Chapter 12 Angular Momentum Course website: Lecture 20 Chapter 12 Angular Momentum Another Law? Am I in a Law school? Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational

More information

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force Phsics 360 Notes on Griffths - pluses and minuses No tetbook is perfect, and Griffithsisnoeception. Themajorplusisthat it is prett readable. For minuses, see below. Much of what G sas about the del operator

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Vectors. J.R. Wilson. September 28, 2017

Vectors. J.R. Wilson. September 28, 2017 Vectors J.R. Wilson September 28, 2017 This chapter introduces vectors that are used in many areas of physics (needed for classical physics this year). One complication is that a number of different forms

More information

Module 24: Angular Momentum of a Point Particle

Module 24: Angular Momentum of a Point Particle 24.1 Introduction Module 24: Angular Momentum of a Point Particle When we consider a system of objects, we have shown that the external force, acting at the center of mass of the system, is equal to the

More information

Module 12: Work and the Scalar Product

Module 12: Work and the Scalar Product Module 1: Work and the Scalar Product 1.1 Scalar Product (Dot Product) We shall introduce a vector operation, called the dot product or scalar product that takes any two vectors and generates a scalar

More information

Statics and Mechanics of Materials

Statics and Mechanics of Materials Second E 1 Introduction CHAPTER Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Contents What is Mechanics? Systems of Units Method of Solving Problems Numerical Accuracy 1-2

More information

Lecture 3. Motion in more than one dimension

Lecture 3. Motion in more than one dimension 4/9/19 Phsics 2 Olga Dudko UCSD Phsics Lecture 3 Toda: The vector description of motion. Relative Motion. The principle of Galilean relativit. Motion in more than one dimension 1D: position is specified

More information

Contents. Dynamics and control of mechanical systems. Focuses on

Contents. Dynamics and control of mechanical systems. Focuses on Dnamics and control of mechanical sstems Date Da (/8) Da (3/8) Da 3 (5/8) Da 4 (7/8) Da 5 (9/8) Da 6 (/8) Content Review of the basics of mechanics. Kinematics of rigid bodies - coordinate transformation,

More information

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction CHAPTER ENT 151 STATICS Lecture Notes: Azizul bin Mohamad KUKUM Statics of Particles Contents Introduction Resultant of Two Forces Vectors Addition of Vectors Resultant of Several Concurrent Forces Sample

More information

PES 1110 Fall 2013, Spendier Lecture 5/Page 1

PES 1110 Fall 2013, Spendier Lecture 5/Page 1 PES 1110 Fall 2013, Spendier Lecture 5/Page 1 Toda: - Announcements: Quiz moved to net Monda, Sept 9th due to website glitch! - Finish chapter 3: Vectors - Chapter 4: Motion in 2D and 3D (sections 4.1-4.4)

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE

HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE In studying the motion of objects you need to use scientific terms carefully as the meaning of words used in Physics often have a different

More information

Transformation of kinematical quantities from rotating into static coordinate system

Transformation of kinematical quantities from rotating into static coordinate system Transformation of kinematical quantities from rotating into static coordinate sstem Dimitar G Stoanov Facult of Engineering and Pedagog in Sliven, Technical Universit of Sofia 59, Bourgasko Shaussee Blvd,

More information

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector 1. Sstems of orces & s 2142111 Statics, 2011/2 Department of Mechanical Engineering, Chulalongkorn Uniersit bjecties Students must be able to Course bjectie Analze a sstem of forces and moments Chapter

More information

Two-Dimensional Rotational Dynamics

Two-Dimensional Rotational Dynamics Two-Dimensional Rotational Dynamics 8.01 W09D2 W09D2 Reading Assignment: MIT 8.01 Course Notes: Chapter 17 Two Dimensional Rotational Dynamics Sections 17.1-17.5 Chapter 18 Static Equilibrium Sections

More information

Linear and Angular Velocities 2/4. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Linear and Angular Velocities 2/4. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Linear and ngular elocities 2/4 Instructor: Jacob osen dvanced obotic - ME 263D - Department of Mechanical & erospace Engineering - UL Jacobian Matri - alculation Methods Differentiation the Forward Kinematics

More information

7-1. Basic Trigonometric Identities

7-1. Basic Trigonometric Identities 7- BJECTIVE Identif and use reciprocal identities, quotient identities, Pthagorean identities, smmetr identities, and opposite-angle identities. Basic Trigonometric Identities PTICS Man sunglasses have

More information

Infinitesimal Rotations

Infinitesimal Rotations Universit of Connecticut DigitalCommons@UConn Chemistr Education Materials Department of Chemistr Januar 007 Infinitesimal Rotations Carl W. David Universit of Connecticut, Carl.David@uconn.edu Follow

More information

Geometry review, part I

Geometry review, part I Geometr reie, part I Geometr reie I Vectors and points points and ectors Geometric s. coordinate-based (algebraic) approach operations on ectors and points Lines implicit and parametric equations intersections,

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 19 Page 1 of 36 12. Equilibrium and Elasticity How do objects behave under applied external forces? Under

More information

Chapter 3 Vectors. 3.1 Vector Analysis

Chapter 3 Vectors. 3.1 Vector Analysis Chapter 3 Vectors 3.1 Vector nalysis... 1 3.1.1 Introduction to Vectors... 1 3.1.2 Properties of Vectors... 1 3.2 Coordinate Systems... 6 3.2.1 Cartesian Coordinate System... 6 3.2.2 Cylindrical Coordinate

More information

OA = 6, 5, 4 2, 7, 1 = 4, 12, 3 AB, AC, and = 5, 3, 3 3, 4, 12 = = 39 = 39. AC, AD) = = 3 AC) AC) AD

OA = 6, 5, 4 2, 7, 1 = 4, 12, 3 AB, AC, and = 5, 3, 3 3, 4, 12 = = 39 = 39. AC, AD) = = 3 AC) AC) AD Math Fall First Eam Solutions October, Problem. ( pts.) Consider the points A(, 7, ), B(6,, 4), C(6,, 3), and D(7, 4, 4). (a pts.) Find the area of the parallelogram defined b AB and AC. First we calculate

More information

Chapter 17 Two Dimensional Rotational Dynamics

Chapter 17 Two Dimensional Rotational Dynamics Chapter 17 Two Dimensional Rotational Dynamics 17.1 Introduction... 1 17.2 Vector Product (Cross Product)... 2 17.2.1 Right-hand Rule for the Direction of Vector Product... 3 17.2.2 Properties of the Vector

More information

Chapter 2 Basic Conservation Equations for Laminar Convection

Chapter 2 Basic Conservation Equations for Laminar Convection Chapter Basic Conservation Equations for Laminar Convection Abstract In this chapter, the basic conservation equations related to laminar fluid flow conservation equations are introduced. On this basis,

More information

Crystal Structure. Crystalline vs. amorphous Diamond graphite soot

Crystal Structure. Crystalline vs. amorphous Diamond graphite soot Crstal Smmetr Crstal Structure Crstalline vs. amorphous Diamond graphite soot Binding Covalent/metallic bonds metals Ionic bonds insulators Crstal structure determines properties Binding atomic densit

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

SOLUTIONS TO CONCEPTS CHAPTER 2

SOLUTIONS TO CONCEPTS CHAPTER 2 SOLUTIONS TO CONCPTS CHAPTR 1. As shown in the figure, The angle between A and B = 11 = 9 A = and B = 4m Resultant R = A B ABcos = 5 m Let be the angle between R and A 4 sin9 = tan 1 = tan 1 (4/) = 5 4cos9

More information

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry Vectors OPTIONAL - I 32 VECTORS In day to day life situations, we deal with physical quantities such as distance, speed, temperature, volume etc. These quantities are sufficient to describe change of position,

More information

1 Summary of Chapter 2

1 Summary of Chapter 2 General Astronomy (9:61) Fall 01 Lecture 7 Notes, September 10, 01 1 Summary of Chapter There are a number of items from Chapter that you should be sure to understand. 1.1 Terminology A number of technical

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

One-dimensional kinematics

One-dimensional kinematics Phsics 45 Formula Sheet Eam One-dimensional kinematics Vectors displacement: Δ f i total distance traveled average speed total time Δ f i average velocit: vav t f ti Δ instantaneous velocit: v lim Δ t

More information

Math Review 1: Vectors

Math Review 1: Vectors Math Review 1: Vectors Coordinate System Coordinate system: used to describe the position of a point in space and consists of 1. An origin as the reference point 2. A set of coordinate axes with scales

More information

ME 321: FLUID MECHANICS-I

ME 321: FLUID MECHANICS-I 6/07/08 ME 3: LUID MECHANI-I Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh Universit of Engineering & Technolog (BUET), Dhaka Lecture- 4/07/08 Momentum Principle teacher.buet.ac.bd/toufiquehasan/

More information

Engineering Physics CUPY 106 Dr C Sumanya. Office 8 Block 9

Engineering Physics CUPY 106 Dr C Sumanya. Office 8 Block 9 Engineering Phsics CUPY 106 Dr C Sumana Office 8 lock 9 csumana@cut.ac.zw Outline Measurements and Vectors Kinematics and Forces Work and Energ Momentum Impulse and Collisions Fluid Mechanics Oscillation

More information

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors

ARCH 331 Note Set 3.1 Su2016abn. Forces and Vectors orces and Vectors Notation: = name for force vectors, as is A, B, C, T and P = force component in the direction = force component in the direction R = name for resultant vectors R = resultant component

More information

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1

Statics. Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 1 Review the Course Outline and Class Schedule Go through

More information

Multiple Integration

Multiple Integration Contents 7 Multiple Integration 7. Introduction to Surface Integrals 7. Multiple Integrals over Non-rectangular Regions 7. Volume Integrals 4 7.4 Changing Coordinates 66 Learning outcomes In this Workbook

More information

PHYSICS 1 Forces & Newton s Laws

PHYSICS 1 Forces & Newton s Laws Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 2014-2015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second

More information

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin.

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin. THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY 1. Introduction V. A. Sharifulin Perm State Technical Universit, Perm, Russia e-mail: sharifulin@perm.ru Water

More information

Pan Pearl River Delta Physics Olympiad 2005

Pan Pearl River Delta Physics Olympiad 2005 1 Jan. 29, 25 Morning Session (9 am 12 pm) Q1 (5 Two identical worms of length L are ling on a smooth and horizontal surface. The mass of the worms is evenl distributed along their bod length. The starting

More information

Physics 207, Lecture 4, Sept. 15

Physics 207, Lecture 4, Sept. 15 Phsics 07, Lecture 4, Sept. 15 Goals for hapts.. 3 & 4 Perform vector algebra (addition & subtraction) graphicall or b, & z components Interconvert between artesian and Polar coordinates Distinguish position-time

More information

Geometry and Motion of Isotropic Harmonic Oscillators (Ch. 9 and Ch. 11 of Unit 1)

Geometry and Motion of Isotropic Harmonic Oscillators (Ch. 9 and Ch. 11 of Unit 1) Lecture Revised.. from..0 Geometr and Motion of Isotropic Harmonic Oscillators (Ch. and Ch. of Unit ) Geometr of idealized Sophomore-phsics Earth Coulomb field outside Isotropic Harmonic Oscillator (IHO)

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

PHY4116 From Newton to Einstein. Mid-Term Test, 10a.m. Wed. 16 th Nov Duration: 50 minutes. There are 25 marks in Section A and 25 in Section B.

PHY4116 From Newton to Einstein. Mid-Term Test, 10a.m. Wed. 16 th Nov Duration: 50 minutes. There are 25 marks in Section A and 25 in Section B. PHY46 From Newton to Einstein Mid-Term Test, 0a.m. Wed. 6 th Nov. 06 Duration: 50 minutes. There are 5 marks in Section A and 5 in Section B. Use g = 0 ms in numerical calculations. You ma use the following

More information

*Definition of Mechanics *Basic Concepts *Newton s Laws *Units

*Definition of Mechanics *Basic Concepts *Newton s Laws *Units INTRODUCTION *Definition of Mechanics *Basic Concepts *Newton s Laws *Units Mechanics may be defined as the physical science which describes and predicts the conditions of rest or motion of bodies under

More information

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU LECTURE NOTES - VIII «LUID MECHNICS» Istanbul Technical Universit College of Civil Engineering Civil Engineering Department Hdraulics Division CHPTER 8 DIMENSIONL NLYSIS 8. INTRODUCTION Dimensional analsis

More information

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University T E CHAPTER 1 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: Introduction John Chen California Polytechnic State University! Contents

More information

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension

Review! Kinematics: Free Fall, A Special Case. Review! A Few Facts About! Physics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension Phsics 101 Lecture 3 Kinematics: Vectors and Motion in 1 Dimension What concepts did ou find most difficult, or what would ou like to be sure we discuss in lecture? Acceleration vectors. Will ou go over

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. These equations greatl facilitate the solution of man problems in which

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information