ICALP g Mingji Xia

Size: px
Start display at page:

Download "ICALP g Mingji Xia"

Transcription

1 : : ICALP 2010 g Institute of Software Chinese Academy of Sciences

2 : 1 2 3

3 Matrix multiplication : Product of vectors and matrices. AC = e [n] a ec e A = (a e), C = (c e). ABC = e,e [n] a eb ee c e A = (a e), B = (b ee ), C = (c e ). Vector A (resp. C) is also a unary function e [n] a e Matrix B is also binary function (e, e ) [n] 2 b ee

4 #F H : The input of #F H is a bipartite graph G(U, V, E). Each vertex v U V has a function F v. The value of this problem is F v (e v,1,..., e v,dv ), e 1,...,e t [n] v U V where e v,i is the ith edge of v. If v U, F v F. If v V, F v H.

5 Gadgets in #F H : Except defining the value (a function of arity 0) of an instance, we can also define the function of a gadget. Example (AB)(x 1, x 2 ) = e a x 1,eb e,x2 A = (a x1,e), B = (b e,x2 ). Given a gadget Γ, we can define its function F Γ in its external edges {x i }, by a summation over its internal edges {e i }, where e v,i is the ith edge of v. F Γ (x 1,..., x s ) = e 1,...,e t [n] v U V F v (e v,1,..., e v,dv ).

6 More examples : M N (M N) x1 x 2,x 3 x 4 = M x1,x 3 N x2,x 4 We also use a vector of length [n] k to denote a function of arity k. F (M M M) Also denoted as F (M 3 ).

7 : AB = AEB = AMM 1 B = (AM)(M 1 B). (E is identity matrix.) Theorem (Valiant 2004) #{f} {h} and #{F } {H} have the same value. F = fm 3, H = (M 1 ) 2 h.

8 An example: Fibonacci function : A symmetric function F of arity k in Boolean variables is denoted as [f 0, f 1,..., f k ], where f i is the value of F on inputs of weights i. F 1 = [a 0, a 1 ] = [0, 1], F 2 = [a 0, a 1, a 2 ] = [0, 1, 1], F 3 = [a 0, a 1, a 2, a 3 ] = [0, 1, 1, 2],... F k = [a 0, a 1,..., a k ]. ({a i } is Fibonacci sequence.) = k denotes the equivalent relation of arity k. (= k ) = [1, 0,..., 0, 1]. (= a,b ) = [a, 0,..., 0, b]. k For any d, there is between #{= 1, 1 1,..., = ( 1, 1 d } {= ϕ,ϕ 1 2 ) } and #{F 1,..., F d } {= 2 }. 1 ϕ The base M is, where ϕ = ϕ 2.

9 An example: Fibonacci function : For any d, there is between #{= 1, 1 1,..., = ( 1, 1 d } {= ϕ,ϕ 1 2 ) } and #{F 1,..., F d } {= 2 }. 1 ϕ The base M is, where ϕ = ϕ 2. Because 5 a k = ϕ k (1 ϕ) k, 5 Fk = (1, ϕ) k (1, 1 ϕ) k. Because (= 1, 1 k ) = (1, 0) k (0, 1) k, (= 1, 1 k )M k = 5 F k. (M 1 ) 2 (= ϕ,ϕ 1 2 ) = (= 2 )

10 size : F k = [a 0, a 1,..., a k ], for any d, #{F 1, F 2,..., F d } {= 2 } is polynomial time computable. A problem is #P-hard, if all problems in #P can be reduced to it. Lemma P k+1 = [a 0, a 1,..., a k, 2a k ], for any d 2, #{F 1, F 2,..., F d, P d+1 } {= 2 } is #P-hard. Theorem For any d 2, there exists a complex binary function H d such that #{= 1, = 2,..., = d+1 } {H d } is #P-hard, but #{= 1, = 2,..., = d } {H d } is polynomial time computable. Only need to build a from #{F 1, F 2,..., F d, P d+1 } {= 2 } (domain is [2]) to #{= 1, = 2,..., = d+1 } {H d } (domain is [m]). (This is also a from #{F 1, F 2,..., F d } {= 2 } to #{= 1, = 2,..., = d } {H d }.)

11 Maximum degree and complexity : Many hardness results are strengthened to maximum degree bounded version. SAT 3SAT (NP-hard) #SAT #2SAT (#P-hard) Lots in [Vadhan 2001]... #CSP(F)(#{= 1, = 2,...} F) #{= 1, = 2, = 3 } F (each variables occurs at most 3 times), where F is composed of complex functions in Boolean variables. [Cai,Lu,Xia 2009] By this result, our theorem does not hold for Boolean domain. By our theorem, we can not get this kind of strong degree bounded #P hardness results for general counting problem classes. If #CSP({G}) is hard, there exists some d (depends on G) such that #{= 1,..., = d } {G} is hard, where G is a 0-1 weighted undirected graph. [Dyer,Greenhill 2000]

12 : (another version) Matrix multiplication satisfies associative law. (AB)C = A(BC). Theorem (Valiant 2004) #{F M 3 } {H} and #{F } {M 2 H} have the same value.

13 : From #{F 1, F 2,..., F d } {= 2 } to #{= 1, = 2,..., = d } {H d } Find M such that F k = (= k )M k. Recall, Theorem: there exists H d (= M M),... Two small tricks for constructing such a M. 1 [a 0, a 1, a 2..., a k ] = k c i i=0 c [1, r i, ri 2,..., rk i ]. If r i are different integers, there is an integer solution for c i and c. c i [1, r i, ri 2,..., rk i ] can be realized in (= k)m k by setting c i rows of (1, r i ) in M. If c i is negative, we utilize k s=1 ri s = 1 for i = 1, 2,..., k, where r s = e 2πs k+1.

14 Remark : In this, just some problems examples are constructed. There is no requirement on domain size m and function H d. Under these weak requirements, we realize a strong transformation on one side by. Open problem: Assume FP #P. Is there some class of problems, such that predicating the complexity of these problems is uncomputable? In some papers about dichotomy, it is considered whether their dichotomy are computable, and some of them are open.

15 : Conjecture Under some conditions, the of holds. For example, #{f} {h} and #{F } {H} have the same value, where f and F are ternary functions, and h and H are binary functions. Then, there exists nonsingular matrix M such that, F = fm 3, H = (M 1 ) 2 h. It does not holds for some special cases. For example, #{(1, 0), (1, 0)} {(4, 1)} and #{(1, 1), (1, 2)} {(4, 0)}.

16 some cases : Theorem (Lovász 1967, Dyer,Goldberg,Paterson 2006) Suppose H 1 and H 2 are directed acyclic graphs. If for all directed acyclic graphs G, the number of homomorphisms from G to H 1 is equal to the number of homomorphisms from G to H 2, then H 1 and H 2 are isomorphic. If there is a between #R = {H 1 } and #R = {H 2 }, it can be proved that the base M is a permutation matrix. R = denotes {= 1, = 2,... = k,...}.

17 some cases : In the following, we only consider #F {= 2 }. Range is real number. Domain is arbitrary [d]. F is composed of unary functions. F is composed of one symmetric binary function. F is composed of two symmetric binary functions F 1 and F 2. All eigenvalues of F 1 are equal. F is composed of two symmetric binary functions F 1 and F 2. All eigenvalues of F 1 are different, so is F 2. Domain is [2]. F is composed of two symmetric binary functions. F is composed of one unary function and one symmetric binary function. F is composed of one symmetric ternary function.

18 Proof sketch Unary functions : Domain is arbitrary [d]. F is composed of unary functions. #{F 1,..., F k } {= 2 } and #{H 1,..., H k } {= 2 } have the same value. That is, F F = H H, where matrices F = (F 1, F 2,..., F k ) and H = (H 1, H 2,..., H k ). The base of is simply HF 1. Because F F = H H, M M = E. M change = 2 into = 2.

19 Proof sketch Two symmetric binary functions : Domain is arbitrary [d]. F is composed of two symmetric binary functions F 1 and F 2. All eigenvalues of F 1 are different, so is F 2. #{F 1, F 2 } {= 2 } and #{H 1, H 2 } {= 2 }. By the result for one symmetric function, we only need to prove for #{F 1, MF 2 M } {= 2 } and #{F 1, T F 2 T } {= 2 }, where F 1 and F 2 are diagonal matrix with different diagonal entries, and M, T are orthogonal matrices. Using polynomial interpolation method, we can realize E i by F 1 and F 2. E i (x, y) is always zero, except E i (i, i) = 1. Because tr(e i ME j M ) = tr(e i T E j T ), M 2 ij = T 2 ij.

20 Proof sketch Two symmetric binary functions : ( M ij T ij ) 2 = ±1, assume T ij is not zero. Because tr(e i ME j M E k ME l M ) = tr(e i T E j T E k T E l T ), M kl T kl = 1. M ij T ij M il T il M kj T kj Consider matrix R = ( M ij T ij ). This means, the 2 2 submatrix R ik,jl has rank 1. We can prove R has rank 1. (If there are zero T ij, the proof is quite a few more complicated.)

21 Proof sketch Two symmetric binary functions : R = uv, then UT V = M. u, v are column vector composed of 1 and 1. U (resp. u) is the diagonal matrix whose diagonal is u (resp. v). Compose U with F 1. UF 1 U = F 1. V F 2 V = F 2.

22 Proof sketch One symmetric ternary functions : Domain is [2]. #{F } {= 2 } and #{H} {= 2 }. We construct some gadgets to prove this case. This does not work for F = [x, y, x, y]. The value of #{F } {= 2 } is always zero on non-bipartite graphs. There is a direct proof for [x, y, x, y] case.

23 Open problems : Whether the of holds? If it does not hold, the condition is not a necessary condition. Can we find some other sufficient conditions and s? If it does hold, can we utilize it to prove complexity results?

24 : Thank you œ

Dichotomy Theorems for Counting Problems. Jin-Yi Cai University of Wisconsin, Madison. Xi Chen Columbia University. Pinyan Lu Microsoft Research Asia

Dichotomy Theorems for Counting Problems. Jin-Yi Cai University of Wisconsin, Madison. Xi Chen Columbia University. Pinyan Lu Microsoft Research Asia Dichotomy Theorems for Counting Problems Jin-Yi Cai University of Wisconsin, Madison Xi Chen Columbia University Pinyan Lu Microsoft Research Asia 1 Counting Problems Valiant defined the class #P, and

More information

Complexity Dichotomies for Counting Problems

Complexity Dichotomies for Counting Problems Complexity Dichotomies for Counting Problems Jin-Yi Cai Computer Sciences Department University of Wisconsin Madison, WI 53706 Email: jyc@cs.wisc.edu Xi Chen Department of Computer Science Columbia University

More information

Dichotomy for Holant Problems of Boolean Domain

Dichotomy for Holant Problems of Boolean Domain Dichotomy for Holant Problems of Boolean Domain Jin-Yi Cai Pinyan Lu Mingji Xia Abstract Holant problems are a general framework to study counting problems. Both counting Constraint Satisfaction Problems

More information

Siegel s Theorem, Edge Coloring, and a Holant Dichotomy

Siegel s Theorem, Edge Coloring, and a Holant Dichotomy Siegel s Theorem, Edge Coloring, and a Holant Dichotomy Jin-Yi Cai (University of Wisconsin-Madison) Joint with: Heng Guo and Tyson Williams (University of Wisconsin-Madison) 1 / 117 2 / 117 Theorem (Siegel

More information

The Complexity of Planar Boolean #CSP with Complex Weights

The Complexity of Planar Boolean #CSP with Complex Weights The Complexity of Planar Boolean #CSP with Complex Weights Heng Guo University of Wisconsin-Madison hguo@cs.wisc.edu Tyson Williams University of Wisconsin-Madison tdw@cs.wisc.edu Abstract We prove a complexity

More information

Siegel s theorem, edge coloring, and a holant dichotomy

Siegel s theorem, edge coloring, and a holant dichotomy Siegel s theorem, edge coloring, and a holant dichotomy Tyson Williams (University of Wisconsin-Madison) Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison) Appeared at FOCS 2014 1 /

More information

The Classification Program II: Tractable Classes and Hardness Proof

The Classification Program II: Tractable Classes and Hardness Proof The Classification Program II: Tractable Classes and Hardness Proof Jin-Yi Cai (University of Wisconsin-Madison) January 27, 2016 1 / 104 Kasteleyn s Algorithm and Matchgates Previously... By a Pfaffian

More information

From Holant To #CSP And Back: Dichotomy For Holant c Problems

From Holant To #CSP And Back: Dichotomy For Holant c Problems From Holant To #CSP And Back: Dichotomy For Holant c Problems Jin-Yi Cai Sangxia Huang Pinyan Lu Abstract We explore the intricate interdependent relationship among counting problems considered from three

More information

A Complexity Classification of the Six Vertex Model as Holant Problems

A Complexity Classification of the Six Vertex Model as Holant Problems A Complexity Classification of the Six Vertex Model as Holant Problems Jin-Yi Cai (University of Wisconsin-Madison) Joint work with: Zhiguo Fu, Shuai Shao and Mingji Xia 1 / 84 Three Frameworks for Counting

More information

The Complexity of Approximating Small Degree Boolean #CSP

The Complexity of Approximating Small Degree Boolean #CSP The Complexity of Approximating Small Degree Boolean #CSP Pinyan Lu, ITCS@SUFE Institute for Theoretical Computer Science Shanghai University of Finance and Economics Counting CSP F (Γ) is a family of

More information

The Complexity of Complex Weighted Boolean #CSP

The Complexity of Complex Weighted Boolean #CSP The Complexity of Complex Weighted Boolean #CSP Jin-Yi Cai 1 Computer Sciences Department University of Wisconsin Madison, WI 53706. USA jyc@cs.wisc.edu Pinyan Lu 2 Institute for Theoretical Computer Science

More information

Lecture 22: Counting

Lecture 22: Counting CS 710: Complexity Theory 4/8/2010 Lecture 22: Counting Instructor: Dieter van Melkebeek Scribe: Phil Rydzewski & Chi Man Liu Last time we introduced extractors and discussed two methods to construct them.

More information

A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-negative Weights

A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-negative Weights A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-negative Weights Jin-Yi Cai Xi Chen April 7, 2010 Abstract The compleity of graph homomorphism problems has been the subject of intense

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Recall: Parity of a Permutation S n the set of permutations of 1,2,, n. A permutation σ S n is even if it can be written as a composition of an

More information

Cost-Constrained Matchings and Disjoint Paths

Cost-Constrained Matchings and Disjoint Paths Cost-Constrained Matchings and Disjoint Paths Kenneth A. Berman 1 Department of ECE & Computer Science University of Cincinnati, Cincinnati, OH Abstract Let G = (V, E) be a graph, where the edges are weighted

More information

The Complexity of Computing the Sign of the Tutte Polynomial

The Complexity of Computing the Sign of the Tutte Polynomial The Complexity of Computing the Sign of the Tutte Polynomial Leslie Ann Goldberg (based on joint work with Mark Jerrum) Oxford Algorithms Workshop, October 2012 The Tutte polynomial of a graph G = (V,

More information

Intrinsic products and factorizations of matrices

Intrinsic products and factorizations of matrices Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 5 3 www.elsevier.com/locate/laa Intrinsic products and factorizations of matrices Miroslav Fiedler Academy of Sciences

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Eigenvalues and Eigenvectors A an n n matrix of real numbers. The eigenvalues of A are the numbers λ such that Ax = λx for some nonzero vector x

More information

1.10 Matrix Representation of Graphs

1.10 Matrix Representation of Graphs 42 Basic Concepts of Graphs 1.10 Matrix Representation of Graphs Definitions: In this section, we introduce two kinds of matrix representations of a graph, that is, the adjacency matrix and incidence matrix

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Graph fundamentals. Matrices associated with a graph

Graph fundamentals. Matrices associated with a graph Graph fundamentals Matrices associated with a graph Drawing a picture of a graph is one way to represent it. Another type of representation is via a matrix. Let G be a graph with V (G) ={v 1,v,...,v n

More information

1182 L. B. Beasley, S. Z. Song, ands. G. Lee matrix all of whose entries are 1 and =fe ij j1 i m 1 j ng denote the set of cells. The zero-term rank [5

1182 L. B. Beasley, S. Z. Song, ands. G. Lee matrix all of whose entries are 1 and =fe ij j1 i m 1 j ng denote the set of cells. The zero-term rank [5 J. Korean Math. Soc. 36 (1999), No. 6, pp. 1181{1190 LINEAR OPERATORS THAT PRESERVE ZERO-TERM RANK OF BOOLEAN MATRICES LeRoy. B. Beasley, Seok-Zun Song, and Sang-Gu Lee Abstract. Zero-term rank of a matrix

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

The complexity of counting graph homomorphisms

The complexity of counting graph homomorphisms The complexity of counting graph homomorphisms Martin Dyer and Catherine Greenhill Abstract The problem of counting homomorphisms from a general graph G to a fixed graph H is a natural generalisation of

More information

. The following is a 3 3 orthogonal matrix: 2/3 1/3 2/3 2/3 2/3 1/3 1/3 2/3 2/3

. The following is a 3 3 orthogonal matrix: 2/3 1/3 2/3 2/3 2/3 1/3 1/3 2/3 2/3 Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. An n n matrix

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

Dichotomy Theorems in Counting Complexity and Holographic Algorithms. Jin-Yi Cai University of Wisconsin, Madison. Supported by NSF CCF

Dichotomy Theorems in Counting Complexity and Holographic Algorithms. Jin-Yi Cai University of Wisconsin, Madison. Supported by NSF CCF Dichotomy Theorems in Counting Complexity and Holographic Algorithms Jin-Yi Cai University of Wisconsin, Madison September 7th, 204 Supported by NSF CCF-27549. The P vs. NP Question It is generally conjectured

More information

Containment restrictions

Containment restrictions Containment restrictions Tibor Szabó Extremal Combinatorics, FU Berlin, WiSe 207 8 In this chapter we switch from studying constraints on the set operation intersection, to constraints on the set relation

More information

Counting bases of representable matroids

Counting bases of representable matroids Counting bases of representable matroids Michael Snook School of Mathematics, Statistics and Operations Research Victoria University of Wellington Wellington, New Zealand michael.snook@msor.vuw.ac.nz Submitted:

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introduction to Cluster Algebra Ivan C.H. Ip Update: May 16, 2017 5 Review of Root Systems In this section, let us have a brief introduction to root system and finite Lie type classification

More information

Non-Interactive Zero Knowledge (II)

Non-Interactive Zero Knowledge (II) Non-Interactive Zero Knowledge (II) CS 601.442/642 Modern Cryptography Fall 2017 S 601.442/642 Modern CryptographyNon-Interactive Zero Knowledge (II) Fall 2017 1 / 18 NIZKs for NP: Roadmap Last-time: Transformation

More information

The approximability of Max CSP with fixed-value constraints

The approximability of Max CSP with fixed-value constraints The approximability of Max CSP with fixed-value constraints Vladimir Deineko Warwick Business School University of Warwick, UK Vladimir.Deineko@wbs.ac.uk Mikael Klasson Dep t of Computer and Information

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

ELE/MCE 503 Linear Algebra Facts Fall 2018

ELE/MCE 503 Linear Algebra Facts Fall 2018 ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

Polynomial-Time Reductions

Polynomial-Time Reductions Reductions 1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

R ij = 2. Using all of these facts together, you can solve problem number 9.

R ij = 2. Using all of these facts together, you can solve problem number 9. Help for Homework Problem #9 Let G(V,E) be any undirected graph We want to calculate the travel time across the graph. Think of each edge as one resistor of 1 Ohm. Say we have two nodes: i and j Let the

More information

The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)

The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases) The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases) Jianxin Chen a,b,c, Nathaniel Johnston b a Department of Mathematics & Statistics, University of Guelph,

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

A Characterization of (3+1)-Free Posets

A Characterization of (3+1)-Free Posets Journal of Combinatorial Theory, Series A 93, 231241 (2001) doi:10.1006jcta.2000.3075, available online at http:www.idealibrary.com on A Characterization of (3+1)-Free Posets Mark Skandera Department of

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19 832: Algebraic Combinatorics Lionel Levine Lecture date: April 2, 20 Lecture 9 Notes by: David Witmer Matrix-Tree Theorem Undirected Graphs Let G = (V, E) be a connected, undirected graph with n vertices,

More information

Corrigendum: The complexity of counting graph homomorphisms

Corrigendum: The complexity of counting graph homomorphisms Corrigendum: The complexity of counting graph homomorphisms Martin Dyer School of Computing University of Leeds Leeds, U.K. LS2 9JT dyer@comp.leeds.ac.uk Catherine Greenhill School of Mathematics The University

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Problem Set 2. Assigned: Mon. November. 23, 2015

Problem Set 2. Assigned: Mon. November. 23, 2015 Pseudorandomness Prof. Salil Vadhan Problem Set 2 Assigned: Mon. November. 23, 2015 Chi-Ning Chou Index Problem Progress 1 SchwartzZippel lemma 1/1 2 Robustness of the model 1/1 3 Zero error versus 1-sided

More information

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010 Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu COMPSTAT

More information

Reading group: proof of the PCP theorem

Reading group: proof of the PCP theorem Reading group: proof of the PCP theorem 1 The PCP Theorem The usual formulation of the PCP theorem is equivalent to: Theorem 1. There exists a finite constraint language A such that the following problem

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 2: Orthogonal Vectors and Matrices; Vector Norms Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 11 Outline 1 Orthogonal

More information

Universal algebra for CSP Lecture 2

Universal algebra for CSP Lecture 2 Universal algebra for CSP Lecture 2 Ross Willard University of Waterloo Fields Institute Summer School June 26 30, 2011 Toronto, Canada R. Willard (Waterloo) Universal algebra Fields Institute 2011 1 /

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

Min-Rank Conjecture for Log-Depth Circuits

Min-Rank Conjecture for Log-Depth Circuits Min-Rank Conjecture for Log-Depth Circuits Stasys Jukna a,,1, Georg Schnitger b,1 a Institute of Mathematics and Computer Science, Akademijos 4, LT-80663 Vilnius, Lithuania b University of Frankfurt, Institut

More information

Preliminaries and Complexity Theory

Preliminaries and Complexity Theory Preliminaries and Complexity Theory Oleksandr Romanko CAS 746 - Advanced Topics in Combinatorial Optimization McMaster University, January 16, 2006 Introduction Book structure: 2 Part I Linear Algebra

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Holographic Reduction, Interpolation and Hardness

Holographic Reduction, Interpolation and Hardness Holographic Reduction, Interpolation and Hardness Jin-Yi Cai Pinyan Lu Mingji Xia Abstract We prove a dichotomy theorem for a class of counting problems expressible by Boolean signatures. The proof methods

More information

3.2 Gaussian Elimination (and triangular matrices)

3.2 Gaussian Elimination (and triangular matrices) (1/19) Solving Linear Systems 3.2 Gaussian Elimination (and triangular matrices) MA385/MA530 Numerical Analysis 1 November 2018 Gaussian Elimination (2/19) Gaussian Elimination is an exact method for solving

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

A Polynomial-Time Algorithm for Pliable Index Coding

A Polynomial-Time Algorithm for Pliable Index Coding 1 A Polynomial-Time Algorithm for Pliable Index Coding Linqi Song and Christina Fragouli arxiv:1610.06845v [cs.it] 9 Aug 017 Abstract In pliable index coding, we consider a server with m messages and n

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

Combinatorics of p-ary Bent Functions

Combinatorics of p-ary Bent Functions Combinatorics of p-ary Bent Functions MIDN 1/C Steven Walsh United States Naval Academy 25 April 2014 Objectives Introduction/Motivation Definitions Important Theorems Main Results: Connecting Bent Functions

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

The complexity of constraint satisfaction: an algebraic approach

The complexity of constraint satisfaction: an algebraic approach The complexity of constraint satisfaction: an algebraic approach Andrei KROKHIN Department of Computer Science University of Durham Durham, DH1 3LE UK Andrei BULATOV School of Computer Science Simon Fraser

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z).

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z). 18.312: Algebraic Combinatorics Lionel Levine Lecture date: May 3, 2011 Lecture 22 Notes by: Lou Odette This lecture: Smith normal form of an integer matrix (linear algebra over Z). 1 Review of Abelian

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Some Results on Matchgates and Holographic Algorithms. Jin-Yi Cai Vinay Choudhary University of Wisconsin, Madison. NSF CCR and CCR

Some Results on Matchgates and Holographic Algorithms. Jin-Yi Cai Vinay Choudhary University of Wisconsin, Madison. NSF CCR and CCR Some Results on Matchgates and Holographic Algorithms Jin-Yi Cai Vinay Choudhary University of Wisconsin, Madison NSF CCR-0208013 and CCR-0511679. 1 #P Counting problems: #SAT: How many satisfying assignments

More information

Out-colourings of Digraphs

Out-colourings of Digraphs Out-colourings of Digraphs N. Alon J. Bang-Jensen S. Bessy July 13, 2017 Abstract We study vertex colourings of digraphs so that no out-neighbourhood is monochromatic and call such a colouring an out-colouring.

More information

USING GRAPHS AND GAMES TO GENERATE CAP SET BOUNDS

USING GRAPHS AND GAMES TO GENERATE CAP SET BOUNDS USING GRAPHS AND GAMES TO GENERATE CAP SET BOUNDS JOSH ABBOTT AND TREVOR MCGUIRE Abstract. Let F 3 be the field with 3 elements and consider the k- dimensional affine space, F k 3, over F 3. A line of

More information

On counting homomorphisms to directed acyclic graphs

On counting homomorphisms to directed acyclic graphs On counting homomorphisms to directed acyclic graphs Martin Dyer Leslie Ann Goldberg Mike Paterson October 13, 2006 Abstract It is known that if P and NP are different then there is an infinite hierarchy

More information

1 Introduction In [2] a method for computing the Walsh spectrum in R-encoding of a completely specified binary-valued function was presented based on

1 Introduction In [2] a method for computing the Walsh spectrum in R-encoding of a completely specified binary-valued function was presented based on Computation of Discrete Function Chrestenson Spectrum Using Cayley Color Graphs Λ Mitchell A. Thornton Southern Methodist University Dallas, Texas mitch@engr.smu.edu D. Michael Miller University of Victoria

More information

Polymorphisms, and how to use them

Polymorphisms, and how to use them Polymorphisms, and how to use them Libor Barto 1, Andrei Krokhin 2, and Ross Willard 3 1 Department of Algebra, Faculty of Mathematics and Physics Charles University in Prague, Czech Republic libor.barto@gmail.com

More information

Combinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete

Combinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete Combinatorial Proof that Subprojective Constraint Satisfaction Problems are NP-Complete Jaroslav Nešetřil 1 and Mark Siggers 1 Department of Applied Mathematics and Institute for Theoretical Computer Science

More information

Lecture Semidefinite Programming and Graph Partitioning

Lecture Semidefinite Programming and Graph Partitioning Approximation Algorithms and Hardness of Approximation April 16, 013 Lecture 14 Lecturer: Alantha Newman Scribes: Marwa El Halabi 1 Semidefinite Programming and Graph Partitioning In previous lectures,

More information

Discrete Optimization 23

Discrete Optimization 23 Discrete Optimization 23 2 Total Unimodularity (TU) and Its Applications In this section we will discuss the total unimodularity theory and its applications to flows in networks. 2.1 Total Unimodularity:

More information

Appendix A: Matrices

Appendix A: Matrices Appendix A: Matrices A matrix is a rectangular array of numbers Such arrays have rows and columns The numbers of rows and columns are referred to as the dimensions of a matrix A matrix with, say, 5 rows

More information

Characteristic polynomials of skew-adjacency matrices of oriented graphs

Characteristic polynomials of skew-adjacency matrices of oriented graphs Characteristic polynomials of skew-adjacency matrices of oriented graphs Yaoping Hou Department of Mathematics Hunan Normal University Changsha, Hunan 410081, China yphou@hunnu.edu.cn Tiangang Lei Department

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

The purpose of this section is to derive the asymptotic distribution of the Pearson chi-square statistic. k (n j np j ) 2. np j.

The purpose of this section is to derive the asymptotic distribution of the Pearson chi-square statistic. k (n j np j ) 2. np j. Chapter 9 Pearson s chi-square test 9. Null hypothesis asymptotics Let X, X 2, be independent from a multinomial(, p) distribution, where p is a k-vector with nonnegative entries that sum to one. That

More information

Counting Matrix Partitions of Graphs

Counting Matrix Partitions of Graphs Counting Matrix Partitions of Graphs David Richerby University of Oxford Joint work with Martin Dyer, Andreas Göbel, Leslie Ann Goldberg, Colin McQuillan and Tomoyuki Yamakami David Richerby (Oxford) Counting

More information

Lectures 6 7 : Marchenko-Pastur Law

Lectures 6 7 : Marchenko-Pastur Law Fall 2009 MATH 833 Random Matrices B. Valkó Lectures 6 7 : Marchenko-Pastur Law Notes prepared by: A. Ganguly We will now turn our attention to rectangular matrices. Let X = (X 1, X 2,..., X n ) R p n

More information

Chapter 3. Some Applications. 3.1 The Cone of Positive Semidefinite Matrices

Chapter 3. Some Applications. 3.1 The Cone of Positive Semidefinite Matrices Chapter 3 Some Applications Having developed the basic theory of cone programming, it is time to apply it to our actual subject, namely that of semidefinite programming. Indeed, any semidefinite program

More information

Classification for Counting Problems

Classification for Counting Problems Classification for Counting Problems Jin-Yi Cai (University of Wisconsin-Madison) Thanks to many collaborators: Xi Chen, Zhiguo Fu, Kurt Girstmair, Heng Guo, Mike Kowalczyk, Pinyan Lu, Tyson Williams...

More information

CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS

CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS CLASSIFYING THE COMPLEXITY OF CONSTRAINTS USING FINITE ALGEBRAS ANDREI BULATOV, PETER JEAVONS, AND ANDREI KROKHIN Abstract. Many natural combinatorial problems can be expressed as constraint satisfaction

More information

Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights

Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights Theoretical Computer Science 244 (2000) 189 203 www.elsevier.com/locate/tcs Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights Peter Jonsson Department

More information

First of all, the notion of linearity does not depend on which coordinates are used. Recall that a map T : R n R m is linear if

First of all, the notion of linearity does not depend on which coordinates are used. Recall that a map T : R n R m is linear if 5 Matrices in Different Coordinates In this section we discuss finding matrices of linear maps in different coordinates Earlier in the class was the matrix that multiplied by x to give ( x) in standard

More information

Four new upper bounds for the stability number of a graph

Four new upper bounds for the stability number of a graph Four new upper bounds for the stability number of a graph Miklós Ujvári Abstract. In 1979, L. Lovász defined the theta number, a spectral/semidefinite upper bound on the stability number of a graph, which

More information

Lecture 1 : Probabilistic Method

Lecture 1 : Probabilistic Method IITM-CS6845: Theory Jan 04, 01 Lecturer: N.S.Narayanaswamy Lecture 1 : Probabilistic Method Scribe: R.Krithika The probabilistic method is a technique to deal with combinatorial problems by introducing

More information

On the adjacency matrix of a block graph

On the adjacency matrix of a block graph On the adjacency matrix of a block graph R. B. Bapat Stat-Math Unit Indian Statistical Institute, Delhi 7-SJSS Marg, New Delhi 110 016, India. email: rbb@isid.ac.in Souvik Roy Economics and Planning Unit

More information

A Field Extension as a Vector Space

A Field Extension as a Vector Space Chapter 8 A Field Extension as a Vector Space In this chapter, we take a closer look at a finite extension from the point of view that is a vector space over. It is clear, for instance, that any is a linear

More information

Average Mixing Matrix of Trees

Average Mixing Matrix of Trees Electronic Journal of Linear Algebra Volume 34 Volume 34 08 Article 9 08 Average Mixing Matrix of Trees Chris Godsil University of Waterloo, cgodsil@uwaterloo.ca Krystal Guo Université libre de Bruxelles,

More information

Graph coloring, perfect graphs

Graph coloring, perfect graphs Lecture 5 (05.04.2013) Graph coloring, perfect graphs Scribe: Tomasz Kociumaka Lecturer: Marcin Pilipczuk 1 Introduction to graph coloring Definition 1. Let G be a simple undirected graph and k a positive

More information

Refined Inertia of Matrix Patterns

Refined Inertia of Matrix Patterns Electronic Journal of Linear Algebra Volume 32 Volume 32 (2017) Article 24 2017 Refined Inertia of Matrix Patterns Kevin N. Vander Meulen Redeemer University College, kvanderm@redeemer.ca Jonathan Earl

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information