On the l 1 -Norm Invariant Convex k-sparse Decomposition of Signals

Size: px
Start display at page:

Download "On the l 1 -Norm Invariant Convex k-sparse Decomposition of Signals"

Transcription

1 On the l 1 -Norm Invariant Convex -Sparse Decomposition of Signals arxiv: v2 [cs.it] 11 Nov 2013 Guangwu Xu and Zhiqiang Xu Abstract Inspired by an interesting idea of Cai and Zhang, we formulate and prove the convex -sparse decomposition of vectors that is invariant with respect to the l 1 norm. This result fits well in discussing compressed sensing problems under RIP, but we believe it also has independent interest. As an application, a simple derivation of the RIP recovery condition δ +θ, < 1 is presented. Keywords: Convex -sparsedecomposition, l 1 minimization, restrictedisometry property, sparse recovery. 1 Introduction The Restricted Isometry Property (RIP) of Candès and Tao [7] is one of the most commonly used framewors for sparse recovery via l 1 minimization. For an n p matrix Φ R n p and an integer, 1 p, the -restricted isometry constant δ is the smallest constant such that 1 δ c 2 Φc 2 1+δ c 2 for every -sparse vector c (namely, c has at most nonzero components). If + p, the, -restricted orthogonality constant θ,, is the smallest number that satisfies Φc,Φc θ, c 2 c 2, for all -sparse vector c and -sparse vector c with disjoint supports. Department of EE & CS, University of Wisconsin-Milwauee, Milwauee, WI 53211, USA; e- mail: gxu4uwm@uwm.edu. Research supported in part by the National 973 Project of China (No. 2013CB834205). Inst. Comp. Math., Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China; xuzq@lsec.cc.ac.cn. Zhiqiang Xu was supported by NSFC grant , , and National Basic Research Program of China (973 Program 2010CB832702). 1

2 It has been shown that l 1 minimization can recover a sparse signal with a small or zeroerrorundervariousconditionsonδ andθ,, suchastheconditionδ +θ, +θ,2 < 1inCandèsandTao[7], andtheconditionδ < 0.307ofCai,WangandXu[6]. Recently, Cai and Zhang [2] established a sharp condition on δ for -sparse recovery: δ < 1 3. In the same paper, they also proved that δ 2 < 1 is sufficient for -sparse signal reconstruction. Cai and Zhang developed a marvelous technique in the proof of their 2 results. Inspired by the division lemma of Cai and Zhang [2], we formulate and prove the l 1 -norm invariant convex -sparse decomposition of vectors in this note. This result (Theorem 2.1) asserts that every vector is a convex combination of -sparse vectors with invariant l 1 norm. Such decomposition fits well in treating compressed sensing problems under RIP, as a tighter conversion between l 1 -norm and l 2 norm is desired. We shall demonstrate this by showing how to use the decomposition to derive the sparse recovery condition δ +θ, < 1 of Cai and Zhang [3] in a simple manner. However, we believe that this result is of independent interest for other applications. After the early appearance of this note (arxiv: , May 2013), we learned that Cai and Zhang [4] also established a similar decomposition and using it to derive some goodrip conditions (e.g., δ ). Using thel 1 -norminvariant convex -sparse decomposition, under the tight frame sparsification, Baer [1] obtained the condition δ for the Dictionary-Restricted Isometry Property. The paper is organized as follows. Section 2 presents the l 1 -norm invariant -sparse convex decomposition. As a consequence of this decomposition, we prove a useful result for comparing l p norms. In Section 3, the -sparse convex decomposition is used to give a simple derivation of the sparse recovery condition δ +θ, < 1 of Cai and Zhang. 2 Convex -Sparse Decomposition In this section, we prove that every vector is a convex combination of -sparse vectors with invariant l 1 norm. The formulation is inspired by the celebrated ideas from Cai and Zhang [2]. We also show that the l norm of the summand vectors is well behaved. More specifically, we have Theorem 2.1. For positive integers n, and positive constant C, let v R n be a vector with v 1 C and v C. Then there are -sparse vectors w 1,...,w M with w t 1 = v 1 and w t C for t = 1,,M, (1) 2

3 such that v = x t w t (2) for some nonnegative real numbers x 1,...,x M with M t=1 x t = 1. t=1 Proof. If = n, or v is already -sparse, then there is nothing to do. Assume now n >. Without loss of generality, we may consider the case that all components of v are positive 1 (the general case can be argued easily, as (2) still holds by multiplying 1 to the ith components of both sides ) v(1) v(2) v(n) > 0. For each j = 1,...,, let η j := C v(j). Since η j = C v(1) v() v( +1)+ +v(n), so we have η j 0 and η j > 0. Let λ i := η i η, i = 1,2,...,, j Then i=1 λ i = 1. We shall construct +1 vectors g 0,...,g ; each has n 1 nonzero components and satisfies g t 1 = v 1 and g t C for t = 0,1,...,. Furthermore, v is a convex combination of g 0,...,g. In the following construction, we will use v {j} to denote the vector whose j th component is v(j) and other components arezero, and use {e 1,...,e n } to denote the canonical basis. The +1 vectors g 0,...,g are g 0 = g t = (v(j)+λ j v(n))e j +v {+1} + +v {n 1}, (v(j)+λ j v(n))e j +(v(t)+λ t v(n))e n +v {+1} + +v {n 1},1 t. j t Let y 1 := λ 1 v(n) v(1)+λ 1 v(n), y 2 := λ 2 v(n) v(2)+λ 2 v(n),...,y := λ v(n) v()+λ v(n). Then we see that y i < λ i. So, by setting y 0 = 1 y 1 y, we have y 0 > 0 and y 0 +y 1 + +y = 1. 1 In this note, we will treat a vector of R n as a function from {1,,n} to R. 3

4 It is also straightforward to verify v = y 0 g 0 +y 1 g 1 + +y g. For example, the first component of y 0 g 0 +y 1 g 1 + +y g is y 0 (v(1)+λ 1 v(n))+y 2 (v(1)+λ 1 v(n))+ +y (v(1)+λ 1 v(n)) The other requirements for g t = (v(1)+λ 1 v(n))(1 y 1 ) = v(1). (t = 0,1,...,) are 1. g t 1 = v 1. This is certainly true. 2. g t (i) C. To see this, we note that 0 if i = t or if t = 0,i = n; v(i)+λ i v(n) if 1 i and i t; g t (i) = v(i) if < i < n; v(t)+λ t v(n) if t > 0,i = n. For 1 i n, C g t(i) C (v(i)+λ iv(n)) = η i λ i v(n) = η i η iv(n) η j η i η i v(n) v( +1)+ +v(n) 0. If n 1 >, we repeat this process for each g t, and so on, until a -sparse convex combination is reached. Remar 2.2. The proof of Theorem 2.1 in fact presents a method to construct the vectors w t,t = 1,...,M with M = ( n ). Using this method, the time complexity to construct the M vectors is O( n ). It will be interesting to design efficient algorithms to construct the vectors. 3 RIP Conditions in Compressed Sensing In this section, we shall use the -sparse convex decomposition to describe a short proof of the following results of Cai and Zhang [3]. Our proof follows an approach similar to that in [5, 6]. We first consider the recovery of -sparse signal: Theorem 3.1. Let β be a -sparse signal and y = Φβ where Φ satisfies Let Then β = ˆβ. δ +θ, < 1. (3) ˆβ = argmin γ R p { γ 1 subject to y = Φγ} 4

5 Proof. Let h := ˆβ β. We need to show that h = 0. Otherwise, we assume h(1) h(2) h(p) > 0. Denote T := {1,2,,}, S := { +1,+2,,p}, then as in [6], the minimality of ˆβ yields h S 1 h T 1, where h Q = hi Q and I Q denotes the indicator function of the set Q (namely, I Q (j) = 1 if j Q and 0 if j / Q). From the assumption, we also have h S (j) h T 1 for all j S, i.e. h S h T 1. Therefore, by theorem 2.1, h S can be written as h S = x j w j where x j 0 and q x j = 1, with each w j is -sparse and supported on S, and w j 1 = h S 1, w j h T 1. As h T and w j have disjoint supports and w j 2 ( h T 1 ) 2 h T 2, we get (1 δ ) h T 2 2 Φh T 2 2 = Φh T,Φh S x j θ, h T 2 w j 2 = θ, h T 2 2. We have reached a contradiction. Hence h = 0. x j Φh T,Φw j x j θ, h T 2 h T 2 Remar 3.2. We state the proof for the -sparse signal. In fact, one also can extend the proof to the noise case easily. In [1], Baer stated such a proof for the case where the signals are sparse in a redundant dictionary. References [1] C. A. Baer, A Note on Sparsification by Frames, August, 2013, [2] T. Cai and A. Zhang, Sharp RIP bound for sparse signal and low-ran matrix recovery, Applied and Computational Harmonic Analysis, 35(2013),

6 [3] T. Cai and A. Zhang, Compressed sensing and affine ran minimization under restricted isometry, IEEE Transactions on Signal Processing, to appear. [4] T. Cai and A. Zhang, Sparse representation of a polytope and recovery of sparse signals and low-ran matrices, June, 2013, [5] T. Cai, L. Wang, and G. Xu, Stable recovery of sparse signals and an oracle inequality, IEEE Transactions on Information Theory, 56(2010), [6] T. Cai, L. Wang, and G. Xu, New Bounds for restricted isometry constants, IEEE Transactions on Information Theory, 56(2010), [7] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, 51(2005)

Shifting Inequality and Recovery of Sparse Signals

Shifting Inequality and Recovery of Sparse Signals Shifting Inequality and Recovery of Sparse Signals T. Tony Cai Lie Wang and Guangwu Xu Astract In this paper we present a concise and coherent analysis of the constrained l 1 minimization method for stale

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

A new method on deterministic construction of the measurement matrix in compressed sensing

A new method on deterministic construction of the measurement matrix in compressed sensing A new method on deterministic construction of the measurement matrix in compressed sensing Qun Mo 1 arxiv:1503.01250v1 [cs.it] 4 Mar 2015 Abstract Construction on the measurement matrix A is a central

More information

Rui ZHANG Song LI. Department of Mathematics, Zhejiang University, Hangzhou , P. R. China

Rui ZHANG Song LI. Department of Mathematics, Zhejiang University, Hangzhou , P. R. China Acta Mathematica Sinica, English Series May, 015, Vol. 31, No. 5, pp. 755 766 Published online: April 15, 015 DOI: 10.1007/s10114-015-434-4 Http://www.ActaMath.com Acta Mathematica Sinica, English Series

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Lingchen Kong and Naihua Xiu Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, People s Republic of China E-mail:

More information

A New Estimate of Restricted Isometry Constants for Sparse Solutions

A New Estimate of Restricted Isometry Constants for Sparse Solutions A New Estimate of Restricted Isometry Constants for Sparse Solutions Ming-Jun Lai and Louis Y. Liu January 12, 211 Abstract We show that as long as the restricted isometry constant δ 2k < 1/2, there exist

More information

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Compressed Sensing and Affine Rank Minimization Under Restricted Isometry

Compressed Sensing and Affine Rank Minimization Under Restricted Isometry IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 13, JULY 1, 2013 3279 Compressed Sensing Affine Rank Minimization Under Restricted Isometry T. Tony Cai Anru Zhang Abstract This paper establishes new

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Uniqueness Conditions for A Class of l 0 -Minimization Problems

Uniqueness Conditions for A Class of l 0 -Minimization Problems Uniqueness Conditions for A Class of l 0 -Minimization Problems Chunlei Xu and Yun-Bin Zhao October, 03, Revised January 04 Abstract. We consider a class of l 0 -minimization problems, which is to search

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization

Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization Noname manuscript No. (will be inserted by the editor) Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization Hui Zhang Wotao Yin Lizhi Cheng Received: / Accepted: Abstract This

More information

Necessary and sufficient conditions of solution uniqueness in l 1 minimization

Necessary and sufficient conditions of solution uniqueness in l 1 minimization 1 Necessary and sufficient conditions of solution uniqueness in l 1 minimization Hui Zhang, Wotao Yin, and Lizhi Cheng arxiv:1209.0652v2 [cs.it] 18 Sep 2012 Abstract This paper shows that the solutions

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

Compressive Sensing with Random Matrices

Compressive Sensing with Random Matrices Compressive Sensing with Random Matrices Lucas Connell University of Georgia 9 November 017 Lucas Connell (University of Georgia) Compressive Sensing with Random Matrices 9 November 017 1 / 18 Overview

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina INDUSTRIAL MATHEMATICS INSTITUTE 2007:08 A remark on compressed sensing B.S. Kashin and V.N. Temlyakov IMI Preprint Series Department of Mathematics University of South Carolina A remark on compressed

More information

ORTHOGONAL matching pursuit (OMP) is the canonical

ORTHOGONAL matching pursuit (OMP) is the canonical IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4395 Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property Mark A. Davenport, Member, IEEE, and Michael

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases

A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases 2558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 48, NO 9, SEPTEMBER 2002 A Generalized Uncertainty Principle Sparse Representation in Pairs of Bases Michael Elad Alfred M Bruckstein Abstract An elementary

More information

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1

The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 The Sparsest Solution of Underdetermined Linear System by l q minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3784. Ming-Jun Lai Department of Mathematics,

More information

Observability of a Linear System Under Sparsity Constraints

Observability of a Linear System Under Sparsity Constraints 2372 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 58, NO 9, SEPTEMBER 2013 Observability of a Linear System Under Sparsity Constraints Wei Dai and Serdar Yüksel Abstract Consider an -dimensional linear

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1

Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1 Sparsest Solutions of Underdetermined Linear Systems via l q -minimization for 0 < q 1 Simon Foucart Department of Mathematics Vanderbilt University Nashville, TN 3740 Ming-Jun Lai Department of Mathematics

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1239 Preconditioning for Underdetermined Linear Systems with Sparse Solutions Evaggelia Tsiligianni, StudentMember,IEEE, Lisimachos P. Kondi,

More information

Stopping Condition for Greedy Block Sparse Signal Recovery

Stopping Condition for Greedy Block Sparse Signal Recovery Stopping Condition for Greedy Block Sparse Signal Recovery Yu Luo, Ronggui Xie, Huarui Yin, and Weidong Wang Department of Electronics Engineering and Information Science, University of Science and Technology

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

Exact Reconstruction Conditions and Error Bounds for Regularized Modified Basis Pursuit (Reg-Modified-BP)

Exact Reconstruction Conditions and Error Bounds for Regularized Modified Basis Pursuit (Reg-Modified-BP) 1 Exact Reconstruction Conditions and Error Bounds for Regularized Modified Basis Pursuit (Reg-Modified-BP) Wei Lu and Namrata Vaswani Department of Electrical and Computer Engineering, Iowa State University,

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Xu Guanlei Dalian Navy Academy

Xu Guanlei Dalian Navy Academy Xu Guanlei Dalian Navy Academy xgl_86@163.com Werner Heisenberg x p 2 So, it is called as Heisenberg's uncertainty principle 2 2 t u 1/4 2 2 ( ) 2 u u u F u du where t 2 2 2 t t f ( t) dt What will happen

More information

A Note on Guaranteed Sparse Recovery via l 1 -Minimization

A Note on Guaranteed Sparse Recovery via l 1 -Minimization A Note on Guaranteed Sarse Recovery via l -Minimization Simon Foucart, Université Pierre et Marie Curie Abstract It is roved that every s-sarse vector x C N can be recovered from the measurement vector

More information

A Note on the Complexity of L p Minimization

A Note on the Complexity of L p Minimization Mathematical Programming manuscript No. (will be inserted by the editor) A Note on the Complexity of L p Minimization Dongdong Ge Xiaoye Jiang Yinyu Ye Abstract We discuss the L p (0 p < 1) minimization

More information

Does Compressed Sensing have applications in Robust Statistics?

Does Compressed Sensing have applications in Robust Statistics? Does Compressed Sensing have applications in Robust Statistics? Salvador Flores December 1, 2014 Abstract The connections between robust linear regression and sparse reconstruction are brought to light.

More information

One condition for all: solution uniqueness and robustness of l 1 -synthesis and l 1 -analysis minimizations

One condition for all: solution uniqueness and robustness of l 1 -synthesis and l 1 -analysis minimizations One condition for all: solution uniqueness and robustness of l 1 -synthesis and l 1 -analysis minimizations Hui Zhang Ming Yan Wotao Yin June 9, 2013 The l 1-synthesis and l 1-analysis models recover structured

More information

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions

Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Solution-recovery in l 1 -norm for non-square linear systems: deterministic conditions and open questions Yin Zhang Technical Report TR05-06 Department of Computational and Applied Mathematics Rice University,

More information

Compressed Sensing and Robust Recovery of Low Rank Matrices

Compressed Sensing and Robust Recovery of Low Rank Matrices Compressed Sensing and Robust Recovery of Low Rank Matrices M. Fazel, E. Candès, B. Recht, P. Parrilo Electrical Engineering, University of Washington Applied and Computational Mathematics Dept., Caltech

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

Information-Theoretic Limits of Matrix Completion

Information-Theoretic Limits of Matrix Completion Information-Theoretic Limits of Matrix Completion Erwin Riegler, David Stotz, and Helmut Bölcskei Dept. IT & EE, ETH Zurich, Switzerland Email: {eriegler, dstotz, boelcskei}@nari.ee.ethz.ch Abstract We

More information

COMPRESSED Sensing (CS) is a method to recover a

COMPRESSED Sensing (CS) is a method to recover a 1 Sample Complexity of Total Variation Minimization Sajad Daei, Farzan Haddadi, Arash Amini Abstract This work considers the use of Total Variation (TV) minimization in the recovery of a given gradient

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Abstract This paper is about the efficient solution of large-scale compressed sensing problems.

Abstract This paper is about the efficient solution of large-scale compressed sensing problems. Noname manuscript No. (will be inserted by the editor) Optimization for Compressed Sensing: New Insights and Alternatives Robert Vanderbei and Han Liu and Lie Wang Received: date / Accepted: date Abstract

More information

RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems

RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems 1 RSP-Based Analysis for Sparsest and Least l 1 -Norm Solutions to Underdetermined Linear Systems Yun-Bin Zhao IEEE member Abstract Recently, the worse-case analysis, probabilistic analysis and empirical

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Compressed Sensing and Affine Rank Minimization Under Restricted Isometry

Compressed Sensing and Affine Rank Minimization Under Restricted Isometry University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 7-1-013 Compressed Sensing and Affine Ran Minimization Under Restricted Isometry T. Tony Cai University of Pennsylvania

More information

RIP-based performance guarantee for low tubal rank tensor recovery

RIP-based performance guarantee for low tubal rank tensor recovery RIP-based performance guarantee for low tubal rank tensor recovery Feng Zhang a, Wendong Wang a, Jianwen Huang a, Jianjun Wang a,b, a School of Mathematics and Statistics, Southwest University, Chongqing

More information

Supplementary Materials for Riemannian Pursuit for Big Matrix Recovery

Supplementary Materials for Riemannian Pursuit for Big Matrix Recovery Supplementary Materials for Riemannian Pursuit for Big Matrix Recovery Mingkui Tan, School of omputer Science, The University of Adelaide, Australia Ivor W. Tsang, IS, University of Technology Sydney,

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

Stability and robustness of l 1 -minimizations with Weibull matrices and redundant dictionaries

Stability and robustness of l 1 -minimizations with Weibull matrices and redundant dictionaries Stability and robustness of l 1 -minimizations with Weibull matrices and redundant dictionaries Simon Foucart, Drexel University Abstract We investigate the recovery of almost s-sparse vectors x C N from

More information

Design of Projection Matrix for Compressive Sensing by Nonsmooth Optimization

Design of Projection Matrix for Compressive Sensing by Nonsmooth Optimization Design of Proection Matrix for Compressive Sensing by Nonsmooth Optimization W.-S. Lu T. Hinamoto Dept. of Electrical & Computer Engineering Graduate School of Engineering University of Victoria Hiroshima

More information

arxiv: v1 [math.na] 26 Nov 2009

arxiv: v1 [math.na] 26 Nov 2009 Non-convexly constrained linear inverse problems arxiv:0911.5098v1 [math.na] 26 Nov 2009 Thomas Blumensath Applied Mathematics, School of Mathematics, University of Southampton, University Road, Southampton,

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

Two Results on the Schatten p-quasi-norm Minimization for Low-Rank Matrix Recovery

Two Results on the Schatten p-quasi-norm Minimization for Low-Rank Matrix Recovery Two Results on the Schatten p-quasi-norm Minimization for Low-Rank Matrix Recovery Ming-Jun Lai, Song Li, Louis Y. Liu and Huimin Wang August 14, 2012 Abstract We shall provide a sufficient condition to

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER On the Performance of Sparse Recovery

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER On the Performance of Sparse Recovery IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER 2011 7255 On the Performance of Sparse Recovery Via `p-minimization (0 p 1) Meng Wang, Student Member, IEEE, Weiyu Xu, and Ao Tang, Senior

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Limitations in Approximating RIP

Limitations in Approximating RIP Alok Puranik Mentor: Adrian Vladu Fifth Annual PRIMES Conference, 2015 Outline 1 Background The Problem Motivation Construction Certification 2 Planted model Planting eigenvalues Analysis Distinguishing

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

arxiv: v1 [cs.it] 26 Oct 2018

arxiv: v1 [cs.it] 26 Oct 2018 Outlier Detection using Generative Models with Theoretical Performance Guarantees arxiv:1810.11335v1 [cs.it] 6 Oct 018 Jirong Yi Anh Duc Le Tianming Wang Xiaodong Wu Weiyu Xu October 9, 018 Abstract This

More information

Stability and Robustness of Weak Orthogonal Matching Pursuits

Stability and Robustness of Weak Orthogonal Matching Pursuits Stability and Robustness of Weak Orthogonal Matching Pursuits Simon Foucart, Drexel University Abstract A recent result establishing, under restricted isometry conditions, the success of sparse recovery

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES

A NEW FRAMEWORK FOR DESIGNING INCOHERENT SPARSIFYING DICTIONARIES A NEW FRAMEWORK FOR DESIGNING INCOERENT SPARSIFYING DICTIONARIES Gang Li, Zhihui Zhu, 2 uang Bai, 3 and Aihua Yu 3 School of Automation & EE, Zhejiang Univ. of Sci. & Tech., angzhou, Zhejiang, P.R. China

More information

EUSIPCO

EUSIPCO EUSIPCO 013 1569746769 SUBSET PURSUIT FOR ANALYSIS DICTIONARY LEARNING Ye Zhang 1,, Haolong Wang 1, Tenglong Yu 1, Wenwu Wang 1 Department of Electronic and Information Engineering, Nanchang University,

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Sparse Recovery with Pre-Gaussian Random Matrices

Sparse Recovery with Pre-Gaussian Random Matrices Sparse Recovery with Pre-Gaussian Random Matrices Simon Foucart Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris, 75013, France Ming-Jun Lai Department of Mathematics University of

More information

An Image Fusion Algorithm Based on Non-subsampled Shearlet Transform and Compressed Sensing

An Image Fusion Algorithm Based on Non-subsampled Shearlet Transform and Compressed Sensing , pp.61-70 http://dx.doi.org/10.1457/ijsip.016.9.3.06 An Image Fusion Algorithm Based on Non-subsampled Shearlet Transform and Compressed Sensing XING Xiaoxue 1, LI Jie 1, FAN Qinyin, SHANG Weiwei 1* 1.

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Item Type text; Proceedings Authors Jagiello, Kristin M. Publisher International Foundation for Telemetering Journal International Telemetering

More information

A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing

A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing Forty-Ninth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 28-30, 20 A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

Conditions for a Unique Non-negative Solution to an Underdetermined System

Conditions for a Unique Non-negative Solution to an Underdetermined System Conditions for a Unique Non-negative Solution to an Underdetermined System Meng Wang and Ao Tang School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853 Abstract This paper investigates

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

SCALE INVARIANT FOURIER RESTRICTION TO A HYPERBOLIC SURFACE

SCALE INVARIANT FOURIER RESTRICTION TO A HYPERBOLIC SURFACE SCALE INVARIANT FOURIER RESTRICTION TO A HYPERBOLIC SURFACE BETSY STOVALL Abstract. This result sharpens the bilinear to linear deduction of Lee and Vargas for extension estimates on the hyperbolic paraboloid

More information

Sparse recovery for spherical harmonic expansions

Sparse recovery for spherical harmonic expansions Rachel Ward 1 1 Courant Institute, New York University Workshop Sparsity and Cosmology, Nice May 31, 2011 Cosmic Microwave Background Radiation (CMB) map Temperature is measured as T (θ, ϕ) = k k=0 l=

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation

Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 12, DECEMBER 2008 2009 Equivalence Probability and Sparsity of Two Sparse Solutions in Sparse Representation Yuanqing Li, Member, IEEE, Andrzej Cichocki,

More information

On the Projection Matrices Influence in the Classification of Compressed Sensed ECG Signals

On the Projection Matrices Influence in the Classification of Compressed Sensed ECG Signals On the Projection Matrices Influence in the Classification of Compressed Sensed ECG Signals Monica Fira, Liviu Goras Institute of Computer Science Romanian Academy Iasi, Romania Liviu Goras, Nicolae Cleju,

More information

Stable Signal Recovery from Incomplete and Inaccurate Measurements

Stable Signal Recovery from Incomplete and Inaccurate Measurements Stable Signal Recovery from Incomplete and Inaccurate Measurements EMMANUEL J. CANDÈS California Institute of Technology JUSTIN K. ROMBERG California Institute of Technology AND TERENCE TAO University

More information

ACCORDING to Shannon s sampling theorem, an analog

ACCORDING to Shannon s sampling theorem, an analog 554 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 59, NO 2, FEBRUARY 2011 Segmented Compressed Sampling for Analog-to-Information Conversion: Method and Performance Analysis Omid Taheri, Student Member,

More information