Goal Programming Approach for Solving Interval MOLP Problems

Size: px
Start display at page:

Download "Goal Programming Approach for Solving Interval MOLP Problems"

Transcription

1 In the name of Absolute Power & Absolute Knowledge Goal Programming Approach for Solving Interval MOLP Problems S Rivaz, MA Yaghoobi and M Hladí 8th Small Worshop on Interval Methods Charles University Prague, Czech Republic, June 9-11, 2015

2 Motivation In many real-world situations, the parameters of decisionmaing problems are not deterministic In this context, it is convenient to extend the traditional mathematical programming models incorporating their uncertainty One of the tools for tacling vagueness is interval programming in which every uncertain parameter is determined with a closed interval Moreover, many real-world problems inherently impose the need to investigate multiple and conflicting objective functions This paper treats multiobjective linear programming problems with interval objective functions coefficients and target intervals 2 / 24 In the name of Absolute Power & Absolut

3 MOLP Problems with Interval Objective Functions Coefficients and Target Intervals c j x j = t, = 1,, p, st Ax b, c j C j, = 1,, p, j = 1,, n, t T, = 1,, p, x 0, where C j is the closed interval [c l j, cu j ] representing a region the coefficients c j possibly tae T is the closed interval [t l, tu ] representing a region the target value t possibly tae The constraints of the problem are as in conventional MOLP problem 3 / 24 In the name of Absolute Power & Absolut

4 The Wor of Inuiguchi & Kume (1991) Possible Deviation D = [d l, du ] of [ n cl j x j, n cu j x j] from T [t l n cu j x j, t u n cl j x j] if t l n cu j x j 0, D = [0, ( n cu j x j t l ) (t u n cl j x j)] if t l n cu j x j < 0 < t u n cl j x j, [ n cl j x j t u, n cu j x j t l ] if t u n cl j x j 0, where denotes the maximum 4 / 24 In the name of Absolute Power & Absolut

5 0 λ 1, w 0 and p =1 w = 1 5 / 24 In the name of Absolute Power & Absolut

6 The Wor of Inuiguchi & Kume (1991) st min λ p =1 c u j x j + d l w (d l + du+ ) + (1 λ)vl dl+ = t l, = 1,, p, c l j x j + d u d u+ = t u, = 1,, p, d l, dl+ d l, du, du+ Ax b, + du+ v l, = 1,, p, x j 0, j = 1,, n,, vl 0, = 1,, p 6 / 24 In the name of Absolute Power & Absolut

7 The Wor of Inuiguchi & Kume (1991) st d l min λ c u j x j + d l p w v + (1 λ)v u =1 dl+ = t l, = 1,, p, c l j x j + d u d u+ = t u, = 1,, p, Ax b, d l+ v, = 1,, p, d u v, = 1,, p, v v u, = 1,, p, x j 0, j = 1,, n, v u 0,, du+, v 0, = 1,, p, dl+, du 7 / 24 In the name of Absolute Power & Absolut

8 The Wor of Inuiguchi & Kume (1991) Necessary Deviation E = [e l, eu ] of [ n cl j x j, n cu j x j] from T [t l n cl j x j, t u n cu j x j] if t u n cu j x j t l n cl j x j 0, [0, (t u n cu j x j) ( n cl j x j t l )] if t l n cl j x j < 0 < t u n cu j x j, E = [ n cu j x j t u, n cl j x j t l ] if t l n cl j x j t u n cu j x j 0, [ n cl j x j t l, n cu j x j t u ] n if cu j x j t u n cu j x j t l 0, [0, ( n cu j x j t u ) (t l n cl j x j)] n if cl j x j t l < 0 < n cu j x jt u, [t u n cu j x j, t l n cl j x j] n if cl j x j t l n cu j x j t u 0 8 / 24 In the name of Absolute Power & Absolut

9 The Wor of Inuiguchi & Kume (1991) st min λ ((e l p =1 w ((e l + eu+ ) (e l+ c l j x j + e l + eu )) + (1 λ)ul el+ = t l, = 1,, p, c u j x j + e u e u+ = t u, = 1,, p, Ax b, + eu+ ) (e l+ + eu )) ul, = 1,, p, x j 0, j = 1,, n, e l, el+, eu, eu+, ul 0, = 1,, p, where denotes the minimum 9 / 24 In the name of Absolute Power & Absolut

10 The Wor of Inuiguchi & Kume (1991) st e l min λ c l j x j + e l p w u + (1 λ)u u =1 el+ = t l, = 1,, p, c u j x j + e u e u+ = t u, = 1,, p, e l Ax b, + el+ u, = 1,, p, e u + e u+ u, = 1,, p, u u u, = 1,, p, x j 0, j = 1,, n, u u 0,, eu+, u 0, = 1,, p, el+, eu 10 / 24 In the name of Absolute Power & Absolut

11 Our Aim Minimizing the total distance of planned intervals, [ n cl j x j, n cu j x j], from target intervals, [t l, tu ], = 1,, p In order to do that, we use the following distance concept between two intervals 11 / 24 In the name of Absolute Power & Absolut

12 The Distance Between Two Intervals Definition Let [a l, a u ] and [b l, b u ] be two intervals Then, the distance between them is defined as (Moore, 2009): d([a l, a u ], [b l, b u ]) = max{ a l b l, a u b u } It is easy to chec that the distance d, defined in the above, introduces a metric on the space of closed intervals in the set of real numbers 12 / 24 In the name of Absolute Power & Absolut

13 The Distance Between the th Planned Interval and Its Target Interval ( = 1,, p) D = d([ c l jx j, c u jx j ], [t l, t u ]) = max( c l jx j t l, c u jx j t u ), = 1,, p, Using the deviational variables d l, dl+, du and d u+ as: c l jx j + d l d l+ = t l ; D can be written as follows: c u jx j + d u d u+ = t u ; D = max( d l d l+, d u d u+ ), = 1,, p 13 / 24 In the name of Absolute Power & Absolut

14 Our Model for Solving an Interval MOLP Problem with Target Intervals st min λ c l j x j + d l p w v + (1 λ)u (1) =1 dl+ = t l, = 1,, p, c u j x j + d u d u+ = t u, = 1,, p, d l Ax b, dl+ v, = 1,, p, d u d u+ v, = 1,, p, 14 / 24 In the name of Absolute Power & Absolut

15 Continued d l, dl+, du v u, = 1,, p, d l dl+ = 0, = 1,, p, d u du+ = 0, = 1,, p, x j 0, j = 1,, n, v 0, = 1,, p,, du+ 0, = 1,, p, u 0 The proposed model can be transformed to a linear programming problem It is obvious that () v, = 1,, p, can be substituted with two linear constraints () v and () v The nonlinear constraints d l dl+ = 0 and d u du+ = 0, = 1,, p, can be eliminated due to the dependency of columns of d l and d u, du+, when the, dl+ Simplex method is used for solving the model 15 / 24 In the name of Absolute Power & Absolut

16 New Model st min λ c l j x j + d l p w v + (1 λ)u (2) =1 dl+ = t l, = 1,, p, c u j x j + d u d u+ = t u, = 1,, p, d l Ax b, + dl+ v, = 1,, p, d u + d u+ v, = 1,, p, v u, = 1,, p, x j 0, j = 1,, n, v 0, = 1,, p, d l, dl+, du, du+ 0, = 1,, p, u 0 16 / 24 In the name of Absolute Power & Absolut

17 The Property of Model (2) Lemma Let model (2) be feasible then it has an optimal solution in which the constraints d l dl+ = 0 and du du+ = 0, = 1,, p, are satisfied 17 / 24 In the name of Absolute Power & Absolut

18 A Relationship Between Models (1) and (2) Theorem The optimal solution of model (1) can be obtained by solving model (2) 18 / 24 In the name of Absolute Power & Absolut

19 A Numerical Example In order to illustrate the proposed model, consider the following interval MOLP problem with interval targets which was proposed by Inuiguchi and Kume (1991): Optimize: st c 1 x 1 + c 4 y 1 = t 1, c 2 x 2 + c 5 y 2 = t 2, c 3 x 3 + c 6 y 3 = t 3, x 1 + x 2 + x 3 9, y 1 + y 2 + y 3 9, c 1 [2, 3], c 4 [5, 7], t 1 [28, 32], c 2 [2, 3], c 5 [1, 3], t 2 [25, 30], c 3 [4, 8], c 6 [2, 3], t 3 [31, 37], x j 0, y j 0, j = 1, 2, 3 19 / 24 In the name of Absolute Power & Absolut

20 Continued Applying the proposed model when λ = 1 2 and w 1 = w 2 = w 3 = 1 3, we have min 1 6 (v 1 + v 2 + v 3 ) u st 2x 1 + 5y 1 + d l 1 d l+ 1 = 28, 2x 2 + y 2 + d l 2 d l+ 2 = 25, 4x 3 + 2y 3 + d l 3 d l+ 3 = 31, 3x 2 + 7y 2 + d u 1 d u+ 1 = 32, 3x 2 + 3y 2 + d u 2 d u+ 2 = 30, 8x 2 + 3y 2 + d u 3 d u+ 3 = 37, x 1 + x 2 + x 3 9, y 1 + y 2 + y 3 9, d l 1 d l+ 1 v 1, 20 / 24 d u din u+ the name ofv Absolute, Power & Absolut

21 Continued d l, dl+ d l 2 d l+ 2 v 2, d u 2 d u+ 2 v 2, d l 3 d l+ 3 v 3, d u 3 d u+ 3 v 3, v u, = 1, 2, 3,, du x j 0, y j 0, j = 1, 2, 3, v 0, = 1, 2, 3,, du+ 0, = 1, 2, 3, u 0 The problem solution is x 1 = 0, x 2 = 45, x 3 = 45, y 1 = 5, y 2 = and y 3 = where D 1 = 3, D 2 = , D 3 = and D(x)= / 24 In the name of Absolute Power & Absolut

22 References Bitran, GR, Linear multiobjective problems with interval coefficients, Management Science, 26, (1980) Chinnec, JW, Ramadan, K, Linear programming with interval coefficients, Journal of Operational Research Society, 51, (2000) Fiedler, M, Nedoma, J, Rohn, J, Zimmermann, K, Linear optimization problems with inexact data, Springer-Verlag, New Yor (2006) Inuiguchi, M, Kume, Y, Goal programming problems with interval coefficients and target intervals, European Journal of Operational Research, 52, (1991) 22 / 24 In the name of Absolute Power & Absolut

23 References Jones, DF, Tamiz, M, Practical goal programming, Springer (2010) Moore, RE, Kearfott, RB, Cloud, MJ, Introduction to interval analysis, Society for Industrial and Applied Mathematics, Philadelphia (2009) Oliveira, C and Antunes, C H, Multiple objective linear programming models with interval coefficients - an illustrated overview, European Journal of Operational Research, 181, (2007) Oliveira, C and Antunes, C H, An interactive method of tacling uncertainty in interval multiple objective linear programming, Journal of Mathematical Sciences, 161, (2009) 23 / 24 In the name of Absolute Power & Absolut

24 Than You!

arxiv: v1 [cs.na] 7 Jul 2017

arxiv: v1 [cs.na] 7 Jul 2017 AE regularity of interval matrices Milan Hladík October 4, 2018 arxiv:1707.02102v1 [cs.na] 7 Jul 2017 Abstract Consider a linear system of equations with interval coefficients, and each interval coefficient

More information

arxiv: v1 [math.na] 28 Jun 2013

arxiv: v1 [math.na] 28 Jun 2013 A New Operator and Method for Solving Interval Linear Equations Milan Hladík July 1, 2013 arxiv:13066739v1 [mathna] 28 Jun 2013 Abstract We deal with interval linear systems of equations We present a new

More information

Institute of Computer Science. Compact Form of the Hansen-Bliek-Rohn Enclosure

Institute of Computer Science. Compact Form of the Hansen-Bliek-Rohn Enclosure Institute of Computer Science Academy of Sciences of the Czech Republic Compact Form of the Hansen-Bliek-Rohn Enclosure Jiří Rohn http://uivtx.cs.cas.cz/~rohn Technical report No. V-1157 24.03.2012 Pod

More information

Robust optimal solutions in interval linear programming with forall-exists quantifiers

Robust optimal solutions in interval linear programming with forall-exists quantifiers Robust optimal solutions in interval linear programming with forall-exists quantifiers Milan Hladík October 5, 2018 arxiv:1403.7427v1 [math.oc] 28 Mar 2014 Abstract We introduce a novel kind of robustness

More information

Separation of convex polyhedral sets with uncertain data

Separation of convex polyhedral sets with uncertain data Separation of convex polyhedral sets with uncertain data Milan Hladík Department of Applied Mathematics Charles University Malostranské nám. 25 118 00 Prague Czech Republic e-mail: milan.hladik@matfyz.cz

More information

On Computing Highly Robust Efficient Solutions

On Computing Highly Robust Efficient Solutions On Computing Highly Robust Efficient Solutions Garrett M. Dranichak a,, Margaret M. Wiecek a a Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, United States Abstract Due to

More information

A Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View

A Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View A Solution Algorithm for a System of Interval Linear Equations Based on the Constraint Interval Point of View M. Keyanpour Department of Mathematics, Faculty of Sciences University of Guilan, Iran Kianpour@guilan.ac.ir

More information

LINEAR INTERVAL INEQUALITIES

LINEAR INTERVAL INEQUALITIES LINEAR INTERVAL INEQUALITIES Jiří Rohn, Jana Kreslová Faculty of Mathematics and Physics, Charles University Malostranské nám. 25, 11800 Prague, Czech Republic 1.6.1993 Abstract We prove that a system

More information

Solving Multi-objective Generalized Solid Transportation Problem by IFGP approach

Solving Multi-objective Generalized Solid Transportation Problem by IFGP approach 778 Solving Multi-objective Generalized Solid Transportation Problem by IFGP approach Debi Prasad Acharya a,1, S.M.Kamaruzzaman b,2, Atanu Das c,3 a Department of Mathematics, Nabadwip Vidyasagar College,

More information

Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix

Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix Milan Hladík Charles University, Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranské

More information

A New Approach for Finding an Optimal Solution for Integer Interval Transportation Problems

A New Approach for Finding an Optimal Solution for Integer Interval Transportation Problems Int. J. Open Problems Compt. Math., Vol. 3, No. 5, December 2010 ISSN 1998-6262; Copyright c ICSRS Publication, 2010 www.i-csrs.org A New Approach for Finding an Optimal Solution for Integer Interval Transportation

More information

Fuzzy Multi-objective Linear Programming Problem Using Fuzzy Programming Model

Fuzzy Multi-objective Linear Programming Problem Using Fuzzy Programming Model Fuzzy Multi-objective Linear Programming Problem Using Fuzzy Programming Model M. Kiruthiga 1 and C. Loganathan 2 1 Department of Mathematics, Maharaja Arts and Science College, Coimbatore 2 Principal,

More information

Bounds on the radius of nonsingularity

Bounds on the radius of nonsingularity Towards bounds on the radius of nonsingularity, Milan Hladík Department of Applied Mathematics, Charles University, Prague and Institute of Computer Science of the Academy of Czech Republic SCAN 2014,

More information

2-Vehicle Cost Varying Transportation Problem

2-Vehicle Cost Varying Transportation Problem Journal of Uncertain Systems Vol.8, No.1, pp.44-7, 14 Online at: www.jus.org.uk -Vehicle Cost Varying Transportation Problem Arpita Panda a,, Chandan Bikash Das b a Department of Mathematics, Sonakhali

More information

Computing Standard-Deviation-to-Mean and Variance-to-Mean Ratios under Interval Uncertainty is NP-Hard

Computing Standard-Deviation-to-Mean and Variance-to-Mean Ratios under Interval Uncertainty is NP-Hard Journal of Uncertain Systems Vol.9, No.2, pp.124-132, 2015 Online at: www.jus.org.uk Computing Standard-Deviation-to-Mean and Variance-to-Mean Ratios under Interval Uncertainty is NP-Hard Sio-Long Lo Faculty

More information

AN IMPROVED THREE-STEP METHOD FOR SOLVING THE INTERVAL LINEAR PROGRAMMING PROBLEMS

AN IMPROVED THREE-STEP METHOD FOR SOLVING THE INTERVAL LINEAR PROGRAMMING PROBLEMS Yugoslav Journal of Operations Research xx (xx), Number xx, xx DOI: https://doi.org/10.2298/yjor180117020a AN IMPROVED THREE-STEP METHOD FOR SOLVING THE INTERVAL LINEAR PROGRAMMING PROBLEMS Mehdi ALLAHDADI

More information

IN many real-life situations we come across problems with

IN many real-life situations we come across problems with Algorithm for Interval Linear Programming Involving Interval Constraints Ibraheem Alolyan Abstract In real optimization, we always meet the criteria of useful outcomes increasing or expenses decreasing

More information

How to Define Relative Approximation Error of an Interval Estimate: A Proposal

How to Define Relative Approximation Error of an Interval Estimate: A Proposal Applied Mathematical Sciences, Vol 7, 2013, no 5, 211-216 How to Define Relative Approximation Error of an Interval Estimate: A Proposal Vladik Kreinovich Department of Computer Science University of Texas

More information

TOLERANCE-CONTROL SOLUTIONS TO INTERVAL LINEAR EQUATIONS

TOLERANCE-CONTROL SOLUTIONS TO INTERVAL LINEAR EQUATIONS International Conference on Artificial Intelligence and Software Engineering (ICAISE 013 TOLERANCE-CONTROL SOLUTIONS TO INTERVAL LINEAR EQUATIONS LI TIAN 1, WEI LI 1, QIN WANG 1 Institute of Operational

More information

AS real numbers have an associated arithmetic and mathematical

AS real numbers have an associated arithmetic and mathematical INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 31-5330), VOL. 4, NO. 1, 014 8 An Interval Solid Transportation Problem with Vehicle Cost, Fixed Charge and Budget A. Das, A. Baidya

More information

Interactive Random Fuzzy Two-Level Programming through Possibility-based Fractile Criterion Optimality

Interactive Random Fuzzy Two-Level Programming through Possibility-based Fractile Criterion Optimality Interactive Random uzzy Two-Level Programming through Possibility-based ractile Criterion Optimality Hideki Katagiri, Keiichi Niwa, Daiji Kubo, Takashi Hasuike Abstract This paper considers two-level linear

More information

Solving Global Optimization Problems by Interval Computation

Solving Global Optimization Problems by Interval Computation Solving Global Optimization Problems by Interval Computation Milan Hladík Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic, http://kam.mff.cuni.cz/~hladik/

More information

Bounded Generalized Random Linear Operators

Bounded Generalized Random Linear Operators VNU Journal of Science: Mathematics Physics Vol. 33 No. 3 (27) 95-4 Bounded Generalized Random Linear Operators Nguyen Thinh * Department of Mathematics VNU University of Science 334 Nguyen Trai Hanoi

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1

A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 A NOVEL OPTIMAL PROBABILITY DENSITY FUNCTION TRACKING FILTER DESIGN 1 Jinglin Zhou Hong Wang, Donghua Zhou Department of Automation, Tsinghua University, Beijing 100084, P. R. China Control Systems Centre,

More information

Interval Robustness in Linear Programming

Interval Robustness in Linear Programming Interval Robustness in Linear Programming Milan Hladík Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

More information

Global Optimization by Interval Analysis

Global Optimization by Interval Analysis Global Optimization by Interval Analysis Milan Hladík Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic, http://kam.mff.cuni.cz/~hladik/

More information

Tolerance and critical regions of reference points: a study of bi-objective linear programming models

Tolerance and critical regions of reference points: a study of bi-objective linear programming models Tolerance and critical regions of reference points: a study of biobjective linear programg models Ana Rosa Borges ISEC, Coimbra Polytechnic Institute, Rua Pedro Nunes, Quinta de Nora, 3399 and INESC Rua

More information

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran Optimization Volume 2016, Article ID 9175371, 8 pages http://dx.doi.org/10.1155/2016/9175371 Research Article Finding the Efficiency Status and Efficient Projection in Multiobjective Linear Fractional

More information

When Can We Reduce Multi-Variable Range Estimation Problem to Two Fewer-Variable Problems?

When Can We Reduce Multi-Variable Range Estimation Problem to Two Fewer-Variable Problems? University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 12-2014 When Can We Reduce Multi-Variable Range Estimation Problem to Two Fewer-Variable

More information

TIES598 Nonlinear Multiobjective Optimization A priori and a posteriori methods spring 2017

TIES598 Nonlinear Multiobjective Optimization A priori and a posteriori methods spring 2017 TIES598 Nonlinear Multiobjective Optimization A priori and a posteriori methods spring 2017 Jussi Hakanen jussi.hakanen@jyu.fi Contents A priori methods A posteriori methods Some example methods Learning

More information

Decision Making under Interval Uncertainty: What Can and What Cannot Be Computed in Linear Time and in Real Time

Decision Making under Interval Uncertainty: What Can and What Cannot Be Computed in Linear Time and in Real Time Decision Making under Interval Uncertainty: What Can and What Cannot Be Computed in Linear Time and in Real Time O. Kosheleva and V. Kreinovich University of Texas at El Paso, El Paso, TX 79968, USA, olgak@utep.edu,

More information

Computing the Norm A,1 is NP-Hard

Computing the Norm A,1 is NP-Hard Computing the Norm A,1 is NP-Hard Dedicated to Professor Svatopluk Poljak, in memoriam Jiří Rohn Abstract It is proved that computing the subordinate matrix norm A,1 is NP-hard. Even more, existence of

More information

arxiv: v1 [math.oc] 27 Feb 2018

arxiv: v1 [math.oc] 27 Feb 2018 arxiv:1802.09872v1 [math.oc] 27 Feb 2018 Interval Linear Programming under Transformations: Optimal Solutions and Optimal Value Range Elif Garajová Milan Hladík Miroslav Rada February 28, 2018 Abstract

More information

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate www.scichina.com info.scichina.com www.springerlin.com Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate WEI Chen & CHEN ZongJi School of Automation

More information

Three coefficients of a polynomial can determine its instability

Three coefficients of a polynomial can determine its instability Linear Algebra and its Applications 338 (2001) 67 76 www.elsevier.com/locate/laa Three coefficients of a polynomial can determine its instability Alberto Borobia a,,1, Sebastián Dormido b,2 a Departamento

More information

Research Article A Proposal to the Solution of Multiobjective Linear Fractional Programming Problem

Research Article A Proposal to the Solution of Multiobjective Linear Fractional Programming Problem Abstract and Applied Analysis Volume 2013, Article ID 435030, 4 pages http://dx.doi.org/10.1155/2013/435030 Research Article A Proposal to the Solution of Multiobjective Linear Fractional Programming Problem

More information

Notes taken by Graham Taylor. January 22, 2005

Notes taken by Graham Taylor. January 22, 2005 CSC4 - Linear Programming and Combinatorial Optimization Lecture : Different forms of LP. The algebraic objects behind LP. Basic Feasible Solutions Notes taken by Graham Taylor January, 5 Summary: We first

More information

How to Explain Usefulness of Different Results when Teaching Calculus: Example of the Mean Value Theorem

How to Explain Usefulness of Different Results when Teaching Calculus: Example of the Mean Value Theorem Journal of Uncertain Systems Vol.7, No.3, pp.164-175, 2013 Online at: www.jus.org.uk How to Explain Usefulness of Different Results when Teaching Calculus: Example of the Mean Value Theorem Olga Kosheleva

More information

Robust Filtering for Discrete Nonlinear Fractional Transformation Systems

Robust Filtering for Discrete Nonlinear Fractional Transformation Systems Robust Filtering for Discrete Nonlinear Fractional Transformation Systems N.T. Hoang H.D. Tuan P. Aparian + and S. Hosoe Department of Electronic-Mechanical Engineering Nagoya University Furo-cho Chiusau

More information

Robust Solutions to Uncertain Multiobjective Programs

Robust Solutions to Uncertain Multiobjective Programs Clemson University TigerPrints All Dissertations Dissertations 5-2018 Robust Solutions to Uncertain Multiobjective Programs Garrett M. Dranichak Clemson University, gdranic@g.clemson.edu Follow this and

More information

arxiv:math-ph/ v1 10 Oct 2005

arxiv:math-ph/ v1 10 Oct 2005 DISCRETE MODELS O THE SEL-DUAL AND ANTI-SEL-DUAL EQUATIONS arxiv:math-ph/0510041v1 10 Oct 2005 Volodymyr Sushch Lviv, Uraine; Koszalin, Poland Abstract. In the case of a gauge-invariant discrete model

More information

A New Approach for Uncertain Multiobjective Programming Problem Based on P E Principle

A New Approach for Uncertain Multiobjective Programming Problem Based on P E Principle INFORMATION Volume xx, Number xx, pp.54-63 ISSN 1343-45 c 21x International Information Institute A New Approach for Uncertain Multiobjective Programming Problem Based on P E Principle Zutong Wang 1, Jiansheng

More information

Production, Capital Stock and Price Dynamics in A Simple Model of Closed Economy *

Production, Capital Stock and Price Dynamics in A Simple Model of Closed Economy * Production, Capital Stoc and Price Dynamics in Simple Model of Closed Economy * Jan Kodera 1,, Miloslav Vosvrda 1 1 Institute of Information Theory, Dept. of Econometrics, cademy of Sciences of the Czech

More information

DS-GA 1002 Lecture notes 2 Fall Random variables

DS-GA 1002 Lecture notes 2 Fall Random variables DS-GA 12 Lecture notes 2 Fall 216 1 Introduction Random variables Random variables are a fundamental tool in probabilistic modeling. They allow us to model numerical quantities that are uncertain: the

More information

Stability Analysis of Linear Systems with Time-varying State and Measurement Delays

Stability Analysis of Linear Systems with Time-varying State and Measurement Delays Proceeding of the th World Congress on Intelligent Control and Automation Shenyang, China, June 29 - July 4 24 Stability Analysis of Linear Systems with ime-varying State and Measurement Delays Liang Lu

More information

MODEL THEORY OF PARTIAL DIFFERENTIAL FIELDS: FROM COMMUTING TO NONCOMMUTING DERIVATIONS

MODEL THEORY OF PARTIAL DIFFERENTIAL FIELDS: FROM COMMUTING TO NONCOMMUTING DERIVATIONS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MODEL THEORY OF PARTIAL DIFFERENTIAL FIELDS: FROM COMMUTING TO NONCOMMUTING DERIVATIONS MICHAEL

More information

NP-hardness results for linear algebraic problems with interval data

NP-hardness results for linear algebraic problems with interval data 1 NP-hardness results for linear algebraic problems with interval data Dedicated to my father, Mr. Robert Rohn, in memoriam J. Rohn a a Faculty of Mathematics and Physics, Charles University, Malostranské

More information

A numerical method for solving uncertain differential equations

A numerical method for solving uncertain differential equations Journal of Intelligent & Fuzzy Systems 25 (213 825 832 DOI:1.3233/IFS-12688 IOS Press 825 A numerical method for solving uncertain differential equations Kai Yao a and Xiaowei Chen b, a Department of Mathematical

More information

On the acceleration of augmented Lagrangian method for linearly constrained optimization

On the acceleration of augmented Lagrangian method for linearly constrained optimization On the acceleration of augmented Lagrangian method for linearly constrained optimization Bingsheng He and Xiaoming Yuan October, 2 Abstract. The classical augmented Lagrangian method (ALM plays a fundamental

More information

Proceedings of the 34th Annual Conference on Information Sciences and Systems (CISS 2000), Princeton, New Jersey, March, 2000

Proceedings of the 34th Annual Conference on Information Sciences and Systems (CISS 2000), Princeton, New Jersey, March, 2000 2000 Conference on Information Sciences and Systems, Princeton University, March 15-17, 2000 Proceedings of the 34th Annual Conference on Information Sciences and Systems (CISS 2000), Princeton, New Jersey,

More information

Measuring transitivity of fuzzy pairwise comparison matrix

Measuring transitivity of fuzzy pairwise comparison matrix Measuring transitivity of fuzzy pairwise comparison matrix Jaroslav Ramík 1 Abstract. A pair-wise comparison matrix is the result of pair-wise comparison a powerful method in multi-criteria optimization.

More information

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 9 Number 2 December 2006 Pages 0 INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR

More information

Maximum subsets of (0, 1] with no solutions to x + y = kz

Maximum subsets of (0, 1] with no solutions to x + y = kz Maximum subsets of 0, 1] with no solutions to x + y = z Fan R. K. Chung Department of Mathematics University of Pennsylvania Philadelphia, PA 19104 John L. Goldwasser West Virginia University Morgantown,

More information

A symmetry analysis of Richard s equation describing flow in porous media. Ron Wiltshire

A symmetry analysis of Richard s equation describing flow in porous media. Ron Wiltshire BULLETIN OF THE GREEK MATHEMATICAL SOCIETY Volume 51, 005 93 103) A symmetry analysis of Richard s equation describing flow in porous media Ron Wiltshire Abstract A summary of the classical Lie method

More information

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae Commentationes Mathematicae Universitatis Carolinae David Preiss Gaussian measures and covering theorems Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 1, 95--99 Persistent URL:

More information

Exact Linearization Of Stochastic Dynamical Systems By State Space Coordinate Transformation And Feedback I g-linearization

Exact Linearization Of Stochastic Dynamical Systems By State Space Coordinate Transformation And Feedback I g-linearization Applied Mathematics E-Notes, 3(2003), 99-106 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Exact Linearization Of Stochastic Dynamical Systems By State Space Coordinate

More information

ON THE RANGE OF THE SUM OF MONOTONE OPERATORS IN GENERAL BANACH SPACES

ON THE RANGE OF THE SUM OF MONOTONE OPERATORS IN GENERAL BANACH SPACES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 11, November 1996 ON THE RANGE OF THE SUM OF MONOTONE OPERATORS IN GENERAL BANACH SPACES HASSAN RIAHI (Communicated by Palle E. T. Jorgensen)

More information

Combining Interval, Probabilistic, and Fuzzy Uncertainty: Foundations, Algorithms, Challenges An Overview

Combining Interval, Probabilistic, and Fuzzy Uncertainty: Foundations, Algorithms, Challenges An Overview Combining Interval, Probabilistic, and Fuzzy Uncertainty: Foundations, Algorithms, Challenges An Overview Vladik Kreinovich 1, Daniel J. Berleant 2, Scott Ferson 3, and Weldon A. Lodwick 4 1 University

More information

Włodzimierz Ogryczak. Warsaw University of Technology, ICCE ON ROBUST SOLUTIONS TO MULTI-OBJECTIVE LINEAR PROGRAMS. Introduction. Abstract.

Włodzimierz Ogryczak. Warsaw University of Technology, ICCE ON ROBUST SOLUTIONS TO MULTI-OBJECTIVE LINEAR PROGRAMS. Introduction. Abstract. Włodzimierz Ogryczak Warsaw University of Technology, ICCE ON ROBUST SOLUTIONS TO MULTI-OBJECTIVE LINEAR PROGRAMS Abstract In multiple criteria linear programming (MOLP) any efficient solution can be found

More information

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds John Douglas Moore Department of Mathematics University of California Santa Barbara, CA, USA 93106 e-mail: moore@math.ucsb.edu

More information

Interval linear algebra

Interval linear algebra Charles University in Prague Faculty of Mathematics and Physics HABILITATION THESIS Milan Hladík Interval linear algebra Department of Applied Mathematics Prague 204 Contents Preface 3 Interval linear

More information

Approaches to Sensitivity Analysis in MOLP

Approaches to Sensitivity Analysis in MOLP I.J. Information echnology and Computer Science, 204, 03, 54-60 Published Online February 204 in MECS (http://www.mecs-press.org/) DOI: 0.585/ijitcs.204.03.07 Approaches to Sensitivity Analysis in MOLP

More information

Pathwise uniqueness for stochastic differential equations driven by pure jump processes

Pathwise uniqueness for stochastic differential equations driven by pure jump processes Pathwise uniqueness for stochastic differential equations driven by pure jump processes arxiv:73.995v [math.pr] 9 Mar 7 Jiayu Zheng and Jie Xiong Abstract Based on the weak existence and weak uniqueness,

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr Tereza Kovářová, PhD following content of lectures by Ing Petr Beremlijski, PhD Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 3 Inverse Matrix

More information

Uncertain Fuzzy Rough Sets. LI Yong-jin 1 2

Uncertain Fuzzy Rough Sets. LI Yong-jin 1 2 Uncertain Fuzzy Rough Sets LI Yong-jin 1 2 (1. The Institute of Logic and Cognition, Zhongshan University, Guangzhou 510275, China; 2. Department of Mathematics, Zhongshan University, Guangzhou 510275,

More information

A New Approach to Solve Multi-objective Transportation Problem

A New Approach to Solve Multi-objective Transportation Problem Available at http://pvamuedu/aam Appl Appl Math ISSN: 932-9466 Applications and Applied Mathematics: An International Journal (AAM) Vol 3, Issue (June 208), pp 50 59 A New Approach to Solve Multi-objective

More information

ARCHIVUM MATHEMATICUM (BRNO) Tomus 32 (1996), 13 { 27. ON THE OSCILLATION OF AN mth ORDER PERTURBED NONLINEAR DIFFERENCE EQUATION

ARCHIVUM MATHEMATICUM (BRNO) Tomus 32 (1996), 13 { 27. ON THE OSCILLATION OF AN mth ORDER PERTURBED NONLINEAR DIFFERENCE EQUATION ARCHIVUM MATHEMATICUM (BRNO) Tomus 32 (996), 3 { 27 ON THE OSCILLATION OF AN mth ORDER PERTURBED NONLINEAR DIFFERENCE EQUATION P. J. Y. Wong and R. P. Agarwal Abstract. We oer sucient conditions for the

More information

Scheduling jobs with agreeable processing times and due dates on a single batch processing machine

Scheduling jobs with agreeable processing times and due dates on a single batch processing machine Theoretical Computer Science 374 007 159 169 www.elsevier.com/locate/tcs Scheduling jobs with agreeable processing times and due dates on a single batch processing machine L.L. Liu, C.T. Ng, T.C.E. Cheng

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

Robust goal programming

Robust goal programming Control and Cybernetics vol. 33 (2004) No. 3 Robust goal programming by Dorota Kuchta Institute of Industrial Engineering Wroclaw University of Technology Smoluchowskiego 25, 50-371 Wroc law, Poland Abstract:

More information

Complex functions in the theory of 2D flow

Complex functions in the theory of 2D flow Complex functions in the theory of D flow Martin Scholtz Institute of Theoretical Physics Charles University in Prague scholtz@utf.mff.cuni.cz Faculty of Transportation Sciences Czech Technical University

More information

A NOTE ON CHECKING REGULARITY OF INTERVAL MATRICES

A NOTE ON CHECKING REGULARITY OF INTERVAL MATRICES A NOTE ON CHECKING REGULARITY OF INTERVAL MATRICES G. Rex and J. Rohn Abstract It is proved that two previously known sufficient conditions for regularity of interval matrices are equivalent in the sense

More information

3 Stabilization of MIMO Feedback Systems

3 Stabilization of MIMO Feedback Systems 3 Stabilization of MIMO Feedback Systems 3.1 Notation The sets R and S are as before. We will use the notation M (R) to denote the set of matrices with elements in R. The dimensions are not explicitly

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Floor Control (kn) Time (sec) Floor 5. Displacement (mm) Time (sec) Floor 5.

Floor Control (kn) Time (sec) Floor 5. Displacement (mm) Time (sec) Floor 5. DECENTRALIZED ROBUST H CONTROL OF MECHANICAL STRUCTURES. Introduction L. Bakule and J. Böhm Institute of Information Theory and Automation Academy of Sciences of the Czech Republic The results contributed

More information

Parallel Iterations for Cholesky and Rohn s Methods for Solving over Determined Linear Interval Systems

Parallel Iterations for Cholesky and Rohn s Methods for Solving over Determined Linear Interval Systems Research Journal of Mathematics and Statistics 2(3): 86-90, 2010 ISSN: 2040-7505 Maxwell Scientific Organization, 2010 Submitted Date: January 23, 2010 Accepted Date: February 11, 2010 Published Date:

More information

Interval Finite Element Methods for Uncertainty Treatment in Structural Engineering Mechanics Rafi L. Muhanna Georgia Institute of Technology USA

Interval Finite Element Methods for Uncertainty Treatment in Structural Engineering Mechanics Rafi L. Muhanna Georgia Institute of Technology USA Interval Finite Element Methods for Uncertainty Treatment in Structural Engineering Mechanics Rafi L. Muhanna Georgia Institute of Technology USA Second Scandinavian Workshop on INTERVAL METHODS AND THEIR

More information

Regular finite Markov chains with interval probabilities

Regular finite Markov chains with interval probabilities 5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007 Regular finite Markov chains with interval probabilities Damjan Škulj Faculty of Social Sciences

More information

forms a complete separable metric space. The Hausdorff metric is subinvariant, i.e.,

forms a complete separable metric space. The Hausdorff metric is subinvariant, i.e., Applied Probability Trust 13 August 2010) LARGE DEVIATIONS FOR MINKOWSKI SUMS OF HEAVY-TAILED GENERALLY NON-CONVEX RANDOM COMPACT SETS THOMAS MIKOSCH, University of Copenhagen ZBYNĚK PAWLAS, Charles University

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

Constrained Markov Decision Processes

Constrained Markov Decision Processes Constrained Markov Decision Processes Nelson Gonçalves April 16, 2007 Topics Introduction Examples Constrained Markov Decision Process Markov Decision Process Policies Cost functions: The discounted cost

More information

Stability in multiobjective possibilistic linear programs

Stability in multiobjective possibilistic linear programs Stability in multiobjective possibilistic linear programs Robert Fullér rfuller@abo.fi Mario Fedrizzi fedrizzi@cs.unitn.it Abstract This paper continues the authors research in stability analysis in possibilistic

More information

Differential Resultants and Subresultants

Differential Resultants and Subresultants 1 Differential Resultants and Subresultants Marc Chardin Équipe de Calcul Formel SDI du CNRS n 6176 Centre de Mathématiques et LIX École Polytechnique F-91128 Palaiseau (France) e-mail : chardin@polytechniquefr

More information

Information and Credit Risk

Information and Credit Risk Information and Credit Risk M. L. Bedini Université de Bretagne Occidentale, Brest - Friedrich Schiller Universität, Jena Jena, March 2011 M. L. Bedini (Université de Bretagne Occidentale, Brest Information

More information

Introduction to Interval Computation

Introduction to Interval Computation Introduction to Interval Computation Interval Programming 1 Milan Hladík 1 Michal Černý 2 1 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

More information

Change-point models and performance measures for sequential change detection

Change-point models and performance measures for sequential change detection Change-point models and performance measures for sequential change detection Department of Electrical and Computer Engineering, University of Patras, 26500 Rion, Greece moustaki@upatras.gr George V. Moustakides

More information

YONGDO LIM. 1. Introduction

YONGDO LIM. 1. Introduction THE INVERSE MEAN PROBLEM OF GEOMETRIC AND CONTRAHARMONIC MEANS YONGDO LIM Abstract. In this paper we solve the inverse mean problem of contraharmonic and geometric means of positive definite matrices (proposed

More information

Shift Differentials of Maps in BV Spaces.

Shift Differentials of Maps in BV Spaces. Shift Differentials of Maps in BV Spaces. Alberto Bressan and Marta Lewica SISSA Ref. 59/98/M (June, 998) Introduction Aim of this note is to provide a brief outline of the theory of shift-differentials,

More information

17 Solution of Nonlinear Systems

17 Solution of Nonlinear Systems 17 Solution of Nonlinear Systems We now discuss the solution of systems of nonlinear equations. An important ingredient will be the multivariate Taylor theorem. Theorem 17.1 Let D = {x 1, x 2,..., x m

More information

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Xiaowei Chen International Business School, Nankai University, Tianjin 371, China School of Finance, Nankai

More information

Nonmonotonic Reasoning in Description Logic by Tableaux Algorithm with Blocking

Nonmonotonic Reasoning in Description Logic by Tableaux Algorithm with Blocking Nonmonotonic Reasoning in Description Logic by Tableaux Algorithm with Blocking Jaromír Malenko and Petr Štěpánek Charles University, Malostranske namesti 25, 11800 Prague, Czech Republic, Jaromir.Malenko@mff.cuni.cz,

More information

Set-based Min-max and Min-min Robustness for Multi-objective Robust Optimization

Set-based Min-max and Min-min Robustness for Multi-objective Robust Optimization Proceedings of the 2017 Industrial and Systems Engineering Research Conference K. Coperich, E. Cudney, H. Nembhard, eds. Set-based Min-max and Min-min Robustness for Multi-objective Robust Optimization

More information

Mutual Information for Stochastic Differential Equations*

Mutual Information for Stochastic Differential Equations* INFORMATION AND CONTROL 19, 265--271 (1971) Mutual Information for Stochastic Differential Equations* TYRONE E. DUNCAN Department of Computer, Information and Control Engineering, College of Engineering,

More information

Min-max-min Robust Combinatorial Optimization Subject to Discrete Uncertainty

Min-max-min Robust Combinatorial Optimization Subject to Discrete Uncertainty Min-- Robust Combinatorial Optimization Subject to Discrete Uncertainty Christoph Buchheim Jannis Kurtz Received: date / Accepted: date Abstract We consider combinatorial optimization problems with uncertain

More information

RECURSIVE SUBSPACE IDENTIFICATION IN THE LEAST SQUARES FRAMEWORK

RECURSIVE SUBSPACE IDENTIFICATION IN THE LEAST SQUARES FRAMEWORK RECURSIVE SUBSPACE IDENTIFICATION IN THE LEAST SQUARES FRAMEWORK TRNKA PAVEL AND HAVLENA VLADIMÍR Dept of Control Engineering, Czech Technical University, Technická 2, 166 27 Praha, Czech Republic mail:

More information

Global optimization on Stiefel manifolds some particular problem instances

Global optimization on Stiefel manifolds some particular problem instances 6 th International Conference on Applied Informatics Eger, Hungary, January 27 31, 2004. Global optimization on Stiefel manifolds some particular problem instances János Balogh Department of Computer Science,

More information

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E, Tel Aviv University, 26 Analysis-III 9 9 Improper integral 9a Introduction....................... 9 9b Positive integrands................... 9c Special functions gamma and beta......... 4 9d Change of

More information

ON ENTRY-WISE ORGANIZED FILTERING. E.A. Suzdaleva

ON ENTRY-WISE ORGANIZED FILTERING. E.A. Suzdaleva ON ENTRY-WISE ORGANIZED FILTERING E.A. Suzdaleva Department of Adaptive Systems Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic Pod vodárenskou věží 4, 18208

More information