Invariants for efficiently computing the autotopism group of a partial Latin rectangle

Size: px
Start display at page:

Download "Invariants for efficiently computing the autotopism group of a partial Latin rectangle"

Transcription

1 Invariants for efficiently computing the autotopism group of a partial Latin rectangle Daniel Kotlar Tel-Hai College, Israel joint work with Eiran Danan, Raúl M. Falcón, Trent G. Marbach, Rebecca J. Stones Symmetry vs Regularity, Pilsen,

2 Partial Latin Rectangle 2

3 Partial Latin Rectangle L PLR( r, s, n) r= number of rows s = number of columns n= number of symbols 2

4 Partial Latin Rectangle PLR(,, ) L r s n r= number of rows s = number of columns n= number of symbols PLR(6,9, 7) 2

5 Partial Latin Rectangle PLR(,, ) L r s n r= number of rows s = number of columns n= number of symbols PLR(6,9, 7) 2 Ent( ) : {(,, [, ]) : [ ], [ ], [, ] [ ]} L i j L i j i r j s L i j n = The entry set of L

6 Isotopisms and autotopisms Θ= ( α, β, γ ) S S S r s n Θ : PLR( r, s, n) PLR( r, s, n) α permutes the rows β permutes the columns γ permutes the symbols an isotopism If Θ ( L) = L then Θ is an autotopismof L Atop( L ) = The autotopygroup of L 3

7 Computing Atop( L) The partial Latin rectangle graph (Falcon and Stones, Disc. Math. 2017) Example: Compute Atop( L) by computing graph automorphisms. Use nauty (McKay, Meynert, Myrvold, JCD 2007) and its variants 4

8 Two stages in Computing Atop( L) 1. Use invariants to partition rows, columns, symbols and entries in order to narrow down the search - polynomial time complexity. 5

9 Two stages in Computing Atop( L) 1. Use invariants to partition rows, columns, symbols and entries in order to narrow down the search - polynomial time complexity. 2. Compute Atop( L) using backtracking methods - mostly non-polynomial time complexity. 5

10 Two stages in Computing Atop( L) 1. Use invariants to partition rows, columns, symbols and entries in order to narrow down the search - polynomial time complexity. 2. Compute Atop( L) using backtracking methods - mostly non-polynomial time complexity. 6

11 System of partitions ( ) row, col, sym P= P P P 7

12 System of partitions ( ) row, col, sym P= P P P P is invariantif and only if each of its components is invariant under Atop( L) 7

13 System of partitions ( ) row, col, sym P= P P P P is invariantif and only if each of its components is invariant under Atop( L) Example: the types system P ( ) T = P1, P2, P3 : P1 is defined by the number of entries in the rows P2 is defined by the number of entries in the columns P3 is defined by the number of appearances of each symbol 7

14 How to obtain invariant systems? 8

15 How to obtain invariant systems? Aim: find the finest possible invariant system of partitions 8

16 How to obtain invariant systems? Aim: find the finest possible invariant system of partitions How? 1) Start with P= P ( L) S the trivial system of partitions 2) Apply refinement methods 8

17 The natural refinement ( ) row, col, sym ( ) P= P P P induces a partition E P on Ent( L) : 9

18 The natural refinement ( ) row, col, sym ( ) P= P P P induces a partition E P on Ent( L) : i ~ i P row ( i, j, L[ i, j])) ~ E( ) ( i, j, L[ i, j ]) j ~ j P Pcol L[ i, j] ~ L[ i, j ] Psym 9

19 The natural refinement ( ) row, col, sym ( ) P= P P P induces a partition E P on Ent( L) : i ~ i P row ( i, j, L[ i, j])) ~ E( ) ( i, j, L[ i, j ]) j ~ j P Pcol L[ i, j] ~ L[ i, j ] Psym 1) Label the elements of Ent( L) by their part in E( P) 9

20 The natural refinement ( ) row, col, sym ( ) P= P P P induces a partition E P on Ent( L) : i ~ i P row ( i, j, L[ i, j])) ~ E( ) ( i, j, L[ i, j ]) j ~ j P Pcol L[ i, j] ~ L[ i, j ] Psym 1) Label the elements of Ent( L) by their part in E( P) ( row col sym ) 2) Define the natural refinement where NP ( row ) is define by the multisets of labels in the rows NP ( ) is define by the multisets of labels in the columns col N( P) = N( P ), N( P ), N( P ) col ( ) NP is define by the multisets of labels corresponding to the symbols 9

21 The natural refinement 10

22 The natural refinement N( ) P P 10

23 The natural refinement N( ) P P If is invariant so is P NP ( ) 10

24 The natural refinement N( ) P P If is invariant so is P NP ( ) If ' then P P N( P' ) N( P) 10

25 The natural refinement N( ) P P If is invariant so is P NP ( ) If ' then P P N( P' ) N( P) Can continue the process until it stops: [ ] ( ) ( ) ( ), N P N N P N P P 10

26 The natural refinement N( ) P P If is invariant so is P NP ( ) If ' then P P N( P' ) N( P) Can continue the process until it stops: [ ] ( ) ( ) ( ), N P N N P N P P Examples: N ( S) = T P P N( N ( PS )) = PSEI the types partition the Strong Entry Invariants partition (Falcon and Stones, 2017) 10

27 The natural refinement N( ) P P If is invariant so is P NP ( ) If ' then P P N( P' ) N( P) Can continue the process until it stops: [ ] ( ) ( ) ( ), N P N N P N P P Examples: N ( S) = T P P N( N ( PS )) = PSEI the types partition the Strong Entry Invariants partition (Falcon and Stones, 2017) Disadvantage: when starting from P S it is useless for very dense PLRs 10

28 Two-line graphs for two rows r1, r2 in a PLR, construct a vertex-and-edgecolored bipartite graph G as illustrated here: r, r ( L)

29 Two-line graphs for two rows r1, r2 in a PLR, construct a vertex-and-edgecolored bipartite graph G as illustrated here: r, r ( L) 1 2 Similar constructions for two columns and two symbols. (1,3) (for symbols consider L, the PLR obtained by swapping the 1 st and 3 rd coordinates in Ent( L) ) 11

30 Two-line graphs for two rows r1, r2 in a PLR, construct a vertex-and-edgecolored bipartite graph G as illustrated here: r, r ( L) 1 2 Similar constructions for two columns and two symbols. (1,3) (for symbols consider L, the PLR obtained by swapping the 1 st and 3 rd coordinates in Ent( L) ) Can try it here: 11

31 Two-line graphs for two rows r1, r2 in a PLR, construct a vertex-and-edgecolored bipartite graph G as illustrated here: r, r ( L) 1 2 Similar constructions for two columns and two symbols. (1,3) (for symbols consider L, the PLR obtained by swapping the 1 st and 3 rd coordinates in Ent( L) ) Can try it here: Remark: can be viewed as a generalization of cycles in partial permutations 11

32 The two-line representations R row ( L) 0 0 rkl = rij 0 12

33 The two-line representations r = r G G ij kl i, j k, l R row ( L) 0 0 rkl = rij 0 12

34 The two-line representations r = r G G ij kl i, j k, l R row ( L) 0 0 rkl = rij 0 (Define R L and R ( L) sym analogously) col ( ) 12

35 The two-line graph (TLG) refinement 13

36 The two-line graph (TLG) refinement P= P P P an adequate system r, c, s ( ) 13

37 The two-line graph (TLG) refinement P= P P P an adequate system r, c, s ( ) suppose P = { P, P,, P k } r

38 The two-line graph (TLG) refinement P= P P P an adequate system r, c, s ( ) suppose P = { P, P,, P k } r 1 2 R ( L) row = 13

39 The two-line graph (TLG) refinement P= P P P an adequate system R ( L) row r, c, s ( ) suppose P P1 P2 = { P, P,, P k } r 1 2 Pi Pk = 13

40 The two-line graph (TLG) refinement P= P P P an adequate system R ( L) row r, c, s ( ) suppose P P1 P2 = { P, P,, P k } r 1 2 Pi Pk = r 1 r 2 r r ~ P r r ~ G P r r 1 ( ) the multisets agree in each part 13

41 The two-line graph (TLG) refinement P= P P P an adequate system R ( L) row r, c, s ( ) suppose P P1 P2 = { P, P,, P k } r 1 2 Pi Pk = r r r r ~ P r r ~ G P r r 1 ( ) the multisets agree in each part 13

42 The two-line graph (TLG) refinement P= P P P an adequate system R ( L) row r, c, s ( ) suppose P P1 P2 = { P, P,, P k } r 1 2 Pi Pk = r r r r ~ P r r ~ G P r r 1 ( ) 2 G( P ) ( ) analogous definitions for and ( P P P ) G P = G G G r, c, s ( ) ( ) ( ) ( ) c G P s 1 2 the multisets agree in each part 13

43 The TLG refinement 14

44 The TLG refinement G( ) P P 14

45 The TLG refinement G( P) P If is invariant so is P GP ( ) 14

46 The TLG refinement G( P) P If is invariant so is P GP ( ) If ' then P P G( P ') G( P) 14

47 The TLG refinement G( P) P If is invariant so is P GP ( ) If ' then P P G( P ') G( P) Can continue the process until it stops: [ ] ( ) ( ) ( ), GP G G P G P P 14

48 G vs. N Not much is known about the relation between the refinements G and N. However, it is easy to see 15

49 G vs. N Not much is known about the relation between the refinements G and N. However, it is easy to see G( P ) N( P ) S S 15

50 G vs. N Not much is known about the relation between the refinements G and N. However, it is easy to see G( P ) N( P ) S S G [ P ] N[ P ] S S 15

51 G vs. N Not much is known about the relation between the refinements G and N. However, it is easy to see G( P ) N( P ) S S G [ P ] N[ P ] S This does not mean that the natural refinement is redundant. It is possible to have S ( [ P] ) < G[ P] N G 15

52 Complexity The average complexity of the TLG refinement for 3 L PLR( r, s, n) is O( M log M ), where M = max( r, s, n) 16

53 Performance on random PLRs GP [ S ] N G N[ P S ] [ P ] S % optimal 1000 random PLRs in PLR(8,8,8;m) for each m Works well for dense PLRs and (full) Latin rectangles. 17

54 Problems for further study 18

55 Problems for further study What is the best combination of the operators N and G (in terms of best refinement and lowest complexity)? 18

56 Problems for further study What is the best combination of the operators N and G (in terms of best refinement and lowest complexity)? Find other refinement methods. 18

57 Problems for further study What is the best combination of the operators N and G (in terms of best refinement and lowest complexity)? Find other refinement methods. What is the most efficient way to conduct the subsequent search? 18

58 19

59 19 K N A H T U O Y R O F R U O Y T N O I N E T A T

Computing autotopism groups of partial Latin rectangles: a pilot study

Computing autotopism groups of partial Latin rectangles: a pilot study Computing autotopism groups of partial Latin rectangles: a pilot study Raúl M. Falcón (U. Seville ); Daniel Kotlar (Tel-Hai College ); Rebecca J. Stones (Nankai U. ) 9 December 206 2 3 2 4 5 6 7 5 3 4

More information

Classifying partial Latin rectangles

Classifying partial Latin rectangles Raúl Falcón 1, Rebecca Stones 2 rafalgan@us.es 1 Department of Applied Mathematics I. University of Seville. 2 College of Computer and Control Engineering. Nankai University. Bergen. September 4, 2015.

More information

Triceratopisms of Latin Squares

Triceratopisms of Latin Squares Triceratopisms of Latin Squares Ian Wanless Joint work with Brendan McKay and Xiande Zhang Latin squares A Latin square of order n is an n n matrix in which each of n symbols occurs exactly once in each

More information

Ma/CS 6a Class 28: Latin Squares

Ma/CS 6a Class 28: Latin Squares Ma/CS 6a Class 28: Latin Squares By Adam Sheffer Latin Squares A Latin square is an n n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column. 1

More information

Ma/CS 6a Class 28: Latin Squares

Ma/CS 6a Class 28: Latin Squares Ma/CS 6a Class 28: Latin Squares By Adam Sheffer Latin Squares A Latin square is an n n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column. 1

More information

On the size of autotopism groups of Latin squares.

On the size of autotopism groups of Latin squares. On the size of autotopism groups of Latin squares. Douglas Stones and Ian M. Wanless School of Mathematical Sciences Monash University VIC 3800 Australia {douglas.stones, ian.wanless}@sci.monash.edu.au

More information

On the Number of Latin Squares

On the Number of Latin Squares Annals of Combinatorics 9 (2005) 335-344 0218-0006/05/030335-10 DOI 10.1007/s00026-005-0261-7 c Birkhäuser Verlag, Basel, 2005 Annals of Combinatorics On the Number of Latin Squares Brendan D. McKay and

More information

Cycle structure of autotopisms of quasigroups and Latin squares

Cycle structure of autotopisms of quasigroups and Latin squares Cycle structure of autotopisms of quasigroups and Latin squares Douglas S. Stones 1,2, Petr Vojtěchovský 3 and Ian M. Wanless 1 1 School of Mathematical Sciences and 2 Clayton School of Information Technology

More information

Enumeration of MOLS of small order

Enumeration of MOLS of small order Enumeration of MOLS of small order arxiv:1406.3681v2 [math.co] 13 Oct 2014 Judith Egan and Ian M. Wanless School of Mathematical Sciences Monash University VIC 3800 Australia {judith.egan, ian.wanless}@monash.edu

More information

Autoparatopisms of Latin Squares

Autoparatopisms of Latin Squares Autoparatopisms of Latin Squares by Mahamendige Jayama Lalani Mendis, BSc(Special), MSc. M.Phil Thesis Submitted by Mahamendige Jayama Lalani Mendis for fulfilment of the Requirements for the Degree of

More information

Latin squares: Equivalents and equivalence

Latin squares: Equivalents and equivalence Latin squares: Equivalents and equivalence 1 Introduction This essay describes some mathematical structures equivalent to Latin squares and some notions of equivalence of such structures. According to

More information

Edge colored complete bipartite graphs with trivial automorphism groups

Edge colored complete bipartite graphs with trivial automorphism groups Edge colored complete bipartite graphs with trivial automorphism groups Michael J. Fisher Garth Isaak Abstract We determine the values of s and t for which there is a coloring of the edges of the complete

More information

ENUMERATIVE APPLICATIONS OF SYMMETRIC FUNCTIONS. Ira M. GESSEL 1

ENUMERATIVE APPLICATIONS OF SYMMETRIC FUNCTIONS. Ira M. GESSEL 1 Publ. I.R.M.A. Strasbourg, 1987, 229/S 08 Actes 17 e Séminaire Lotharingien, p. 5-21 ENUMERATIVE APPLICATIONS OF SYMMETRIC FUNCTIONS BY Ira M. GESSEL 1 1. Introduction. This paper consists of two related

More information

Latin square determinants and permanents Ken Johnson Penn State Abington College (Joint work with D. Donovan and I. Wanless)

Latin square determinants and permanents Ken Johnson Penn State Abington College (Joint work with D. Donovan and I. Wanless) Latin square determinants and permanents Ken Johnson Penn State Abington College (Joint work with D. Donovan and I. Wanless) Outline 1)The basic idea 2) Motivation 3) Summary of the group case 4) Results

More information

Atomic Latin Squares of Order Eleven

Atomic Latin Squares of Order Eleven Atomic Latin Squares of Order Eleven Barbara M. Maenhaut, 1 Ian M. Wanless 2 1 Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia, E-mail: bmm@maths.uq.edu.au 2 Department

More information

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Östergård]

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Östergård] Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Östergård] Winter 2009 Introduction Isomorphism of Combinatorial Objects In general, isomorphism is an equivalence relation on a set of objects.

More information

Lecture 1: Latin Squares!

Lecture 1: Latin Squares! Latin Squares Instructor: Paddy Lecture : Latin Squares! Week of Mathcamp 00 Introduction Definition. A latin square of order n is a n n array, filled with symbols {,... n}, such that no symbol is repeated

More information

arxiv: v5 [math.co] 26 Apr 2013

arxiv: v5 [math.co] 26 Apr 2013 A WEAK VERSION OF ROTA S BASIS CONJECTURE FOR ODD DIMENSIONS arxiv:0.830v5 [math.co] 26 Apr 203 RON AHARONI Department of Mathematics, Technion, Haifa 32000, Israel DANIEL KOTLAR Computer Science Department,

More information

Physical Mapping. Restriction Mapping. Lecture 12. A physical map of a DNA tells the location of precisely defined sequences along the molecule.

Physical Mapping. Restriction Mapping. Lecture 12. A physical map of a DNA tells the location of precisely defined sequences along the molecule. Computat onal iology Lecture 12 Physical Mapping physical map of a DN tells the location of precisely defined sequences along the molecule. Restriction mapping: mapping of restriction sites of a cutting

More information

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS M. N. ELLINGHAM AND JUSTIN Z. SCHROEDER In memory of Mike Albertson. Abstract. A distinguishing partition for an action of a group Γ on a set

More information

The candidates are advised that they must always show their working, otherwise they will not be awarded full marks for their answers.

The candidates are advised that they must always show their working, otherwise they will not be awarded full marks for their answers. MID SWEDEN UNIVERSITY TFM Examinations 2006 MAAB16 Discrete Mathematics B Duration: 5 hours Date: 7 June 2006 There are EIGHT questions on this paper and you should answer as many as you can in the time

More information

Planes and MOLS. Ian Wanless. Monash University

Planes and MOLS. Ian Wanless. Monash University Planes and MOLS Ian Wanless Monash University A few of our favourite things A projective plane of order n. An orthogonal array OA(n + 1, n) (strength 2) A (complete) set of n 1 MOLS(n). A classical result

More information

Proof Assistants for Graph Non-isomorphism

Proof Assistants for Graph Non-isomorphism Proof Assistants for Graph Non-isomorphism Arjeh M. Cohen 8 January 2007 second lecture of Three aspects of exact computation a tutorial at Mathematics: Algorithms and Proofs (MAP) Leiden, January 8 12,

More information

arxiv: v2 [math.co] 21 Oct 2013

arxiv: v2 [math.co] 21 Oct 2013 LARGE MATCHINGS IN BIPARTITE GRAPHS HAVE A RAINBOW MATCHING arxiv:1305.1466v2 [math.co] 21 Oct 2013 DANIEL KOTLAR Computer Science Department, Tel-Hai College, Upper Galilee 12210, Israel RAN ZIV Computer

More information

Completing partial Latin squares with one filled row, column and symbol

Completing partial Latin squares with one filled row, column and symbol Completing partial Latin squares with one filled row, column and symbol Carl Johan Casselgren and Roland Häggkvist Linköping University Post Print N.B.: When citing this work, cite the original article.

More information

arxiv: v1 [math.co] 2 Jul 2017

arxiv: v1 [math.co] 2 Jul 2017 arxiv:1707.00263v1 [math.co] 2 Jul 2017 Colouring games based on autotopisms of Latin hyper-rectangles Stephan Dominique Andres FernUniversität in Hagen, Fakultät für Mathematik und Informatik IZ, Universitätsstr.

More information

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010 Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu COMPSTAT

More information

COLORINGS FOR MORE EFFICIENT COMPUTATION OF JACOBIAN MATRICES BY DANIEL WESLEY CRANSTON

COLORINGS FOR MORE EFFICIENT COMPUTATION OF JACOBIAN MATRICES BY DANIEL WESLEY CRANSTON COLORINGS FOR MORE EFFICIENT COMPUTATION OF JACOBIAN MATRICES BY DANIEL WESLEY CRANSTON B.S., Greenville College, 1999 M.S., University of Illinois, 2000 THESIS Submitted in partial fulfillment of the

More information

A Dynamic Programming Approach to Counting Hamiltonian Cycles in Bipartite Graphs

A Dynamic Programming Approach to Counting Hamiltonian Cycles in Bipartite Graphs A Dynamic Programming Approach to Counting Hamiltonian Cycles in Bipartite Graphs Patric R. J. Östergård Department of Communications and Networking Aalto University School of Electrical Engineering P.O.

More information

arxiv: v2 [math.co] 6 Apr 2016

arxiv: v2 [math.co] 6 Apr 2016 On the chromatic number of Latin square graphs Nazli Besharati a, Luis Goddyn b, E.S. Mahmoodian c, M. Mortezaeefar c arxiv:1510.051v [math.co] 6 Apr 016 a Department of Mathematical Sciences, Payame Noor

More information

The cycle structure of two rows in a random latin square

The cycle structure of two rows in a random latin square The cycle structure of two rows in a random latin square Nicholas J. Cavenagh and Catherine Greenhill School of Mathematics and Statistics The University of New South Wales NSW 2052 Australia nickc@maths.unsw.edu.au,

More information

arxiv: v2 [math.co] 30 Jun 2013

arxiv: v2 [math.co] 30 Jun 2013 A polynomial representation and a unique code of a simple undirected graph arxiv:1304.5847v2 [math.co] 30 Jun 2013 Shamik Ghosh, Raibatak Sen Gupta, M. K. Sen Abstract In this note we introduce a representation

More information

The construction of combinatorial structures and linear codes from orbit matrices of strongly regular graphs

The construction of combinatorial structures and linear codes from orbit matrices of strongly regular graphs linear codes from Sanja Rukavina sanjar@mathunirihr Department of Mathematics University of Rijeka, Croatia Symmetry vs Regularity The first 50 years since Weisfeiler-Leman stabilization July - July 7,

More information

Nonlinear Discrete Optimization

Nonlinear Discrete Optimization Nonlinear Discrete Optimization Technion Israel Institute of Technology http://ie.technion.ac.il/~onn Billerafest 2008 - conference in honor of Lou Billera's 65th birthday (Update on Lecture Series given

More information

Chapter 8 ~ Quadratic Functions and Equations In this chapter you will study... You can use these skills...

Chapter 8 ~ Quadratic Functions and Equations In this chapter you will study... You can use these skills... Chapter 8 ~ Quadratic Functions and Equations In this chapter you will study... identifying and graphing quadratic functions transforming quadratic equations solving quadratic equations using factoring

More information

Group divisible designs in MOLS of order ten

Group divisible designs in MOLS of order ten Des. Codes Cryptogr. (014) 71:83 91 DOI 10.1007/s1063-01-979-8 Group divisible designs in MOLS of order ten Peter Dukes Leah Howard Received: 10 March 011 / Revised: June 01 / Accepted: 10 July 01 / Published

More information

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) 15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) First show l = c by proving l c and c l. For a maximum matching M in G, let V be the set of vertices covered by M. Since any vertex in

More information

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below.

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below. Weaving a Parabola Web with the Quadratic Transformer In this activity, you explore how the graph of a quadratic function and its symbolic expression relate to each other. You start with a set of four

More information

Small Latin Squares, Quasigroups and Loops

Small Latin Squares, Quasigroups and Loops Small Latin Squares, Quasigroups and Loops Brendan D. McKay Department of Computer Science Australian National University Canberra, ACT 0200, Australia bdm@cs.anu.edu.au Alison Meynert y and Wendy Myrvold

More information

An enumeration of equilateral triangle dissections

An enumeration of equilateral triangle dissections arxiv:090.599v [math.co] Apr 00 An enumeration of equilateral triangle dissections Aleš Drápal Department of Mathematics Charles University Sokolovská 83 86 75 Praha 8 Czech Republic Carlo Hämäläinen Department

More information

Bounds for pairs in partitions of graphs

Bounds for pairs in partitions of graphs Bounds for pairs in partitions of graphs Jie Ma Xingxing Yu School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160, USA Abstract In this paper we study the following problem of Bollobás

More information

Finite Model Theory and Graph Isomorphism. II.

Finite Model Theory and Graph Isomorphism. II. Finite Model Theory and Graph Isomorphism. II. Anuj Dawar University of Cambridge Computer Laboratory visiting RWTH Aachen Beroun, 13 December 2013 Recapitulation Finite Model Theory aims to study the

More information

A Family of Perfect Factorisations of Complete Bipartite Graphs

A Family of Perfect Factorisations of Complete Bipartite Graphs Journal of Combinatorial Theory, Series A 98, 328 342 (2002) doi:10.1006/jcta.2001.3240, available online at http://www.idealibrary.com on A Family of Perfect Factorisations of Complete Bipartite Graphs

More information

(x 1 +x 2 )(x 1 x 2 )+(x 2 +x 3 )(x 2 x 3 )+(x 3 +x 1 )(x 3 x 1 ).

(x 1 +x 2 )(x 1 x 2 )+(x 2 +x 3 )(x 2 x 3 )+(x 3 +x 1 )(x 3 x 1 ). CMPSCI611: Verifying Polynomial Identities Lecture 13 Here is a problem that has a polynomial-time randomized solution, but so far no poly-time deterministic solution. Let F be any field and let Q(x 1,...,

More information

The Support Splitting Algorithm and its Application to Code-based Cryptography

The Support Splitting Algorithm and its Application to Code-based Cryptography The Support Splitting Algorithm and its Application to Code-based Cryptography Dimitris E. Simos (joint work with Nicolas Sendrier) Project-Team SECRET INRIA Paris-Rocquencourt May 9, 2012 3rd Code-based

More information

Hanna Furmańczyk EQUITABLE COLORING OF GRAPH PRODUCTS

Hanna Furmańczyk EQUITABLE COLORING OF GRAPH PRODUCTS Opuscula Mathematica Vol. 6 No. 006 Hanna Furmańczyk EQUITABLE COLORING OF GRAPH PRODUCTS Abstract. A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 75

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 75 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 75 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 75 Espoo 2002 HUT-TCS-A75

More information

The Structure of the Jacobian Group of a Graph. A Thesis Presented to The Division of Mathematics and Natural Sciences Reed College

The Structure of the Jacobian Group of a Graph. A Thesis Presented to The Division of Mathematics and Natural Sciences Reed College The Structure of the Jacobian Group of a Graph A Thesis Presented to The Division of Mathematics and Natural Sciences Reed College In Partial Fulfillment of the Requirements for the Degree Bachelor of

More information

HOMEWORK 9 solutions

HOMEWORK 9 solutions Math 4377/6308 Advanced Linear Algebra I Dr. Vaughn Climenhaga, PGH 651A Fall 2013 HOMEWORK 9 solutions Due 4pm Wednesday, November 13. You will be graded not only on the correctness of your answers but

More information

A Note on Perfect Partial Elimination

A Note on Perfect Partial Elimination A Note on Perfect Partial Elimination Matthijs Bomhoff, Walter Kern, and Georg Still University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O. Box 217, 7500 AE Enschede,

More information

MATH 567: Mathematical Techniques in Data Science Clustering II

MATH 567: Mathematical Techniques in Data Science Clustering II This lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 567: Mathematical Techniques in Data Science Clustering II Dominique Guillot Departments

More information

An exploration of matrix equilibration

An exploration of matrix equilibration An exploration of matrix equilibration Paul Liu Abstract We review three algorithms that scale the innity-norm of each row and column in a matrix to. The rst algorithm applies to unsymmetric matrices,

More information

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Notes on the Matrix-Tree theorem and Cayley s tree enumerator Notes on the Matrix-Tree theorem and Cayley s tree enumerator 1 Cayley s tree enumerator Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanating from it We will

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T0 INTRODUCING PARABOLAS 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) QUADRATIC FUNCTION = a statement containing different kinds of variables where one variable lacks a visible exponent and

More information

arxiv: v1 [math.co] 22 Feb 2013

arxiv: v1 [math.co] 22 Feb 2013 arxiv:1302.5673v1 [math.co] 22 Feb 2013 Nest graphs and minimal complete symmetry groups for magic Sudoku variants E. Arnold, R. Field, J. Lorch, S. Lucas, and L. Taalman 1 Introduction November 9, 2017

More information

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths H. Murat AFSAR Olivier BRIANT Murat.Afsar@g-scop.inpg.fr Olivier.Briant@g-scop.inpg.fr G-SCOP Laboratory Grenoble Institute of Technology

More information

1. How many labeled trees are there on n vertices such that all odd numbered vertices are leaves?

1. How many labeled trees are there on n vertices such that all odd numbered vertices are leaves? 1. How many labeled trees are there on n vertices such that all odd numbered vertices are leaves? This is most easily done by Prüfer codes. The number of times a vertex appears is the degree of the vertex.

More information

21-301, Spring 2019 Homework 4 Solutions

21-301, Spring 2019 Homework 4 Solutions 21-301, Spring 2019 Homework 4 Solutions Michael Anastos Not to be published without written consent of the author or the instructors of the course. (Please contact me if you find any errors!) Problem

More information

The many formulae for the number of Latin rectangles

The many formulae for the number of Latin rectangles The many formulae for the number of Latin rectangles Douglas S. Stones School of Mathematical Sciences Monash University VIC 3800 Australia the empty element@yahoo.com Submitted: Apr 29, 2010; Accepted:

More information

Chapter 2: Approximating Solutions of Linear Systems

Chapter 2: Approximating Solutions of Linear Systems Linear of Chapter 2: Solutions of Linear Peter W. White white@tarleton.edu Department of Mathematics Tarleton State University Summer 2015 / Numerical Analysis Overview Linear of Linear of Linear of Linear

More information

Boolean Inner-Product Spaces and Boolean Matrices

Boolean Inner-Product Spaces and Boolean Matrices Boolean Inner-Product Spaces and Boolean Matrices Stan Gudder Department of Mathematics, University of Denver, Denver CO 80208 Frédéric Latrémolière Department of Mathematics, University of Denver, Denver

More information

The Complexity of the Counting CSP

The Complexity of the Counting CSP The Complexity of the Counting CSP Víctor Dalmau Universitat Pompeu Fabra The Complexity of the Counting CSP p.1/23 (Non Uniform) Counting CSP Def: (Homomorphism formulation) Let B be a (finite) structure.

More information

Small Label Classes in 2-Distinguishing Labelings

Small Label Classes in 2-Distinguishing Labelings Also available at http://amc.imfm.si ISSN 1855-3966 (printed ed.), ISSN 1855-3974 (electronic ed.) ARS MATHEMATICA CONTEMPORANEA 1 (2008) 154 164 Small Label Classes in 2-Distinguishing Labelings Debra

More information

A Latin square autotopism secret sharing scheme

A Latin square autotopism secret sharing scheme Des. Codes Cryptogr. DOI 10.1007/s10623-015-0-1 A Latin square autotopism secret sharing scheme Rebecca J. Stones 1,2,3 Ming Su 3,4 Xiaoguang Liu 3,4 Gang Wang 3,4 Sheng Lin 5 Received: 6 March 2015 /

More information

A Characterization of (3+1)-Free Posets

A Characterization of (3+1)-Free Posets Journal of Combinatorial Theory, Series A 93, 231241 (2001) doi:10.1006jcta.2000.3075, available online at http:www.idealibrary.com on A Characterization of (3+1)-Free Posets Mark Skandera Department of

More information

Local Search Based Approximation Algorithms. Vinayaka Pandit. IBM India Research Laboratory

Local Search Based Approximation Algorithms. Vinayaka Pandit. IBM India Research Laboratory Local Search Based Approximation Algorithms The k-median problem Vinayaka Pandit IBM India Research Laboratory joint work with Naveen Garg, Rohit Khandekar, and Vijay Arya The 2011 School on Approximability,

More information

PERFECT COLOURINGS OF REGULAR GRAPHS

PERFECT COLOURINGS OF REGULAR GRAPHS PERFECT COLOURINGS OF REGULAR GRAPHS JOSEPH RAY CLARENCE DAMASCO AND DIRK FRETTLÖH Abstract. A vertex colouring of some graph is called perfect if each vertex of colour i has exactly a ij neighbours of

More information

Symmetric Sums of Squares

Symmetric Sums of Squares Symmetric Sums of Squares Annie Raymond University of Washington MSRI University of Massachusetts Joint with James Saunderson (Monash University), Mohit Singh (Georgia Tech), and Rekha Thomas (UW) November

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

THE SZEMERÉDI REGULARITY LEMMA AND ITS APPLICATION

THE SZEMERÉDI REGULARITY LEMMA AND ITS APPLICATION THE SZEMERÉDI REGULARITY LEMMA AND ITS APPLICATION YAQIAO LI In this note we will prove Szemerédi s regularity lemma, and its application in proving the triangle removal lemma and the Roth s theorem on

More information

Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles

Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles I. M. Wanless Department of Mathematics and Statistics University of Melbourne Parkville Vic 3052 Australia ianw@ms.unimelb.edu.au

More information

Combining the cycle index and the Tutte polynomial?

Combining the cycle index and the Tutte polynomial? Combining the cycle index and the Tutte polynomial? Peter J. Cameron University of St Andrews Combinatorics Seminar University of Vienna 23 March 2017 Selections Students often meet the following table

More information

An Algorithmist s Toolkit September 24, Lecture 5

An Algorithmist s Toolkit September 24, Lecture 5 8.49 An Algorithmist s Toolkit September 24, 29 Lecture 5 Lecturer: Jonathan Kelner Scribe: Shaunak Kishore Administrivia Two additional resources on approximating the permanent Jerrum and Sinclair s original

More information

On the Number of 6 6 Sudoku Grids

On the Number of 6 6 Sudoku Grids On the Number of 6 6 Sudoku Grids Siân K. Jones, Stephanie Perkins and Paul A. Roach Faculty of Advanced Technology, University of Glamorgan Treforest, UK, CF37 1DL skjones@glam.ac.uk, sperkins@glam.ac.uk,

More information

Recitation 8: Graphs and Adjacency Matrices

Recitation 8: Graphs and Adjacency Matrices Math 1b TA: Padraic Bartlett Recitation 8: Graphs and Adjacency Matrices Week 8 Caltech 2011 1 Random Question Suppose you take a large triangle XY Z, and divide it up with straight line segments into

More information

INEQUALITIES OF SYMMETRIC FUNCTIONS. 1. Introduction to Symmetric Functions [?] Definition 1.1. A symmetric function in n variables is a function, f,

INEQUALITIES OF SYMMETRIC FUNCTIONS. 1. Introduction to Symmetric Functions [?] Definition 1.1. A symmetric function in n variables is a function, f, INEQUALITIES OF SMMETRIC FUNCTIONS JONATHAN D. LIMA Abstract. We prove several symmetric function inequalities and conjecture a partially proved comprehensive theorem. We also introduce the condition of

More information

Construction of latin squares of prime order

Construction of latin squares of prime order Construction of latin squares of prime order Theorem. If p is prime, then there exist p 1 MOLS of order p. Construction: The elements in the latin square will be the elements of Z p, the integers modulo

More information

A Latin Square of order n is an n n array of n symbols where each symbol occurs once in each row and column. For example,

A Latin Square of order n is an n n array of n symbols where each symbol occurs once in each row and column. For example, 1 Latin Squares A Latin Square of order n is an n n array of n symbols where each symbol occurs once in each row and column. For example, A B C D E B C A E D C D E A B D E B C A E A D B C is a Latin square

More information

Subspace stabilizers and maximal subgroups of exceptional groups of Lie type

Subspace stabilizers and maximal subgroups of exceptional groups of Lie type Subspace stabilizers and maximal subgroups of exceptional groups of Lie type David A. Craven June 7, 2016 Abstract In 1998, Liebeck and Seitz introduced a constant t(g), dependent on the root system of

More information

The Algorithmic Aspects of the Regularity Lemma

The Algorithmic Aspects of the Regularity Lemma The Algorithmic Aspects of the Regularity Lemma N. Alon R. A. Duke H. Lefmann V. Rödl R. Yuster Abstract The Regularity Lemma of Szemerédi is a result that asserts that every graph can be partitioned in

More information

AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS

AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS MAX GOLDBERG Abstract. We explore ways to concisely describe circulant graphs, highly symmetric graphs with properties that are easier to generalize

More information

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation Notation Basics of permutation group theory Arc-transitive graphs Primitivity Normal subgroups of primitive groups Permutation Groups John Bamberg, Michael Giudici and Cheryl Praeger Centre for the Mathematics

More information

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October Finding normalized and modularity cuts by spectral clustering Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu Ljubjana 2010, October Outline Find

More information

A ZERO ENTROPY T SUCH THAT THE [T,ID] ENDOMORPHISM IS NONSTANDARD

A ZERO ENTROPY T SUCH THAT THE [T,ID] ENDOMORPHISM IS NONSTANDARD A ZERO ENTROPY T SUCH THAT THE [T,ID] ENDOMORPHISM IS NONSTANDARD CHRISTOPHER HOFFMAN Abstract. We present an example of an ergodic transformation T, a variant of a zero entropy non loosely Bernoulli map

More information

HIGHER ORDER RIGIDITY - WHAT IS THE PROPER DEFINITION?

HIGHER ORDER RIGIDITY - WHAT IS THE PROPER DEFINITION? HIGHER ORDER RIGIDITY - WHAT IS THE PROPER DEFINITION? ROBERT CONNELLY AND HERMAN SERVATIUS Abstract. We show that there is a bar and joint framework G(p) which has a configuration p in the plane such

More information

On the Length of a Partial Independent Transversal in a Matroidal Latin Square

On the Length of a Partial Independent Transversal in a Matroidal Latin Square On the Length of a Partial Independent Transversal in a Matroidal Latin Square Daniel Kotlar Department of Computer Science Tel-Hai College Upper Galilee 12210, Israel dannykot@telhai.ac.il Ran Ziv Department

More information

(a i1,1 a in,n)µ(e i1,..., e in ) i 1,...,i n. (a i1,1 a in,n)w i1,...,i n

(a i1,1 a in,n)µ(e i1,..., e in ) i 1,...,i n. (a i1,1 a in,n)w i1,...,i n Math 395. Bases of symmetric and exterior powers Let V be a finite-dimensional nonzero vector spaces over a field F, say with dimension d. For any n, the nth symmetric and exterior powers Sym n (V ) and

More information

Binary codes from rectangular lattice graphs and permutation decoding

Binary codes from rectangular lattice graphs and permutation decoding Binary codes from rectangular lattice graphs and permutation decoding J. D. Key a,,1 P. Seneviratne a a Department of Mathematical Sciences, Clemson University, Clemson SC 29634, U.S.A. Abstract We examine

More information

Probabilistic Proofs of Existence of Rare Events. Noga Alon

Probabilistic Proofs of Existence of Rare Events. Noga Alon Probabilistic Proofs of Existence of Rare Events Noga Alon Department of Mathematics Sackler Faculty of Exact Sciences Tel Aviv University Ramat-Aviv, Tel Aviv 69978 ISRAEL 1. The Local Lemma In a typical

More information

Zero sum partition of Abelian groups into sets of the same order and its applications

Zero sum partition of Abelian groups into sets of the same order and its applications Zero sum partition of Abelian groups into sets of the same order and its applications Sylwia Cichacz Faculty of Applied Mathematics AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Kraków,

More information

INVARIANTS OF TWIST-WISE FLOW EQUIVALENCE

INVARIANTS OF TWIST-WISE FLOW EQUIVALENCE ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Pages 126 130 (December 17, 1997) S 1079-6762(97)00037-1 INVARIANTS OF TWIST-WISE FLOW EQUIVALENCE MICHAEL C. SULLIVAN (Communicated

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

ICALP g Mingji Xia

ICALP g Mingji Xia : : ICALP 2010 g Institute of Software Chinese Academy of Sciences 2010.7.6 : 1 2 3 Matrix multiplication : Product of vectors and matrices. AC = e [n] a ec e A = (a e), C = (c e). ABC = e,e [n] a eb ee

More information

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5 Department of Mathematics, University of Wisconsin-Madison Math 11 Worksheet Sections 3.1, 3.3, and 3.5 1. For f(x) = 5x + (a) Determine the slope and the y-intercept. f(x) = 5x + is of the form y = mx

More information

Mutually Orthogonal Latin Squares: Covering and Packing Analogues

Mutually Orthogonal Latin Squares: Covering and Packing Analogues Squares: Covering 1 1 School of Computing, Informatics, and Decision Systems Engineering Arizona State University Mile High Conference, 15 August 2013 Latin Squares Definition A latin square of side n

More information

Testing Hereditary Properties of Ordered Graphs and Matrices

Testing Hereditary Properties of Ordered Graphs and Matrices Testing Hereditary Properties of Ordered Graphs and Matrices Noga Alon, Omri Ben-Eliezer, Eldar Fischer April 6, 2017 Abstract We consider properties of edge-colored vertex-ordered graphs, i.e., graphs

More information

Self-complementary strongly regular graphs revisited

Self-complementary strongly regular graphs revisited Self-complementary strongly regular graphs revisited Ferenc Szöllősi (joint work in part with Patric Östergård) szoferi@gmail.com Department of Communications and Networking, Aalto University Talk at CoCoA15

More information

A Markov chain for certain triple systems

A Markov chain for certain triple systems A Markov chain for certain triple systems Peter J. Cameron Queen Mary, University of London and Gonville & Caius College, Cambridge INI Workshop on Markov Chain Monte Carlo methods March 2008 Latin squares

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. (a) 5

More information

IE418 Integer Programming

IE418 Integer Programming IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 23rd February 2005 The Ingredients Some Easy Problems The Hard Problems Computational Complexity The ingredients

More information