EE 4TM4: Digital Communications II Scalar Gaussian Channel

Size: px
Start display at page:

Download "EE 4TM4: Digital Communications II Scalar Gaussian Channel"

Transcription

1 EE 4TM4: Digital Communications II Scalar Gaussian Channel I. DIFFERENTIAL ENTROPY Let X be a continuous random variable with probability density function (pdf) f(x) (in short X f(x)). The differential entropy of X is defined as For example, if X Unif[a,b], then As another example, if X N(µ,σ ), then h(x) = f(x)logf(x)dx. h(x) = log(b a). h(x) = log(πeσ ). The differential entropy h(x) is a concave function of f(x). However, unlike entropy it is not always nonnegative, and hence should not be interpreted directly as a measure of information. The differential entropy is invariant under translation but not under scaling. Translation: For any constant a, h(x +a) = h(x). Scaling: For any nonzero constant a, h(ax) = h(x)+log a. The maximum differential entropy of a continuous random variable X f(x) under the average power constraint E(X ) P is max f(x):e(x ) P h(x) = log(πep), and is attained when X is Gaussian with zero mean and power P, i.e., X N(0,P). Thus, for any X f(x), h(x) = h(x E(X)) log(πevar(x)). February, 06

2 Proof: Let g be any density with variance P and φ be a zero-mean Gaussian density with variance P. We have 0 D(g φ) = glog(g/φ) = h(g) glogφ = h(g) φlogφ = h(g)+h(φ), where the substitution glogφ = φlogφ follows from the fact that g and φ yield the same variance (note that logφ = ax +b). Let X F(x) be an arbitrary random variable and Y {X = x} f(y x) be continuous for every x. The conditional differential entropy h(y X) of Y given X is defined as h(y X) = E X,Y (logf(y X)). Note that I(X;Y) = h(y) h(y X). Since I(X;Y) 0, it follows that h(y X) h(y). all t. II. ADDITIVE WHITE GAUSSIAN NOISE CHANNEL Channel model: Y(t) = X(t)+N(t), where {N(t)} t is an i.i.d. Gaussian process with N(t) N(0,σ N ) for Theorem : The capacity of additive white Gaussian noise channel with average power constraint P is given by C AWGN = log P +σ N = log(+snr). The achievability part follows by discretizing the channel input and output and by a weak convergence argument. Proof of the converse. First note that the proof of the converse for the DMC with input cost constraint applies to arbitrary (not necessarily discrete) memoryless channels. Therefore, we have Now for any X F(x) with E[X ] P, C AWGN I(X;Y) = h(y) h(y X) = h(y) h(n X) = h(y) h(n) sup I(X;Y). F(x):E[X ] P log(πe(p +σ N)) log(πeσ N) = log P +σ N, February, 06

3 3 where the inequality becomes equality if X N(0,P). III. SCALAR FADING CHANNELS: ERGODIC CAPACITY Channel model: Y(t) = H(t)X(t) + N(t), where {H(t)} t is a stationary and ergodic process with stationary distribution p(h), {N(t)} t is an i.i.d. Gaussian process with N(t) N(0, ) for all t. ) {H(t)} t is known at the receiver: (coherent channel capacity) C = Define the average SNR at the receiver as max I(X;Y H) E[X ] P = max E HI(X;Y H) E[X ] P = E H log + H P. SNR = E H[H ]P σ N By Jensen s inequality, E H log + H P ( log + E H[H ) ]P = log(+snr). Bad news: the capacity of fading channel is smaller than that of the AWGN channel with the same receiver SNR. In the low SNR regime, we have E H log + H P ( H E P H At high SNR, E H log + H P. ) log e = SNRlog e C AWGN. ( H ) E P H log = logsnr+ H E H log E H [H ] C AWGN + H E H log E H [H. ] ) {H(t)} t is known at the transmitter and the receiver: (dynamic power control and opportunistic communication) C = Define E[X (h)] = P(h). We have The maximizer P (h) is max I(X;Y H) E[X (H)] P max E H maxi(x;y H = h) = max E[X (h)] P X(h) = max E H maxi(x;y H = h) E[X (H)] P X(h) P (h) = max λ σ N h,0 E HP(H) P E H log + H P(H). February, 06

4 4 with λ given by Therefore, C = E H [P (H)] = P. ( h ) λ p(h)log dh h =σ Nλ / In the high SNR regime, λ is very large and P (h) λ. Therefore the capacity converges to that of the case with no state information at transmitter. Suppose the channel gain h has a peak value Gmax. At low SNR, we have P(h Gmax) λ σ N = P Gmax and thus ( E H log + H P ) (H) σ N GmaxP P(h Gmax)log + P(h Gmax) G maxp log e = SNR G max E H [H ] log e G max E H [H ] C AWGN. Good news: the capacity gain over the AWGN channel depends on the peakness of the fading process, which can be unbounded. Since the capacity scales linearly with the power at low SNR ( log( + SNR) SNRlog e) and logrithmically at high SNR ( log( + SNR) log(snr)), power control is more effective in the low SNR regime. We will see that at high SNR, a more efficient method is to increase the degree of freedom, say, using multiple antennas. When proving the capacity formula for the case where the state process is know at both the transmitter and receiver, we adopted the multiplexing technique, i.e., using different coding schemes for different channel states. But such a scheme may cause long decoding delay. Furthermore, for fading processes with continuous amplitude, there are essentially infinite states, which make the multiplexing method infeasible. Fortunately, for fading channels with additive Gaussian noise, the multiplexing method can be replaced by dynamic power control. That is because we if assume the fading process is { P (H(t))H(t)} t and the power constraint is E[X ], then the capacity with the state information at the receiver is exactly E H log (+ P (H)H ). Since P (H(t)) is a deterministic function of H(t), the receiver can compute { P (H(t))H(t)} t from the fading process {H(t)} t. Out assumption is thus valid. So in order to achieve the capacity, we only need use the power control policy P (h) and a coding scheme with power constraint E[X ] designed for the effective fading process { P (H(t))H(t)} t. Note: the resulting transmission power is E H [P (H)] = P. σ N February, 06

5 5 REFERENCES [] T. Cover and J. A. Thomas, Elements of Information Theory, nd Edition. Hoboken, NJ: Wiley, 006. [] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge, U.K.: Cambridge University Press, 0. [3] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, U.K.: Cambridge University Press, 005. February, 06

EE 4TM4: Digital Communications II. Channel Capacity

EE 4TM4: Digital Communications II. Channel Capacity EE 4TM4: Digital Communications II 1 Channel Capacity I. CHANNEL CODING THEOREM Definition 1: A rater is said to be achievable if there exists a sequence of(2 nr,n) codes such thatlim n P (n) e (C) = 0.

More information

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel Solutions to Homework Set #4 Differential Entropy and Gaussian Channel 1. Differential entropy. Evaluate the differential entropy h(x = f lnf for the following: (a Find the entropy of the exponential density

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

Lecture 8: Channel Capacity, Continuous Random Variables

Lecture 8: Channel Capacity, Continuous Random Variables EE376A/STATS376A Information Theory Lecture 8-02/0/208 Lecture 8: Channel Capacity, Continuous Random Variables Lecturer: Tsachy Weissman Scribe: Augustine Chemparathy, Adithya Ganesh, Philip Hwang Channel

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information

Lecture 2. Capacity of the Gaussian channel

Lecture 2. Capacity of the Gaussian channel Spring, 207 5237S, Wireless Communications II 2. Lecture 2 Capacity of the Gaussian channel Review on basic concepts in inf. theory ( Cover&Thomas: Elements of Inf. Theory, Tse&Viswanath: Appendix B) AWGN

More information

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs LECTURE 18 Last time: White Gaussian noise Bandlimited WGN Additive White Gaussian Noise (AWGN) channel Capacity of AWGN channel Application: DS-CDMA systems Spreading Coding theorem Lecture outline Gaussian

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University luca.sanguinetti@iet.unipi.it April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 /

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland Morning Session Capacity-based Power Control Şennur Ulukuş Department of Electrical and Computer Engineering University of Maryland So Far, We Learned... Power control with SIR-based QoS guarantees Suitable

More information

Revision of Lecture 5

Revision of Lecture 5 Revision of Lecture 5 Information transferring across channels Channel characteristics and binary symmetric channel Average mutual information Average mutual information tells us what happens to information

More information

Appendix B Information theory from first principles

Appendix B Information theory from first principles Appendix B Information theory from first principles This appendix discusses the information theory behind the capacity expressions used in the book. Section 8.3.4 is the only part of the book that supposes

More information

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels Mehdi Mohseni Department of Electrical Engineering Stanford University Stanford, CA 94305, USA Email: mmohseni@stanford.edu

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

Lecture 4. Capacity of Fading Channels

Lecture 4. Capacity of Fading Channels 1 Lecture 4. Capacity of Fading Channels Capacity of AWGN Channels Capacity of Fading Channels Ergodic Capacity Outage Capacity Shannon and Information Theory Claude Elwood Shannon (April 3, 1916 February

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157 Lecture 6: Gaussian Channels Copyright G. Caire (Sample Lectures) 157 Differential entropy (1) Definition 18. The (joint) differential entropy of a continuous random vector X n p X n(x) over R is: Z h(x

More information

ELG7177: MIMO Comunications. Lecture 3

ELG7177: MIMO Comunications. Lecture 3 ELG7177: MIMO Comunications Lecture 3 Dr. Sergey Loyka EECS, University of Ottawa S. Loyka Lecture 3, ELG7177: MIMO Comunications 1 / 29 SIMO: Rx antenna array + beamforming single Tx antenna multiple

More information

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Gaussian channel Information theory 2013, lecture 6 Jens Sjölund 8 May 2013 Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Outline 1 Definitions 2 The coding theorem for Gaussian channel 3 Bandlimited

More information

Chapter 9. Gaussian Channel

Chapter 9. Gaussian Channel Chapter 9 Gaussian Channel Peng-Hua Wang Graduate Inst. of Comm. Engineering National Taipei University Chapter Outline Chap. 9 Gaussian Channel 9.1 Gaussian Channel: Definitions 9.2 Converse to the Coding

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

On the Secrecy Capacity of Fading Channels

On the Secrecy Capacity of Fading Channels On the Secrecy Capacity of Fading Channels arxiv:cs/63v [cs.it] 7 Oct 26 Praveen Kumar Gopala, Lifeng Lai and Hesham El Gamal Department of Electrical and Computer Engineering The Ohio State University

More information

Energy State Amplification in an Energy Harvesting Communication System

Energy State Amplification in an Energy Harvesting Communication System Energy State Amplification in an Energy Harvesting Communication System Omur Ozel Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland College Park, MD 20742 omur@umd.edu

More information

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007 Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT ECE 559 Presentation Hoa Pham Dec 3, 2007 Introduction MIMO systems provide two types of gains Diversity Gain: each path from a transmitter

More information

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels TO APPEAR IEEE INTERNATIONAL CONFERENCE ON COUNICATIONS, JUNE 004 1 Dirty Paper Coding vs. TDA for IO Broadcast Channels Nihar Jindal & Andrea Goldsmith Dept. of Electrical Engineering, Stanford University

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Multiple-Input Multiple-Output Systems

Multiple-Input Multiple-Output Systems Multiple-Input Multiple-Output Systems What is the best way to use antenna arrays? MIMO! This is a totally new approach ( paradigm ) to wireless communications, which has been discovered in 95-96. Performance

More information

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Ather Gattami Ericsson Research Stockholm, Sweden Email: athergattami@ericssoncom arxiv:50502997v [csit] 2 May 205 Abstract

More information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information 204 IEEE International Symposium on Information Theory Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information Omur Ozel, Kaya Tutuncuoglu 2, Sennur Ulukus, and Aylin Yener

More information

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes Shannon meets Wiener II: On MMSE estimation in successive decoding schemes G. David Forney, Jr. MIT Cambridge, MA 0239 USA forneyd@comcast.net Abstract We continue to discuss why MMSE estimation arises

More information

Information Dimension

Information Dimension Information Dimension Mina Karzand Massachusetts Institute of Technology November 16, 2011 1 / 26 2 / 26 Let X would be a real-valued random variable. For m N, the m point uniform quantized version of

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

WE study the capacity of peak-power limited, single-antenna,

WE study the capacity of peak-power limited, single-antenna, 1158 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 3, MARCH 2010 Gaussian Fading Is the Worst Fading Tobias Koch, Member, IEEE, and Amos Lapidoth, Fellow, IEEE Abstract The capacity of peak-power

More information

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page.

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page. EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 28 Please submit on Gradescope. Start every question on a new page.. Maximum Differential Entropy (a) Show that among all distributions supported

More information

Computing and Communications 2. Information Theory -Entropy

Computing and Communications 2. Information Theory -Entropy 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Entropy Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Entropy Joint entropy

More information

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for Telecommunications and High-Frequency Techniques Department of Communications

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS 1. Define random process? The sample space composed of functions of time is called a random process. 2. Define Stationary process? If a random process is divided

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 10: Information Theory Textbook: Chapter 12 Communication Systems Engineering: Ch 6.1, Ch 9.1~ 9. 92 2009/2010 Meixia Tao @

More information

Lecture 6 Channel Coding over Continuous Channels

Lecture 6 Channel Coding over Continuous Channels Lecture 6 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 9, 015 1 / 59 I-Hsiang Wang IT Lecture 6 We have

More information

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications 15/11/02 Capacity of multiple-input multiple-output (MIMO) systems in wireless communications Bengt Holter Department of Telecommunications Norwegian University of Science and Technology 1 Outline 15/11/02

More information

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels Giuseppe Caire University of Southern California Los Angeles, CA, USA Email: caire@usc.edu Nihar

More information

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Vincent Y. F. Tan (Joint work with Silas L. Fong) National University of Singapore (NUS) 2016 International Zurich Seminar on

More information

On Two-user Fading Gaussian Broadcast Channels. with Perfect Channel State Information at the Receivers. Daniela Tuninetti

On Two-user Fading Gaussian Broadcast Channels. with Perfect Channel State Information at the Receivers. Daniela Tuninetti DIMACS Workshop on Network Information Theory - March 2003 Daniela Tuninetti 1 On Two-user Fading Gaussian Broadcast Channels with Perfect Channel State Information at the Receivers Daniela Tuninetti Mobile

More information

Parallel Additive Gaussian Channels

Parallel Additive Gaussian Channels Parallel Additive Gaussian Channels Let us assume that we have N parallel one-dimensional channels disturbed by noise sources with variances σ 2,,σ 2 N. N 0,σ 2 x x N N 0,σ 2 N y y N Energy Constraint:

More information

Capacity Pre-log of Noncoherent SIMO Channels via Hironaka s Theorem

Capacity Pre-log of Noncoherent SIMO Channels via Hironaka s Theorem Capacity Pre-log of Noncoherent SIMO Channels via Hironaka s Theorem Veniamin I. Morgenshtern 22. May 2012 Joint work with E. Riegler, W. Yang, G. Durisi, S. Lin, B. Sturmfels, and H. Bőlcskei SISO Fading

More information

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Final, Monday March 14th 216 Solutions Instructions: You have three hours, 3.3PM - 6.3PM The exam has 4 questions, totaling 12 points. Please start answering each question on

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Özgür Oyman ), Rohit U. Nabar ), Helmut Bölcskei 2), and Arogyaswami J. Paulraj ) ) Information Systems Laboratory, Stanford

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

Binary Transmissions over Additive Gaussian Noise: A Closed-Form Expression for the Channel Capacity 1

Binary Transmissions over Additive Gaussian Noise: A Closed-Form Expression for the Channel Capacity 1 5 Conference on Information Sciences and Systems, The Johns Hopkins University, March 6 8, 5 inary Transmissions over Additive Gaussian Noise: A Closed-Form Expression for the Channel Capacity Ahmed O.

More information

Capacity of Block Rayleigh Fading Channels Without CSI

Capacity of Block Rayleigh Fading Channels Without CSI Capacity of Block Rayleigh Fading Channels Without CSI Mainak Chowdhury and Andrea Goldsmith, Fellow, IEEE Department of Electrical Engineering, Stanford University, USA Email: mainakch@stanford.edu, andrea@wsl.stanford.edu

More information

On the Capacity Region of the Gaussian Z-channel

On the Capacity Region of the Gaussian Z-channel On the Capacity Region of the Gaussian Z-channel Nan Liu Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 74 nkancy@eng.umd.edu ulukus@eng.umd.edu

More information

On the Duality between Multiple-Access Codes and Computation Codes

On the Duality between Multiple-Access Codes and Computation Codes On the Duality between Multiple-Access Codes and Computation Codes Jingge Zhu University of California, Berkeley jingge.zhu@berkeley.edu Sung Hoon Lim KIOST shlim@kiost.ac.kr Michael Gastpar EPFL michael.gastpar@epfl.ch

More information

Lecture 18: Gaussian Channel

Lecture 18: Gaussian Channel Lecture 18: Gaussian Channel Gaussian channel Gaussian channel capacity Dr. Yao Xie, ECE587, Information Theory, Duke University Mona Lisa in AWGN Mona Lisa Noisy Mona Lisa 100 100 200 200 300 300 400

More information

On the Capacity of Free-Space Optical Intensity Channels

On the Capacity of Free-Space Optical Intensity Channels On the Capacity of Free-Space Optical Intensity Channels Amos Lapidoth TH Zurich Zurich, Switzerl mail: lapidoth@isi.ee.ethz.ch Stefan M. Moser National Chiao Tung University NCTU Hsinchu, Taiwan mail:

More information

Capacity of Memoryless Channels and Block-Fading Channels With Designable Cardinality-Constrained Channel State Feedback

Capacity of Memoryless Channels and Block-Fading Channels With Designable Cardinality-Constrained Channel State Feedback 2038 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 9, SEPTEMBER 2004 Capacity of Memoryless Channels and Block-Fading Channels With Designable Cardinality-Constrained Channel State Feedback Vincent

More information

Towards control over fading channels

Towards control over fading channels Towards control over fading channels Paolo Minero, Massimo Franceschetti Advanced Network Science University of California San Diego, CA, USA mail: {minero,massimo}@ucsd.edu Invited Paper) Subhrakanti

More information

Coding over Interference Channels: An Information-Estimation View

Coding over Interference Channels: An Information-Estimation View Coding over Interference Channels: An Information-Estimation View Shlomo Shamai Department of Electrical Engineering Technion - Israel Institute of Technology Information Systems Laboratory Colloquium

More information

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR 1 Stefano Rini, Daniela Tuninetti and Natasha Devroye srini2, danielat, devroye @ece.uic.edu University of Illinois at Chicago Abstract

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

On the Relation between Outage Probability and Effective Frequency Diversity Order

On the Relation between Outage Probability and Effective Frequency Diversity Order Appl. Math. Inf. Sci. 8, No. 6, 2667-267 (204) 2667 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/0.2785/amis/080602 On the Relation between and Yongjune Kim, Minjoong

More information

Capacity Analysis of Multiple-Access OFDM Channels

Capacity Analysis of Multiple-Access OFDM Channels Capacity Analysis of Multiple-Access OFDM Channels Final Report of Project TW4G Wireless Access Technology Contract-Number: G-9600 Project Duration: January 2007 3 December 2007 Funded by: Industrial Technology

More information

Discrete Memoryless Channels with Memoryless Output Sequences

Discrete Memoryless Channels with Memoryless Output Sequences Discrete Memoryless Channels with Memoryless utput Sequences Marcelo S Pinho Department of Electronic Engineering Instituto Tecnologico de Aeronautica Sao Jose dos Campos, SP 12228-900, Brazil Email: mpinho@ieeeorg

More information

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR

Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012 1483 Nearest Neighbor Decoding in MIMO Block-Fading Channels With Imperfect CSIR A. Taufiq Asyhari, Student Member, IEEE, Albert Guillén

More information

ELEC546 MIMO Channel Capacity

ELEC546 MIMO Channel Capacity ELEC546 MIMO Channel Capacity Vincent Lau Simplified Version.0 //2004 MIMO System Model Transmitter with t antennas & receiver with r antennas. X Transmitted Symbol, received symbol Channel Matrix (Flat

More information

Note that the new channel is noisier than the original two : and H(A I +A2-2A1A2) > H(A2) (why?). min(c,, C2 ) = min(1 - H(a t ), 1 - H(A 2 )).

Note that the new channel is noisier than the original two : and H(A I +A2-2A1A2) > H(A2) (why?). min(c,, C2 ) = min(1 - H(a t ), 1 - H(A 2 )). l I ~-16 / (a) (5 points) What is the capacity Cr of the channel X -> Y? What is C of the channel Y - Z? (b) (5 points) What is the capacity C 3 of the cascaded channel X -3 Z? (c) (5 points) A ow let.

More information

Diversity-Multiplexing Tradeoff of the Two-User Interference Channel

Diversity-Multiplexing Tradeoff of the Two-User Interference Channel Diversity-Multiplexing Tradeoff of the Two-User Interference Channel arxiv:0905.0385v2 [cs.it] 8 Sep 2009 Adnan Raja and Pramod Viswanath April 9, 2018 Abstract Diversity-Multiplexing tradeoff DMT) is

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

On the Secrecy Capacity of the Z-Interference Channel

On the Secrecy Capacity of the Z-Interference Channel On the Secrecy Capacity of the Z-Interference Channel Ronit Bustin Tel Aviv University Email: ronitbustin@post.tau.ac.il Mojtaba Vaezi Princeton University Email: mvaezi@princeton.edu Rafael F. Schaefer

More information

Feedback Capacity of the Gaussian Interference Channel to Within Bits: the Symmetric Case

Feedback Capacity of the Gaussian Interference Channel to Within Bits: the Symmetric Case 1 arxiv:0901.3580v1 [cs.it] 23 Jan 2009 Feedback Capacity of the Gaussian Interference Channel to Within 1.7075 Bits: the Symmetric Case Changho Suh and David Tse Wireless Foundations in the Department

More information

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels Title Equal Gain Beamforming in Rayleigh Fading Channels Author(s)Tsai, Shang-Ho Proceedings : APSIPA ASC 29 : Asia-Pacific Signal Citationand Conference: 688-691 Issue Date 29-1-4 Doc URL http://hdl.handle.net/2115/39789

More information

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm 1. Feedback does not increase the capacity. Consider a channel with feedback. We assume that all the recieved outputs are sent back immediately

More information

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection ustafa Cenk Gursoy Department of Electrical Engineering University of Nebraska-Lincoln, Lincoln, NE 68588 Email: gursoy@engr.unl.edu

More information

EE 5407 Part II: Spatial Based Wireless Communications

EE 5407 Part II: Spatial Based Wireless Communications EE 5407 Part II: Spatial Based Wireless Communications Instructor: Prof. Rui Zhang E-mail: rzhang@i2r.a-star.edu.sg Website: http://www.ece.nus.edu.sg/stfpage/elezhang/ Lecture II: Receive Beamforming

More information

Lecture 4 Capacity of Wireless Channels

Lecture 4 Capacity of Wireless Channels Lecture 4 Capacity of Wireless Channels I-Hsiang Wang ihwang@ntu.edu.tw 3/0, 014 What we have learned So far: looked at specific schemes and techniques Lecture : point-to-point wireless channel - Diversity:

More information

On the Rate-Limited Gelfand-Pinsker Problem

On the Rate-Limited Gelfand-Pinsker Problem On the Rate-Limited Gelfand-Pinsker Problem Ravi Tandon Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 74 ravit@umd.edu ulukus@umd.edu Abstract

More information

Diversity Combining Techniques

Diversity Combining Techniques Diversity Combining Techniques When the required signal is a combination of several plane waves (multipath), the total signal amplitude may experience deep fades (Rayleigh fading), over time or space.

More information

Lecture 4 Capacity of Wireless Channels

Lecture 4 Capacity of Wireless Channels Lecture 4 Capacity of Wireless Channels I-Hsiang Wang ihwang@ntu.edu.tw 3/0, 014 What we have learned So far: looked at specific schemes and techniques Lecture : point-to-point wireless channel - Diversity:

More information

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 4 Data Transmission and Channel Capacity Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30050, R.O.C. Principle of Data Transmission

More information

Principles of Coded Modulation. Georg Böcherer

Principles of Coded Modulation. Georg Böcherer Principles of Coded Modulation Georg Böcherer Contents. Introduction 9 2. Digital Communication System 2.. Transmission System............................. 2.2. Figures of Merit................................

More information

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Multiplexing,

More information

Threshold Optimization for Capacity-Achieving Discrete Input One-Bit Output Quantization

Threshold Optimization for Capacity-Achieving Discrete Input One-Bit Output Quantization Threshold Optimization for Capacity-Achieving Discrete Input One-Bit Output Quantization Rudolf Mathar Inst. for Theoretical Information Technology RWTH Aachen University D-556 Aachen, Germany mathar@ti.rwth-aachen.de

More information

The Water-Filling Game in Fading Multiple Access Channels

The Water-Filling Game in Fading Multiple Access Channels The Water-Filling Game in Fading Multiple Access Channels Lifeng Lai and Hesham El Gamal arxiv:cs/05203v [cs.it] 3 Dec 2005 February, 2008 Abstract We adopt a game theoretic approach for the design and

More information

Approximate Capacity of Fast Fading Interference Channels with no CSIT

Approximate Capacity of Fast Fading Interference Channels with no CSIT Approximate Capacity of Fast Fading Interference Channels with no CSIT Joyson Sebastian, Can Karakus, Suhas Diggavi Abstract We develop a characterization of fading models, which assigns a number called

More information

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Nan Liu and Andrea Goldsmith Department of Electrical Engineering Stanford University, Stanford CA 94305 Email:

More information

Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback

Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback Achaleshwar Sahai Department of ECE, Rice University, Houston, TX 775. as27@rice.edu Vaneet Aggarwal Department of

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Achievability of Nonlinear Degrees of Freedom in Correlatively Changing Fading Channels

Achievability of Nonlinear Degrees of Freedom in Correlatively Changing Fading Channels Achievability of Nonlinear Degrees of Freedom in Correlatively Changing Fading Channels Mina Karzand Massachusetts Institute of Technology Cambridge, USA Email: mkarzand@mitedu Lizhong Zheng Massachusetts

More information

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels

Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Ergodic and Outage Capacity of Narrowband MIMO Gaussian Channels Yang Wen Liang Department of Electrical and Computer Engineering The University of British Columbia April 19th, 005 Outline of Presentation

More information

Limits on classical communication from quantum entropy power inequalities

Limits on classical communication from quantum entropy power inequalities Limits on classical communication from quantum entropy power inequalities Graeme Smith, IBM Research (joint work with Robert Koenig) QIP 2013 Beijing Channel Capacity X N Y p(y x) Capacity: bits per channel

More information

PROMPTED by recent results suggesting possible extraordinary

PROMPTED by recent results suggesting possible extraordinary 1102 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 3, MAY 2005 On the Capacity of Multiple-Antenna Systems in Rician Fading Sudharman K. Jayaweera, Member, IEEE, and H. Vincent Poor, Fellow,

More information

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks Daniel Frank, Karlheinz Ochs, Aydin Sezgin Chair of Communication Systems RUB, Germany Email: {danielfrank, karlheinzochs,

More information

Lecture 6 I. CHANNEL CODING. X n (m) P Y X

Lecture 6 I. CHANNEL CODING. X n (m) P Y X 6- Introduction to Information Theory Lecture 6 Lecturer: Haim Permuter Scribe: Yoav Eisenberg and Yakov Miron I. CHANNEL CODING We consider the following channel coding problem: m = {,2,..,2 nr} Encoder

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information