Contour Integral Method for the Simulation of Accelerator Cavities

Size: px
Start display at page:

Download "Contour Integral Method for the Simulation of Accelerator Cavities"

Transcription

1 Contour Integral Method for the Simulation of Accelerator Cavities V. Pham-Xuan, W. Ackermann and H. De Gersem Institut für Theorie Elektromagnetischer Felder DESY meeting ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 1 / 28

2 Outline of the Talk Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 2 / 28

3 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 2 / 28

4 Motivation Problem statement Problem statement: we have to solve a nonlinear eigenvalue problem (NEP) where November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 3 / 28

5 Motivation Problem statement Problem statement: we have to solve a nonlinear eigenvalue problem (NEP) where the problem is large and sparse; the number of eigenvalues is large; Figure: Chain of cavities (from [1]) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 3 / 28

6 Motivation Problem statement Problem statement: we have to solve a nonlinear eigenvalue problem (NEP) where the problem is large and sparse; the number of eigenvalues is large; prior information about eigenvalues is available; Figure: Chain of cavities (from [1]) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 3 / 28

7 Motivation Problem statement Problem statement: we have to solve a nonlinear eigenvalue problem (NEP) where the problem is large and sparse; the number of eigenvalues is large; prior information about eigenvalues is available; in several applications, one is only interested in a few eigenvalues within a certain range. Figure: Chain of cavities (from [1]) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 3 / 28

8 Motivation Problem statement Problem statement: we have to solve a nonlinear eigenvalue problem (NEP) where the problem is large and sparse; the number of eigenvalues is large; prior information about eigenvalues is available; in several applications, one is only interested in a few eigenvalues within a certain range. Figure: Chain of cavities (from [1]) Available methods: Iterative methods: Jacobi-Davidson [2], Arnoldi, Lanczos, etc. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 3 / 28

9 Motivation Problem statement Problem statement: we have to solve a nonlinear eigenvalue problem (NEP) where the problem is large and sparse; the number of eigenvalues is large; prior information about eigenvalues is available; in several applications, one is only interested in a few eigenvalues within a certain range. Figure: Chain of cavities (from [1]) Available methods: Iterative methods: Jacobi-Davidson [2], Arnoldi, Lanczos, etc. Contour integral methods: Beyn methods [3], resolvent sampling based Rayleigh- Ritz method (RSRR) [4], etc. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 3 / 28

10 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 3 / 28

11 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

12 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis choose an initial guess initial guess November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

13 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis choose an initial guess expand the search space... initial guess November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

14 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis choose an initial guess expand the search space... initial guess November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

15 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis initial guess choose an initial guess expand the search space... until an approximate solution is found November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

16 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis initial guess choose an initial guess expand the search space... until an approximate solution is found the solution becomes the new initial guess November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

17 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis initial guess choose an initial guess expand the search space... until an approximate solution is found the solution becomes the new initial guess continue expanding the search space... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

18 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis initial guess choose an initial guess expand the search space... until an approximate solution is found the solution becomes the new initial guess continue expanding the search space... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

19 Motivation Iterative methods (Jacobi-Davidson) Lossless accelerator cavity: eigenvalues are on real axis initial guess choose an initial guess expand the search space... until an approximate solution is found the solution becomes the new initial guess continue expanding the search space... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 4 / 28

20 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

21 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane choose an initial guess initial guess November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

22 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

23 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

24 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

25 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found choose another initial guess November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

26 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found choose another initial guess continue expanding the search space... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

27 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found choose another initial guess continue expanding the search space... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

28 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found choose another initial guess continue expanding the search space... find another approximate solution November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

29 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found if we choose unsuitable initial guess November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

30 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found if we choose unsuitable initial guess the algorithm will converge to... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

31 Motivation Iterative methods (Jacobi-Davidson) Lossy accelerator cavity: eigenvalues are in the complex plane initial guess choose an initial guess expand the search space... until an approximate solution is found if we choose unsuitable initial guess the algorithm will converge to... a previously determined eigenvalue!!!!! November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

32 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 5 / 28

33 Motivation Contour integral methods An accurate computation of eigenpairs inside a region enclosed by a non-selfintersecting curve. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 6 / 28

34 Motivation Contour integral methods An accurate computation of eigenpairs inside a region enclosed by a non-selfintersecting curve. choose a region to look for eigenvalues the region can be of any shape, e.g rectangle... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 6 / 28

35 Motivation Contour integral methods An accurate computation of eigenpairs inside a region enclosed by a non-selfintersecting curve. choose a region to look for eigenvalues the region can be of any shape, e.g rectangle... circle/ellipse November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 6 / 28

36 Motivation Contour integral methods An accurate computation of eigenpairs inside a region enclosed by a non-selfintersecting curve. choose a region to look for eigenvalues the region can be of any shape, e.g rectangle... circle/ellipse most computation is spent to solve linear equation systems at different interpolation points which can be parallelized. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 6 / 28

37 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 6 / 28

38 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 6 / 28

39 Formulation Mathematical model The combination of Maxwell-Ampère equation and the Maxwell-Faraday equation results in the double-curl equation 1 µ E jωσ E εω 2 E (1) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 7 / 28

40 Formulation Mathematical model The combination of Maxwell-Ampère equation and the Maxwell-Faraday equation results in the double-curl equation 1 µ E jωσ E εω 2 E (1) Applying the Galerkin s approach to discretize (1) results in an eigenvalue problem A 3D x + jωµ 0 C 3D x ω 2 µ 0 ε 0 B 3D x 0 (2) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 7 / 28

41 Formulation Mathematical model The combination of Maxwell-Ampère equation and the Maxwell-Faraday equation results in the double-curl equation 1 µ E jωσ E εω 2 E (1) Applying the Galerkin s approach to discretize (1) results in an eigenvalue problem A 3D x + jωµ 0 C 3D x ω 2 µ 0 ε 0 B 3D x 0 (2) which includes only losses from volumetric lossy material. Special treatment is carried out to incorporate 2D losses at port interfaces into (2), resulting in a nonlinear eigenvalue problem (NEP) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 7 / 28

42 Formulation Mathematical model The combination of Maxwell-Ampère equation and the Maxwell-Faraday equation results in the double-curl equation 1 µ E jωσ E εω 2 E (1) Applying the Galerkin s approach to discretize (1) results in an eigenvalue problem A 3D x + jωµ 0 C 3D x ω 2 µ 0 ε 0 B 3D x 0 (2) which includes only losses from volumetric lossy material. Special treatment is carried out to incorporate 2D losses at port interfaces into (2), resulting in a nonlinear eigenvalue problem (NEP) P(ω) x 0 (3) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 7 / 28

43 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 7 / 28

44 Formulation Eigenvalue algorithms To solve P(z)x 0 most of the standard eigenvalue algorithms exploit a projection procedure in order to extract approximate eigenvectors from a given subspace. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 8 / 28

45 Formulation Eigenvalue algorithms To solve P(z)x 0 most of the standard eigenvalue algorithms exploit a projection procedure in order to extract approximate eigenvectors from a given subspace. Approximate an obtain matrix Q eigenspace Q November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 8 / 28

46 Formulation Eigenvalue algorithms To solve P(z)x 0 most of the standard eigenvalue algorithms exploit a projection procedure in order to extract approximate eigenvectors from a given subspace. Approximate an obtain matrix Q eigenspace Q Project the original NEP to a reduced NEP using Rayleigh-Ritz procedure: P Q (z) Q H P(z)Q November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 8 / 28

47 Formulation Eigenvalue algorithms To solve P(z)x 0 most of the standard eigenvalue algorithms exploit a projection procedure in order to extract approximate eigenvectors from a given subspace. Approximate an obtain matrix Q eigenspace Q Project the original NEP to a reduced NEP Solve the reduced NEP using Rayleigh-Ritz procedure: P Q (z) Q H P(z)Q solve P Q (z)g 0 for eigenvalues z and eigenvectors g November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 8 / 28

48 Formulation Eigenvalue algorithms To solve P(z)x 0 most of the standard eigenvalue algorithms exploit a projection procedure in order to extract approximate eigenvectors from a given subspace. Approximate an obtain matrix Q eigenspace Q Project the original NEP to a reduced NEP Solve the reduced NEP Compute eigenpairs of the original NEP using Rayleigh-Ritz procedure: P Q (z) Q H P(z)Q solve P Q (z)g 0 for eigenvalues z and eigenvectors g same eigenvalues as for the reduced problem; eigenvectors x Qg November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 8 / 28

49 Formulation Eigenvalue algorithms To solve P(z)x 0 most of the standard eigenvalue algorithms exploit a projection procedure in order to extract approximate eigenvectors from a given subspace. Approximate an obtain matrix Q eigenspace Q Project the original NEP to a reduced NEP Solve the reduced NEP Compute eigenpairs of the original NEP using Rayleigh-Ritz procedure: P Q (z) Q H P(z)Q solve P Q (z)g 0 for eigenvalues z and eigenvectors g same eigenvalues as for the reduced problem; eigenvectors x Qg November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 8 / 28

50 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 8 / 28

51 Formulation Contour integral methods Some basic spectral theory The resolvent P(z) 1 reveals the existence of eigenvalues, indicates where eigenvalues are located, and show how sensitive these eigenvalues are to pertubation. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 9 / 28

52 Formulation Contour integral methods Some basic spectral theory The resolvent P(z) 1 reveals the existence of eigenvalues, indicates where eigenvalues are located, and show how sensitive these eigenvalues are to pertubation. As explained in [3], from Keldysh s theorem, we know that the resolvent function P(z) 1 can be written (for simple eigenvalues λ i ) as P(z) 1 v i w H i i 1 + R(z) (4) z λ i where v i and w i are suitably scaled right and left eigenvectors, respectively, corresponding to the (simple) eigenvalue λ i R(z) and P(z) are analytic functions November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 9 / 28

53 Formulation Contour integral methods Some basic spectral theory November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

54 Formulation Contour integral methods Some basic spectral theory Q (q 1, q 2,..., q k ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

55 Formulation Contour integral methods Some basic spectral theory Q (q 1, q 2,..., q k ) span{q 1, q 2,..., q k } span{v 1, v 2,..., v n(γ) } November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

56 Formulation Contour integral methods Some basic spectral theory P(z) 1 v iw H i i 1 z λ i + R(z) Q (q 1, q 2,..., q k ) span{q 1, q 2,..., q k } span{v 1, v 2,..., v n(γ) } November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

57 Formulation Contour integral methods Some basic spectral theory P(z) 1 v iw H i i 1 + R(z) z λ i Applying Cauchy s integral formula n(γ) 1 f (z)p(z) 1 dz f (λ i)v iw H i 2πi Γ i1 Q (q 1, q 2,..., q k ) span{q 1, q 2,..., q k } span{v 1, v 2,..., v n(γ) } November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

58 Formulation Contour integral methods Some basic spectral theory P(z) 1 v iw H i i 1 + R(z) z λ i Applying Cauchy s integral formula n(γ) 1 f (z)p(z) 1 dz f (λ i)v iw H i 2πi Γ i1 In practice, we evaluate the integral 1 2πi f (z)p(z) 1 ˆV dz Γ Q (q 1, q 2,..., q k ) span{q 1, q 2,..., q k } span{v 1, v 2,..., v n(γ) } November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

59 Formulation Contour integral methods Some basic spectral theory Q (q 1, q 2,..., q k ) span{q 1, q 2,..., q k } span{v 1, v 2,..., v n(γ) } P(z) 1 v iw H i i 1 + R(z) z λ i Applying Cauchy s integral formula n(γ) 1 f (z)p(z) 1 dz f (λ i)v iw H i 2πi Γ i1 In practice, we evaluate the integral 1 2πi f (z)p(z) 1 ˆV dz Γ Using interpolation, we obtain n 1 int f (z)p(z) 1 ˆV dz ξ if (z i)p(z i) 1 ˆV 2πi Γ i1 November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

60 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 10 / 28

61 Formulation Multigrid method as a preconditioner The most expensive operation is to compute X P 1 (z i )V (5) equivalent to solving the linear system P(z i )X V (6) Direct inverse becomes prohibitively expensive for large problems. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 11 / 28

62 Formulation Multigrid method as a preconditioner The most expensive operation is to compute equivalent to solving the linear system X P 1 (z i )V (5) P(z i )X V (6) Direct inverse becomes prohibitively expensive for large problems. For large-scale problems, iterative methods are preferable. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 11 / 28

63 Formulation Multigrid method as a preconditioner The most expensive operation is to compute equivalent to solving the linear system X P 1 (z i )V (5) P(z i )X V (6) Direct inverse becomes prohibitively expensive for large problems. For large-scale problems, iterative methods are preferable. Linear systems generated by Maxwell s equations are extremely ill-conditioned. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 11 / 28

64 Formulation Multigrid method as a preconditioner The most expensive operation is to compute equivalent to solving the linear system X P 1 (z i )V (5) P(z i )X V (6) Direct inverse becomes prohibitively expensive for large problems. For large-scale problems, iterative methods are preferable. Linear systems generated by Maxwell s equations are extremely ill-conditioned. Krylov iterative solvers with simple preconditioners often stagnate or diverge as when applied to these linear systems. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 11 / 28

65 Formulation Multigrid method as a preconditioner The most expensive operation is to compute equivalent to solving the linear system X P 1 (z i )V (5) P(z i )X V (6) Direct inverse becomes prohibitively expensive for large problems. For large-scale problems, iterative methods are preferable. Linear systems generated by Maxwell s equations are extremely ill-conditioned. Krylov iterative solvers with simple preconditioners often stagnate or diverge as when applied to these linear systems. Suitable preconditioners/iterative solvers should be applied to improve the convergence of the iterative solvers. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 11 / 28

66 Formulation Multigrid method as a preconditioner reduced 1st order full 1st order reduced 2nd order Pär Ingelström, "A New Set of H(curl) Conforming Hierarchical Basis Functions for Tetrahedral Meshes, IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, Jan November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 12 / 28

67 Formulation Multigrid method as a preconditioner i4 i3 M 1 b e (7) i2 i1 W-cycle Pär Ingelström et al., "Comparison of Hierarchical Basis Functions for Efficient Multilevel Solvers", IET Science, Measurement and Technology, vol. 1, no. 1, Jan This equation is repeatedly computed at each iteration where M is the preconditioner, b is the input and e is the output. The output is computed by solving systems of the type P ii e i b i i j P ij e j (8) where i and j refer to the order of the trial and test functions. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 13 / 28

68 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 13 / 28

69 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) CST cavity design, FEM discretization November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 14 / 28

70 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) CST cavity design, FEM discretization CEM3D [5] generate matrices P(z i ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 14 / 28

71 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) CST cavity design, FEM discretization CEM3D [5] generate matrices P(z i ) NES4AC Solve nonlinear eigenvalue problem November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 14 / 28

72 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) Parallell level 1: multiple contours Parallel level 2: compute nodes in parallel (implemented in codes) Parallel level 3: parallelize computation at each node (implemented in the codes) P(λ)xv or xp(z) -1 v November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 15 / 28

73 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) Parallell level 1: multiple contours Parallel level 2: compute nodes in parallel (implemented) Parallel level 3: parallelize computation at each node (implemented in the codes) P(λ)xv or xp(z) -1 v November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 15 / 28

74 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) Parallell level 1: multiple contours z6 z 5 z 4 z 7 z 3 z 8 z 2 z 9 z 1 z 10 z 16 z 11z12z13 z 15 z 14 V P 1 (z)vdz Γ Parallel level 2: compute nodes in parallel (implemented) Parallel level 3: parallelize computation at each node (implemented in the codes) P(λ)xv or xp(z) -1 v November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 15 / 28

75 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) Parallell level 1: multiple contours z6 z 5 z 4 z 7 z 3 z 8 z 2 z 9 z 1 z 10 z 16 z 11z12 z 15 z13 z 14 V P 1 (z)vdz Γ Parallel level 2: compute nodes in parallel (implemented) subcomm 1 z1,a1,b1 z2,a2,b2 z3,a3,b3 z4,a4,b4 subcomm 2 z5,a5,b5 z6,a6,b6 z7,a7,b7 z8,a8,b8 subcomm 3 z9,a9,b9 z10, A10, B10 z11, A11, B11 z12, A12, B12 subcomm 4 z13, A13, B13 z14, A14, B14 z15, A15, B15 z16, A16, B16 Parallel level 3: parallelize computation at each node (implemented in the codes) P(λ)xv or xp(z) -1 v November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 15 / 28

76 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) Parallell level 1: multiple contours z6 z 5 z 4 z 7 z 3 z 8 z 2 z 9 z 1 z 10 z 16 z 11z12 z 15 z13 z 14 V P 1 (z)vdz Γ Parallel level 2: compute nodes in parallel (implemented) subcomm 1 z1,a1,b1 z2,a2,b2 z3,a3,b3 z4,a4,b4 subcomm 2 z5,a5,b5 z6,a6,b6 z7,a7,b7 z8,a8,b8 subcomm 3 z9,a9,b9 z10, A10, B10 z11, A11, B11 z12, A12, B12 subcomm 4 z13, A13, B13 z14, A14, B14 z15, A15, B15 z16, A16, B16 P 1 (z1)v P 1 (z5)v P 1 (z9)v P 1 (z13)v P 1 (z2)v P 1 (z6)v P 1 (z10)v P 1 (z14)v Parallel level 3: parallelize computation at each node (implemented in the codes) P 1 (z3)v P 1 (z4)v P 1 (z7)v P 1 (z8)v P 1 (z11)v P 1 (z12)v P 1 (z15)v P 1 (z16)v P(λ)xv or xp(z) -1 v November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 15 / 28

77 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) Parallell level 1: multiple contours z6 z 5 z 4 z 7 z 3 z 8 z 2 z 9 z 1 z 10 z 16 z 11z12 z 15 z13 z 14 V P 1 (z)vdz Γ Parallel level 2: compute nodes in parallel (implemented) subcomm 1 z1,a1,b1 z2,a2,b2 z3,a3,b3 z4,a4,b4 subcomm 2 z5,a5,b5 z6,a6,b6 z7,a7,b7 z8,a8,b8 subcomm 3 z9,a9,b9 z10, A10, B10 z11, A11, B11 z12, A12, B12 subcomm 4 z13, A13, B13 z14, A14, B14 z15, A15, B15 z16, A16, B16 P 1 (z1)v P 1 (z5)v P 1 (z9)v P 1 (z13)v P 1 (z2)v P 1 (z6)v P 1 (z10)v P 1 (z14)v Parallel level 3: parallelize computation at each node (implemented) P 1 (z3)v P 1 (z4)v P 1 (z7)v P 1 (z8)v P 1 (z11)v P 1 (z12)v P 1 (z15)v P 1 (z16)v P(λ)xv or xp(z) -1 v November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 15 / 28

78 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) Parallell level 1: multiple contours z6 z 5 z 4 z 7 z 3 z 8 z 2 z 9 z 1 z 10 z 16 z 11z12 z 15 z13 z 14 V P 1 (z)vdz Γ Parallel level 2: compute nodes in parallel (implemented) subcomm 1 z1,a1,b1 z2,a2,b2 z3,a3,b3 z4,a4,b4 subcomm 2 z5,a5,b5 z6,a6,b6 z7,a7,b7 z8,a8,b8 subcomm 3 z9,a9,b9 z10, A10, B10 z11, A11, B11 z12, A12, B12 subcomm 4 z13, A13, B13 z14, A14, B14 z15, A15, B15 z16, A16, B16 P 1 (z1)v P 1 (z5)v P 1 (z9)v P 1 (z13)v P 1 (z2)v P 1 (z6)v P 1 (z10)v P 1 (z14)v P(λ)xv or xp(z) -1 v Parallel level 3: parallelize computation at each node (implemented) P 1 (z3)v P 1 (z4)v P 1 (z7)v P 1 (z11)v P 1 (z8)v P 1 (z12)v P 1 (z i)v i P 1 (z15)v P 1 (z16)v November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 15 / 28

79 Implementation Nonlinear Eigenvalue Solver for Accelerator Cavities (NES4AC) NES4AC highlights: extends the functionality of CEM3D [5]. parallelized and developed in C++. based on PETSc (Portable, Extensible Toolkit for Scientific Computation) v3.3.0 and LAPACK. adopts the parallel scheme of the contour integral method from SLEPc (Scalable Library for Eigenvalue Problem Computations). uses the superlu_dist for the computation of LU decompositions. including three contour integral algorithms for eigenvalue solution: Beyn1 (for a few eigenvalues), Beyn2 (for many eigenvalues) and RSRR. with two types of closed contour: ellipse and rectangle. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 16 / 28

80 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 16 / 28

81 Preliminary Results Nonlinear Eigenvalues Problems in [6] Butterfly Problem Name: butterfly (Quartic matrix polynomial with T-even structure) P(λ) λ 4 A 4 + λ 3 A 3 + λ 2 A 2 + λa 1 + A 0 Size: 64 Region: circle(-1.0,-0.5,0.7) Number of eigenvalues: 55 Algorithm parameters: N 60 (number of integration points) L 100:2:200 (number of columns of the random matrix) K 2 (for BEYN2) Lorg 20 (for RSRR) Lred 100 (for RSRR) Nred 30 (for RSRR) Kred 2 (for RSRR) Rank tolerance November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 17 / 28

82 Preliminary Results Nonlinear Eigenvalues Problems in [6] Butterfly Problem Eigenvalues for butterfly problem - case 1 Eigenvalues for butterfly problem - case matlab - polyeig beyn matlab - polyeig beyn2 imaginary imaginary imaginary real Eigenvalues for butterfly problem - case matlab - polyeig rsrr real beyn1 beyn2 rsrr Min. residual Max. residual ɛ P(λ)x P(λ) x real November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 18 / 28

83 Preliminary Results Nonlinear Eigenvalues Problems in [6] Schrödinger Name: Schrödinger (QEP from Schrödinger operator) P(λ) K 2λC + λ 2 B Size: 1998 Region: circle(0.75,0.0,0.45) Number of eigenvalues: 30 Algorithm parameters: N 20 (number of integration points) L 50:2:100 (number of columns of the random matrix) K 2 (for BEYN2) Lorg 20 (for RSRR) Lred 50 (for RSRR) Nred 30 (for RSRR) Kred 2 (for RSRR) Rank tolerance November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 19 / 28

84 Preliminary Results Nonlinear Eigenvalues Problems in [6] Schrödinger Eigenvalues for Schrödinger problem - case matlab - polyeig 0.4 beyn1 Eigenvalues for Schrödinger problem - case matlab - polyeig 0.4 beyn2 imaginary imaginary real Eigenvalues for Schrödinger problem - case matlab - polyeig 0.4 rsrr imaginary real beyn1 beyn2 rsrr Min. residual n/a Max. residual n/a real November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 20 / 28

85 Preliminary Results Spherical Cavity Name: spherical cavity Electrical conductivity: Ohm/sq Radius: 1m Size: 7614/17830/61106/143354/ Target frequency: 125MHz Number of eigenvalues: 3 Algorithm parameters: Region: rectangle(1.0, 1.5, , 0.05) N 20 (number of integration points) L 40:10:100 (number of columns of the random matrix) K 2 (for BEYN2) Lorg 20 / Lred 20 / Nred 20 / Kred 2 (for RSRR) Rank tolerance November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 21 / 28

86 Preliminary Results Spherical Cavity ɛ f f f analytical f analytical ɛ Q Q Q analytical Q analytical November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 22 / 28

87 Preliminary Results Multigrid preconditioner - Spherical Cavity # elements # dofs # dofs (1st order) Dis , Dis. 2 1,256 6,640 1,078 Dis. 3 2,918 16,300 2,755 Dis. 4 18, ,828 18,487 Table: Mesh refinement of a spherical cavity Dis. 1 Dis. 2 Dis. 3 Dis. 4 mg-gmres GMRES 500 (1.0e-5) 500 (1.0e-2) 500 (1.0e-2) 500 (5.0e-2) Table: Number of iterations required to achieve a residual of 1.0e-8 November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 23 / 28

88 Preliminary Results Multigrid preconditioner - Tesla Cavity # elements # dofs # dofs (1st order) Dis. 1 48, ,026 50,067 Dis. 2 57, ,664 59,864 Dis. 3 76, ,812 80,552 Table: Mesh refinement of a Tesla cavity Dis. 1 Dis. 2 Dis. 3 mg-gmres GMRES 500 (0.2) 500 (0.15) 500 (0.2) Table: Number of iterations required to achieve a residual of 1.0e-8 November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 24 / 28

89 Presentation Outline Motivation Iterative methods Contour integral methods Formulation Mathematical model Eigenvalue algorithms Contour integral methods Multigrid method as a preconditioner Implementation Preliminary Results Possible Improvements November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 24 / 28

90 Possible Improvements Recycling Krylov subspace methods X i P 1 (z i )V P(z i )X i V P(z 1) X 1 V P(z 2) X 2 V P(z 3) X 3 V... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 25 / 28

91 Possible Improvements Recycling Krylov subspace methods X i P 1 (z i )V P(z i )X i V P(z 1) X 1 V Iterative method is repeatedly applied for different RHS. P(z 2) X 2 V P(z 3) X 3 V... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 25 / 28

92 Possible Improvements Recycling Krylov subspace methods X i P 1 (z i )V P(z i )X i V P(z 1) X 1 V Iterative method is repeatedly applied for different RHS. The matrix is unchanged. P(z 2) X 2 V P(z 3) X 3 V... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 25 / 28

93 Possible Improvements Recycling Krylov subspace methods X i P 1 (z i )V P(z i )X i V P(z 1) X 1 V P(z 2) X 2 V Iterative method is repeatedly applied for different RHS. The matrix is unchanged. Opportunity for applying recycling Krylov subspace methods or block Krylov subspace methods. P(z 3) X 3 V... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 25 / 28

94 Possible Improvements Recycling Krylov subspace methods X i P 1 (z i )V P(z i )X i V P(z 1) X 1 V P(z 2) X 2 V Iterative method is repeatedly applied for different RHS. The matrix is unchanged. Opportunity for applying recycling Krylov subspace methods or block Krylov subspace methods. The system-matrices are slightly changed for different interpolation points P(z 3) X 3 V... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 25 / 28

95 Possible Improvements Recycling Krylov subspace methods X i P 1 (z i )V P(z i )X i V P(z 1) X 1 V P(z 2) X 2 V P(z 3) X 3 V Iterative method is repeatedly applied for different RHS. The matrix is unchanged. Opportunity for applying recycling Krylov subspace methods or block Krylov subspace methods. The system-matrices are slightly changed for different interpolation points Opportunity for applying recycling Krylov subspace methods or block Krylov subspace methods.... November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 25 / 28

96 Thank you for your attention November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 26 / 28

97 References I [1] T. Flisgen, J. Heller, T. Galek, L. Shi, N. Joshi, N. Baboi, R. M. Jones, and U. van Rienen, Eigenmode Compendium of The Third Harmonic Module of the European X-Ray Free Electron Laser, Physical Review Accelerators and Beams, vol. 20, p , Apr [2] H. Voss, A Jacobi-Davidson Method for Nonlinear and Nonsymmetric Eigenproblems, Computers and Structures, vol. 85, no , pp , [3] W.-J. Beyn, An Integral Method for Solving Nonlinear Eigenvalue Problems, Linear Algebra and its Applications, vol. 436, no. 10, pp , November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 27 / 28

98 References II [4] J. Xiao, C. Zhang, T. M. Huang, and T. Sakurai, Solving Large-Scale Nonlinear Eigenvalue Problems by Rational Interpolation and Resolvent Sampling Based Rayleigh-Ritz Method, International Journal for Numerical Methods in Engineering, vol. 110, no. 8, pp , [5] T. Banova, W. Ackermann, and T. Weiland, Accurate Determination of Thousands of Eigenvalues for Large-Scale Eigenvalue Problems, IEEE Transactions on Magnetics, vol. 50, pp , Feb [6] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP: A Collection of Nonlinear Eigenvalue Problems, ACM Transactions on Mathematical Software, vol. 39, no. 2, pp. 7:1 7:28, November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 28 / 28

99

100 Appendix Contour integral methods Beyn1 (for a few eigenvalues) Define the matrices A 0 and A 1 C n k Then A 0 VW H ˆV and A 1 V ΛW H ˆV where Λ diag(λ 1,..., λ n(γ) ) V [ v 1 v n(γ) ] W [ w 1 w n(γ) ] A 0 1 P(z) 1 ˆV dz (9) 2πi Γ A 1 1 zp(z) 1 ˆV dz (10) 2πi Γ ˆV is a random matrix ˆV C n L. L is smaller than n and equal or greater and k November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 29 / 28

101 Appendix Contour integral methods Beyn1 (for a few eigenvalues) Beyn s method is based on the singular value decomposition of A 0 A 0 V 0 Σ 0 W H 0 (11) Beyn has shown that the matrix B V H 0 A 1W H 0 Σ 1 0 (12) is diagonalizable. Its eigenvalues are the eigenvalues of P inside the contour and its eigenvectors lead to the corresponding eigenvectors of P. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 30 / 28

102 Appendix Contour integral methods Beyn2 (for many eigenvalues) Define the matrices A p C n k A p 1 z p P(z) 1 ˆV dz (13) 2πi Γ Then A p V Λ p W H ˆV. The matrices B 0 and B 1 are defined as follows B 0 A 0 A K 1.. A K 1 A 2K 2 ; B 1 A 1 A K.. A K A 2K 1 (14) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 31 / 28

103 Appendix Contour integral methods Beyn2 (for many eigenvalues) Performing the singular value decomposition of B 0 B 0 V 0 Σ 0 W H 0 (15) Beyn has shown that the matrix D V H 0 B 1W H 0 Σ 1 0 (16) is diagonalizable. Its eigenvalues are the eigenvalues of P inside the contour and its eigenvectors lead to the corresponding eigenvectors of P. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 32 / 28

104 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 5 z 4 z 3 z 6 z 2 z 7 z 1 V z 8 z 12 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

105 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 5 z 4 z 3 z 6 z 2 z 7 z 1 V z 8 z 12 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

106 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 5 z 4 z 3 z 6 z 2 z 7 z 1 V z 8 z 12 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

107 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 5 z 4 z 3 z 6 z 2 z 7 z 1 V z 8 z 12 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

108 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 5 z 4 z 3 z 6 z 2 z 7 z 1 V z 8 z 12 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

109 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 7 z 6 z 8 z 5 z 4 z 3 z 9 z 10 z 11 z 2 z 12 z 1 V The Beyn2 algorithm is robust and accurate if a large L but a small K are used. However, for large-scale problems, a small L is essential to reduce the computational burden. P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

110 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 7 z 6 z 8 z 5 z 4 z 3 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) z 2 z 12 z 1 V The Beyn2 algorithm is robust and accurate if a large L but a small K are used. However, for large-scale problems, a small L is essential to reduce the computational burden. Decrease L and increase K make the algorithm unstable and inaccurate. ( ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

111 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 7 z 6 z 8 z 5 z 4 z 3 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) z 2 z 12 z 1 V The Beyn2 algorithm is robust and accurate if a large L but a small K are used. However, for large-scale problems, a small L is essential to reduce the computational burden. Decrease L and increase K make the algorithm unstable and inaccurate. (,,,,,,,,, ) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

112 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 7 z 6 z 8 z 5 z 4 z 3 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) (,,,,,,,,, ) z 2 z 12 z 1 V The Beyn2 algorithm is robust and accurate if a large L but a small K are used. However, for large-scale problems, a small L is essential to reduce the computational burden. Decrease L and increase K make the algorithm unstable and inaccurate. RSRR reduce the number of columns of V. November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

113 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method z 7 z 6 z 8 z 5 z 4 z 3 z 9 z 10 z 11 P 1 (z1) P 1 (z2) P 1 (z3) P 1 (z4) P 1 (z5) P 1 (z6) P 1 (z7) P 1 (z8) P 1 (z9) P 1 (z10) (,,,,,,,,, ) z 2 z 12 z 1 V The Beyn2 algorithm is robust and accurate if a large L but a small K are used. However, for large-scale problems, a small L is essential to reduce the computational burden. Decrease L and increase K make the algorithm unstable and inaccurate. RSRR reduce the number of columns of V. Let Q C n k be an orthogonal basis of search space, then the original NEP can be converted to the following reduced NEP P Q (z)g 0 November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 33 / 28

114 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method (1) Initialization: Fix the contour Γ, the number N and the sampling points z i. Fix the number L and generate a n L random matrix U November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 34 / 28

115 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method (1) Initialization: Fix the contour Γ, the number N and the sampling points z i. Fix the number L and generate a n L random matrix U (2) Compute P(z i ) 1 U for i 0, 1,..., N 1 November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 34 / 28

116 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method (1) Initialization: Fix the contour Γ, the number N and the sampling points z i. Fix the number L and generate a n L random matrix U (2) Compute P(z i ) 1 U for i 0, 1,..., N 1 (3) Form S as follows November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 34 / 28

117 Appendix Contour integral methods Resolvent Sampling based Rayleigh-Ritz method (1) Initialization: Fix the contour Γ, the number N and the sampling points z i. Fix the number L and generate a n L random matrix U (2) Compute P(z i ) 1 U for i 0, 1,..., N 1 (3) Form S as follows S [ P(z 0 ) 1 U, P(z 1 ) 1 U,, P(z N 1 ) 1 U ] C n N L (17) November 14, 2017 TU Darmstadt Fachbereich 18 Institut für Theorie Elektromagnetischer Felder Vinh Pham-Xuan 34 / 28

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

11 th International Computational Accelerator Physics Conference (ICAP) 2012

11 th International Computational Accelerator Physics Conference (ICAP) 2012 Eigenmode Computation For Ferrite-Loaded Cavity Resonators Klaus Klopfer*, Wolfgang Ackermann, Thomas Weiland Institut für Theorie Elektromagnetischer Felder, TU Darmstadt 11 th International Computational

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

Nonlinear Eigenvalue Problems and Contour Integrals

Nonlinear Eigenvalue Problems and Contour Integrals Nonlinear Eigenvalue Problems and Contour Integrals Marc Van Barel a,,, Peter Kravanja a a KU Leuven, Department of Computer Science, Celestijnenlaan 200A, B-300 Leuven (Heverlee), Belgium Abstract In

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Problem Nick Higham Part III Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Coupling Impedance of Ferrite Devices Description of Simulation Approach Coupling Impedance of Ferrite Devices Description of Simulation Approach 09 May 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Uwe Niedermayer 1 Content Coupling Impedance

More information

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Nick Problem: HighamPart II Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester Woudschoten

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

LARGE SPARSE EIGENVALUE PROBLEMS

LARGE SPARSE EIGENVALUE PROBLEMS LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization 14-1 General Tools for Solving Large Eigen-Problems

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

A Jacobi Davidson Method for Nonlinear Eigenproblems

A Jacobi Davidson Method for Nonlinear Eigenproblems A Jacobi Davidson Method for Nonlinear Eigenproblems Heinrich Voss Section of Mathematics, Hamburg University of Technology, D 21071 Hamburg voss @ tu-harburg.de http://www.tu-harburg.de/mat/hp/voss Abstract.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Nick Problem: HighamPart I Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester Woudschoten

More information

Iterative projection methods for sparse nonlinear eigenvalue problems

Iterative projection methods for sparse nonlinear eigenvalue problems Iterative projection methods for sparse nonlinear eigenvalue problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Iterative projection

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

Lecture 3: Inexact inverse iteration with preconditioning

Lecture 3: Inexact inverse iteration with preconditioning Lecture 3: Department of Mathematical Sciences CLAPDE, Durham, July 2008 Joint work with M. Freitag (Bath), and M. Robbé & M. Sadkane (Brest) 1 Introduction 2 Preconditioned GMRES for Inverse Power Method

More information

Recent Advances in the Numerical Solution of Quadratic Eigenvalue Problems

Recent Advances in the Numerical Solution of Quadratic Eigenvalue Problems Recent Advances in the Numerical Solution of Quadratic Eigenvalue Problems Françoise Tisseur School of Mathematics The University of Manchester ftisseur@ma.man.ac.uk http://www.ma.man.ac.uk/~ftisseur/

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Rational Krylov methods for linear and nonlinear eigenvalue problems

Rational Krylov methods for linear and nonlinear eigenvalue problems Rational Krylov methods for linear and nonlinear eigenvalue problems Mele Giampaolo mele@mail.dm.unipi.it University of Pisa 7 March 2014 Outline Arnoldi (and its variants) for linear eigenproblems Rational

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Domain Decomposition-based contour integration eigenvalue solvers

Domain Decomposition-based contour integration eigenvalue solvers Domain Decomposition-based contour integration eigenvalue solvers Vassilis Kalantzis joint work with Yousef Saad Computer Science and Engineering Department University of Minnesota - Twin Cities, USA SIAM

More information

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems H. Voss 1 Introduction In this paper we consider the nonlinear eigenvalue problem T (λ)x = 0 (1) where T (λ) R n n is a family of symmetric

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT -09 Computational and Sensitivity Aspects of Eigenvalue-Based Methods for the Large-Scale Trust-Region Subproblem Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator

A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator A Jacobi Davidson Method with a Multigrid Solver for the Hermitian Wilson-Dirac Operator Artur Strebel Bergische Universität Wuppertal August 3, 2016 Joint Work This project is joint work with: Gunnar

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

FEAST eigenvalue algorithm and solver: review and perspectives

FEAST eigenvalue algorithm and solver: review and perspectives FEAST eigenvalue algorithm and solver: review and perspectives Eric Polizzi Department of Electrical and Computer Engineering University of Masachusetts, Amherst, USA Sparse Days, CERFACS, June 25, 2012

More information

A numerical method for polynomial eigenvalue problems using contour integral

A numerical method for polynomial eigenvalue problems using contour integral A numerical method for polynomial eigenvalue problems using contour integral Junko Asakura a Tetsuya Sakurai b Hiroto Tadano b Tsutomu Ikegami c Kinji Kimura d a Graduate School of Systems and Information

More information

Density-Matrix-Based Algorithms for Solving Eingenvalue Problems

Density-Matrix-Based Algorithms for Solving Eingenvalue Problems University of Massachusetts - Amherst From the SelectedWorks of Eric Polizzi 2009 Density-Matrix-Based Algorithms for Solving Eingenvalue Problems Eric Polizzi, University of Massachusetts - Amherst Available

More information

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC 663-664 Final Report Minghao Wu AMSC Program mwu@math.umd.edu Dr. Howard Elman Department of Computer

More information

ABSTRACT OF DISSERTATION. Ping Zhang

ABSTRACT OF DISSERTATION. Ping Zhang ABSTRACT OF DISSERTATION Ping Zhang The Graduate School University of Kentucky 2009 Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices ABSTRACT OF DISSERTATION A dissertation

More information

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems Part I: Review of basic theory of eigenvalue problems 1. Let A C n n. (a) A scalar λ is an eigenvalue of an n n A

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Efficient computation of transfer function dominant poles of large second-order dynamical systems

Efficient computation of transfer function dominant poles of large second-order dynamical systems Chapter 6 Efficient computation of transfer function dominant poles of large second-order dynamical systems Abstract This chapter presents a new algorithm for the computation of dominant poles of transfer

More information

Rational Interpolation Methods for Nonlinear Eigenvalue Problems

Rational Interpolation Methods for Nonlinear Eigenvalue Problems Rational Interpolation Methods for Nonlinear Eigenvalue Problems Michael Brennan Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Is there life after the Lanczos method? What is LOBPCG?

Is there life after the Lanczos method? What is LOBPCG? 1 Is there life after the Lanczos method? What is LOBPCG? Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver SIAM ALA Meeting, July 17,

More information

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT

More information

Iterative methods for symmetric eigenvalue problems

Iterative methods for symmetric eigenvalue problems s Iterative s for symmetric eigenvalue problems, PhD McMaster University School of Computational Engineering and Science February 11, 2008 s 1 The power and its variants Inverse power Rayleigh quotient

More information

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations

A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations A Jacobi-Davidson method for two real parameter nonlinear eigenvalue problems arising from delay differential equations Heinrich Voss voss@tuhh.de Joint work with Karl Meerbergen (KU Leuven) and Christian

More information

Krylov methods for the computation of matrix functions

Krylov methods for the computation of matrix functions Krylov methods for the computation of matrix functions Jitse Niesen (University of Leeds) in collaboration with Will Wright (Melbourne University) Heriot-Watt University, March 2010 Outline Definition

More information

Keeping σ fixed for several steps, iterating on µ and neglecting the remainder in the Lagrange interpolation one obtains. θ = λ j λ j 1 λ j σ, (2.

Keeping σ fixed for several steps, iterating on µ and neglecting the remainder in the Lagrange interpolation one obtains. θ = λ j λ j 1 λ j σ, (2. RATIONAL KRYLOV FOR NONLINEAR EIGENPROBLEMS, AN ITERATIVE PROJECTION METHOD ELIAS JARLEBRING AND HEINRICH VOSS Key words. nonlinear eigenvalue problem, rational Krylov, Arnoldi, projection method AMS subject

More information

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem

HOMOGENEOUS JACOBI DAVIDSON. 1. Introduction. We study a homogeneous Jacobi Davidson variant for the polynomial eigenproblem HOMOGENEOUS JACOBI DAVIDSON MICHIEL E. HOCHSTENBACH AND YVAN NOTAY Abstract. We study a homogeneous variant of the Jacobi Davidson method for the generalized and polynomial eigenvalue problem. Special

More information

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems Charles University Faculty of Mathematics and Physics DOCTORAL THESIS Iveta Hnětynková Krylov subspace approximations in linear algebraic problems Department of Numerical Mathematics Supervisor: Doc. RNDr.

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

Inexact inverse iteration with preconditioning

Inexact inverse iteration with preconditioning Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest)) 1 Introduction 2 Preconditioned

More information

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc.

Lecture 11: CMSC 878R/AMSC698R. Iterative Methods An introduction. Outline. Inverse, LU decomposition, Cholesky, SVD, etc. Lecture 11: CMSC 878R/AMSC698R Iterative Methods An introduction Outline Direct Solution of Linear Systems Inverse, LU decomposition, Cholesky, SVD, etc. Iterative methods for linear systems Why? Matrix

More information

Recursive integral method for transmission eigenvalues

Recursive integral method for transmission eigenvalues Recursive integral method for transmission eigenvalues Ruihao Huang Allan A. Struthers Jiguang Sun Ruming Zhang Abstract Recently, a new eigenvalue problem, called the transmission eigenvalue problem,

More information

Nonlinear Eigenvalue Problems: An Introduction

Nonlinear Eigenvalue Problems: An Introduction Nonlinear Eigenvalue Problems: An Introduction Cedric Effenberger Seminar for Applied Mathematics ETH Zurich Pro*Doc Workshop Disentis, August 18 21, 2010 Cedric Effenberger (SAM, ETHZ) NLEVPs: An Introduction

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Chebyshev semi-iteration in Preconditioning

Chebyshev semi-iteration in Preconditioning Report no. 08/14 Chebyshev semi-iteration in Preconditioning Andrew J. Wathen Oxford University Computing Laboratory Tyrone Rees Oxford University Computing Laboratory Dedicated to Victor Pereyra on his

More information

An Algorithm for. Nick Higham. Françoise Tisseur. Director of Research School of Mathematics.

An Algorithm for. Nick Higham. Françoise Tisseur. Director of Research School of Mathematics. An Algorithm for the Research Complete Matters Solution of Quadratic February Eigenvalue 25, 2009 Problems Nick Higham Françoise Tisseur Director of Research School of Mathematics The School University

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

MULTIGRID ARNOLDI FOR EIGENVALUES

MULTIGRID ARNOLDI FOR EIGENVALUES 1 MULTIGRID ARNOLDI FOR EIGENVALUES RONALD B. MORGAN AND ZHAO YANG Abstract. A new approach is given for computing eigenvalues and eigenvectors of large matrices. Multigrid is combined with the Arnoldi

More information

Nonlinear palindromic eigenvalue problems and their numerical solution

Nonlinear palindromic eigenvalue problems and their numerical solution Nonlinear palindromic eigenvalue problems and their numerical solution TU Berlin DFG Research Center Institut für Mathematik MATHEON IN MEMORIAM RALPH BYERS Polynomial eigenvalue problems k P(λ) x = (

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling

Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling Michael McCourt 1,2,Lois Curfman McInnes 1 Hong Zhang 1,Ben Dudson 3,Sean Farley 1,4 Tom Rognlien 5, Maxim Umansky 5 Argonne National

More information

SOLVING RATIONAL EIGENVALUE PROBLEMS VIA LINEARIZATION

SOLVING RATIONAL EIGENVALUE PROBLEMS VIA LINEARIZATION SOLVNG RATONAL EGENVALUE PROBLEMS VA LNEARZATON YANGFENG SU AND ZHAOJUN BA Abstract Rational eigenvalue problem is an emerging class of nonlinear eigenvalue problems arising from a variety of physical

More information

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012.

Math Introduction to Numerical Analysis - Class Notes. Fernando Guevara Vasquez. Version Date: January 17, 2012. Math 5620 - Introduction to Numerical Analysis - Class Notes Fernando Guevara Vasquez Version 1990. Date: January 17, 2012. 3 Contents 1. Disclaimer 4 Chapter 1. Iterative methods for solving linear systems

More information

A Jacobi Davidson-type projection method for nonlinear eigenvalue problems

A Jacobi Davidson-type projection method for nonlinear eigenvalue problems A Jacobi Davidson-type projection method for nonlinear eigenvalue problems Timo Betce and Heinrich Voss Technical University of Hamburg-Harburg, Department of Mathematics, Schwarzenbergstrasse 95, D-21073

More information

A comparison of solvers for quadratic eigenvalue problems from combustion

A comparison of solvers for quadratic eigenvalue problems from combustion INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS [Version: 2002/09/18 v1.01] A comparison of solvers for quadratic eigenvalue problems from combustion C. Sensiau 1, F. Nicoud 2,, M. van Gijzen 3,

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

VISUALIZING PSEUDOSPECTRA FOR POLYNOMIAL EIGENVALUE PROBLEMS. Adéla Klimentová *, Michael Šebek ** Czech Technical University in Prague

VISUALIZING PSEUDOSPECTRA FOR POLYNOMIAL EIGENVALUE PROBLEMS. Adéla Klimentová *, Michael Šebek ** Czech Technical University in Prague VSUALZNG PSEUDOSPECTRA FOR POLYNOMAL EGENVALUE PROBLEMS Adéla Klimentová *, Michael Šebek ** * Department of Control Engineering Czech Technical University in Prague ** nstitute of nformation Theory and

More information

Preconditioned Eigensolver LOBPCG in hypre and PETSc

Preconditioned Eigensolver LOBPCG in hypre and PETSc Preconditioned Eigensolver LOBPCG in hypre and PETSc Ilya Lashuk, Merico Argentati, Evgueni Ovtchinnikov, and Andrew Knyazev Department of Mathematics, University of Colorado at Denver, P.O. Box 173364,

More information

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Lars Eldén Department of Mathematics Linköping University, Sweden Joint work with Valeria Simoncini February 21 Lars Eldén

More information

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations

A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations A parameter tuning technique of a weighted Jacobi-type preconditioner and its application to supernova simulations Akira IMAKURA Center for Computational Sciences, University of Tsukuba Joint work with

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

PRECONDITIONED ITERATIVE METHODS FOR LINEAR SYSTEMS, EIGENVALUE AND SINGULAR VALUE PROBLEMS. Eugene Vecharynski. M.S., Belarus State University, 2006

PRECONDITIONED ITERATIVE METHODS FOR LINEAR SYSTEMS, EIGENVALUE AND SINGULAR VALUE PROBLEMS. Eugene Vecharynski. M.S., Belarus State University, 2006 PRECONDITIONED ITERATIVE METHODS FOR LINEAR SYSTEMS, EIGENVALUE AND SINGULAR VALUE PROBLEMS by Eugene Vecharynski M.S., Belarus State University, 2006 A thesis submitted to the University of Colorado Denver

More information

A knowledge-based approach to high-performance computing in ab initio simulations.

A knowledge-based approach to high-performance computing in ab initio simulations. Mitglied der Helmholtz-Gemeinschaft A knowledge-based approach to high-performance computing in ab initio simulations. AICES Advisory Board Meeting. July 14th 2014 Edoardo Di Napoli Academic background

More information

WHEN studying distributed simulations of power systems,

WHEN studying distributed simulations of power systems, 1096 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 21, NO 3, AUGUST 2006 A Jacobian-Free Newton-GMRES(m) Method with Adaptive Preconditioner and Its Application for Power Flow Calculations Ying Chen and Chen

More information

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems Mario Arioli m.arioli@rl.ac.uk CCLRC-Rutherford Appleton Laboratory with Daniel Ruiz (E.N.S.E.E.I.H.T)

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Elena Virnik, TU BERLIN Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov

More information

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalue Problems Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalues also important in analyzing numerical methods Theory and algorithms apply

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 4 Eigenvalue Problems Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Jacobi-Davidson Algorithm for Locating Resonances in a Few-Body Tunneling System

Jacobi-Davidson Algorithm for Locating Resonances in a Few-Body Tunneling System Jacobi-Davidson Algorithm for Locating Resonances in a Few-Body Tunneling System Bachelor Thesis in Physics and Engineering Physics Gustav Hjelmare Jonathan Larsson David Lidberg Sebastian Östnell Department

More information

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 00:1 6 [Version: 2000/07/27 v1.0] Nonlinear Additive Schwarz Preconditioners and Application in Computational Fluid

More information