UNSTEADY LOW REYNOLDS NUMBER FLOW PAST TWO ROTATING CIRCULAR CYLINDERS BY A VORTEX METHOD

Size: px
Start display at page:

Download "UNSTEADY LOW REYNOLDS NUMBER FLOW PAST TWO ROTATING CIRCULAR CYLINDERS BY A VORTEX METHOD"

Transcription

1 Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference Jul 8-23, 999, San Francisco, California FEDSM99-8 UNSTEADY LOW REYNOLDS NUMBER FLOW PAST TWO ROTATING CIRCULAR CYLINDERS BY A VORTEX METHOD Masato Nakanishi Department of Energ Sstems Engineering Osaka Prefecture Universit Sakai, Osaka, Japan Teruhiko Kida 2 Department of Energ Sstems Engineering Osaka Prefecture Universit Sakai, Osaka, Japan ABSTRACT This paper treats the unstead flow generated b two circular clinders of equal radii which rotate with opposite angular velocities abruptl in flow initiall at rest. The stead flow of this problem, which is known as Jeffer s parado, was first studied theoreticall b Watson. He pointed out the default of earlier theories and showed that a uniform flow is generated at the outer field of the Stokes flow region from the clinders in which the flow is governed b the Navier-Stokes equations even if Renolds number based on the radius of the circular clinder and circumferential velocit is less than unit. However, he did not obtain the solution, since the outer flow is not solved. The main purpose of this paper is to know the mechanism of the generation of the uniform flow for the present problem. The vorte method used for numerical simulation is a vorte blob and sheet method and the cut-off function for the vorte blob is Gaussian. The viscous effect is simulated b random walk method. From the numerical results, we see that the near flow around two clinders is bounded in closed streamlines and the uniform flow is generated outside the closed streamlines. Further, the asmptotic analsis for the long time motion is carried out and it is shown that the outer flow is essentiall governed b the Oseen flow unlike the prediction of Watson. INTRODUCTION The problem of stead flow past rotating two circular clinders in a viscous fluid has long attracted to mathematicians, because it is impossible, in general, to obtain solutions of Stokes equations of slow viscous stead flow in Present address: Hitachi, Ltd., Mechanical Engineering Research Laborator, Tsuchiura, Ibaraki 3-3, Japan. 2 Gakuen-cho -, Sakai, Osaka , Japan. which the fluid velocit vanishes at infinit. Jeffer 922) solved the slow viscous stead flow generated b the rotation of two circular clinders b using the method which was published b him 92) on plane stress and strain in bipolar coordinates. If the clinders are outside one another, Jeffer found that it is impossible, in general, to make the fluid velocit vanish at infinit. He illustrated this b a detailed treatment of the case of equal clinders, rotating with equal speeds in opposite sense. Jeffer 922) used the bipolar coordinate sstem ξ,η): ζ = log{z + ia)/z ia)}, ζ = ξ + iη, z = + i. The curves ξ = constant and η = constant form sets of co-aial circles of the limiting point and the common point, respectivel, which are everwhere orthogonal. As, then ξ and η both tend to zero. In the Stokes flow the governing equation of the stream function ψ is the Biharmonic equation 4 ψ =, with ξ 2 <ξ<ξ, η π, and the no-slip condition on ξ = ξ and on ξ = ξ 2 is required. B converting this equation into a partial differential equation with constant coefficients for the dependent function Hψ, where H = cosh ξ) cos η))/a, we have the form: Hψ = f c ξ) cos nη) +f s ξ) sin nη), where the function f c,s ξ) satisfies a fourth order ordinar differential equation. Jeffer gave a suitable representation for the solution [see Elliott et al. 995) or Watson 995)]. For this epression, the uniform flow is generated at far-field and the velocit does not converge to zero at infinit. This is the Jeffer parado. To resolve this parado, Smith 99) obtained an Copright c 999 b ASME

2 asmptotic solution of the Stokes equations for the streamfunction which is valid at large distances from the clinders. This asmptotic epansion involves man unknown coefficients of the Fourier series and there was no obvious wa as to how these ma be obtained. Elliott et al. 995) established the boundar element method b using the asmptotic epansions given b Smith 99) and showed numericall that the combined bodies have no overall force or torque acting upon them. Watson 995) pointed out that the pressure field given b Smith s asmptotic form is not single-valued and proposed that the additional term to Jerrer s Fourier series of Hψ, sinh ξ log 2 cosh ξ 2 cos η) and sin η log 2 cosh ξ 2 cos η), is necessar. Further, Watson predicted that the outer flow is governed b the Navier- Stokes equations and its asmptotic epression is ψ C o log r + C )rsinθ as. However, he did not derive the force, since the outer flow which is governed b the Navier-Stokes equations is not obtained. Thus, the outer flow behavior is ver important in the stead flow problem. Furthermore, there is not an work on the unstead flow generated b two circular clinders of equal radii which rotate with equal angular velocit in opposite sense abruptl in flow initiall at rest. The main purpose of this paper is to know the mechanism of the generation of the uniform flow in the outer flow of the Stokes region and to discuss with the asmptotic form proposed in earlier theories. The boundar condition at far-field is important in this problem. Since the vorte method satisfies the far-field condition automaticall, this method ma be powerful, although the vorte method has been applied to various high Renolds number flows. In the present paper, the vorte method developed to a low Renolds number flow b the present authors Nakanishi et al. 997b) is used. THEORY OF UNSTEADY FLOW FOR LONG TIME MOTION An impulsivel started two-dimensional circular clinder with ver low speed is solved b an asmptotic approach in the previous work Nakanishi et al., 997a). In this asmptotic analsis, the show that for the long time motion the inner and outer flows are essentiall governed b the stead Stokes flow and the unstead Oseen flow, respectivel. Since in the present problem the velocit approaches to zero as, Watson 995) sas that the outer flow is governed b the Navier-Stokes equations. However, we here assume that the outer flow for long time motion is essentiall governed b the unstead Oseen flow in sense of the asmptotic analsis. We have to discuss this assumption after obtaining the outer solution. Figure shows the phsical coordinate in the present problem. The half of distance between the centers of circular clinders is defined as Ω Ω Figure. h Phsical coordinate h. The governing equation of the vorticit field ω is given from the Navier-Stokes equations: Dω/Dt = ν 2 ω. ) We take the tpical length as the radius of the upper circular clinder a and time is normalized with a 2 /ν. Then, Eq. ) is epressed as non-dimensional form: Dω/Dt =/Re) 2 ω, 2) where Re = Ω. Here, Ω is the non-dimensional angular velocit. From Eq.2), the vorticit field is epressed as 2 ω +2ε c ω ω ) =2εf, 3) t where ε = R e /2 and f =u + c) ω/ + v ω/. Here, c is some constant independent of time. We define: ˆζ = epεc)ω and ˆf = 2ε ep εc)f. Further, we define the Laplace transformation of these functions: Lˆζ) = ζ, L ˆf) = f and Lψ) = ψ. Then, we have ζ o ; p) = ε G o ; p) 2π f ; p)dd + F o, 4) D ψ o ; p) = ) ζ ep εc) log dd, 5) 2π o D where =, ), D is the whole flow region, S is the surface of the clinders. The function F o is defined b F o o ; p) = [ G s o ; p) ζ 2π S n 2 Copright c 999 b ASME

3 ζ ] n G s o ; p) ds. ) The function G is given b see Nakanishi et al., 997a) G ; p) =K a ), a 2 = εεc 2 +2p). 7) For the long time motion, p =2p/ε, the outer flow, ζ IV and ψ IV, is given b see Nakanishi et al 997a) ζ IV εα K c 2 + p) /2 R o ), 8) ψ IV 2π 2πε 2 Pf ep εcx) ζ IV log ρ R dxdy, 9) where X o = ε o, X o = R o cos θ o, sin θ o ) and ρ R = X X o. In these solutions, we assume that the order of f is smaller than the order of α with respect to ε. f = oα ). ) The asmptotic behavior of ψ IV for R o is given b ψ IV V α [ Ro εc 2 + p) /2 4 ) ] 2 R o log R o + A o R o where sin θ o, ) α 2π A o = Pf ep cx) ζ IV 2π c 2 + p) /2 sin θrdrdθ. 2) The first approimation of the inner solution for the long time motion is given b the stead Stokes flow, that is, Watson s solution. From the matching requirement, we can decide α and L in Watson s solution 995). α ΩA, c 2 + p) /2 sinh2α) E o + ce 3) Ω ΩL sinh2α) 4E o + ce ), 4) E = 2 γ + 4 log 4c 2 p 4c 2 log + c2 p c 2 + p ) ) + 4. ) We note that α is of the order of / log/ε). Therefore, if we decide c = O/ log/ε)), the assumption, Eq.), is satisfied. Here, we have from Eq.) ψ α c 2 + p) /2 4 + A o 2 log R o ) 2 sin θ o as R o. In the present analsis, we can not decide the value of c, however, we ma take c as the following value, since A o O/ log ε ), c = ΩA 2 sinh2α) log ε log2a) 2 T α)+. 7) 2 B using this result, the drag coefficient C D for t is given b see Watson 995 and Nakanishi et al., 997a) C D = 2π ) ep c 2 T o )S + cs 2, 8) R e h ct o where t =2T o /ε, and ep ) ep c 2 T o ) S = d, S 2 = d, B B 2 [ ao B = c ) c 2 log T o c log c T o + + ) c 2 log + ) ]2 + π 2 T o c 2, T o [ ao ] 2 B 2 = c + ) log ) + 2 log c + log + π 2 2. The asmptotic form, Eq.), sas that Watson s outer solution 995) is reasonable. Further, we see that the outer flow is essentiall governed b the Oseen flow unlike the prediction of Watson 995) and the deca of the drag force is of O ) T o log 2 T o as T o from Eq.8). where E o = 2 log ε log2a) T α), 5) 4 NUMERICAL METHODS The present paper aims to know the mechanism of the generation of the uniform flow numericall in Stokes region 3 Copright c 999 b ASME

4 a) t = b) t = Figure 2. Streamlines in the case of R e =and h =.5 and to discuss Jeffer s parado. In this problem, the main target is to know the outer flow generated b two circular clinders which rotate suddenl in flow initiall at rest. The governing vorticit equation in two-dimensional flow is given b Eq.). The velocit field is determined b the Biot Savart formula: u = K )ω)d, K ) 2, ) = 2π 2. 9) In the present vorte method, the fractional method is used for the evolution of vorticit: dω/dt =, dω/dt =/R e ) 2 ω. 2) The evolution of the vorticit field is calculated from the first equation of Eq.2) and the velocit field is solved b the panel method for a given vorticit field. In the present paper the panel method of source distribution given b delta function together with the constant vorticit distribution proposed b Kida et al.993) is used, under the flow tangenc condition. The vorticit is generated on the surface of the clinders such that no-slip condition is satisfied. In the present paper, the vorte sheet method proposed b Chorin 978) is used. The vorticit field is simulated b vorte blobs with Gaussian cut-off function. The viscous effect, the second equation of Eq.2), is simulated b the random walk method proposed b Chorin 973). The vorte sheet becomes vorte blob advected from a thin laer near the surface of the clinders to the outside of the laer. The thickness of this laer is of the order of /Re /2 for high Renolds number flow see Chorin 978)). However, in the present low Renolds number flow the boundar laer does not eist. In the previous work Nakanishi et al. 997b), this concept is shown to be available, provided that the thickness is taken as ver thin, because the flow near the surface of the clinders is almost along the surface, so that the generated vorticit flows almost along the surface even for low Renolds number flow. Therefore, in the present calculation, the thickness of the computational boundar laer is taken to be H = λ/re /2, λ =.3 in Re =. The vorte blob diffuses b viscous effect and in low Renolds number flow its velocit is large. Therefore, we have to take the small time step to increase the numerical accurac. In the present paper, the time step is where n is step number. t = ep n n +. ), NUMERICAL RESULTS The panel is constructed b dividing the polar angle equall and the number of panels is 8 on each circular clinder in the present calculation. The cut-off radius ε is taken to be l/π, where l is the panel length. Figure 2 shows the streamlines in the case of h =.5 and R e =. In these figures, the flow is almost smmetr independent of time. We see that the streamlines near the clinders are closed and a pair of the circulator flow is generated outside the 4 Copright c 999 b ASME

5 t =.2833 t = t = t = upper lower u 4 u t =.2833 t = Figure 4. The -component of velocit, u, on the -ais in the case of R e =and h = u Figure 3. The -component of velocit, u, on the -ais in the case of R e =and h =.5 closed streamlines. The generation of the circulator flow is also seen in the flow with impulsivel started circular clinder with constant speed see Nakanishi et al., 997a). This circulator flow induces a uniform flow in the outer field of the Stokes region. The rotation of a single circular clinder in high viscous flow generates the circulator flow whose tangential velocit is given b Ωa/r, where a is the radius of the clinder and r is the distance from the center of the clinder. The flow induced b the rotation of two clinders with opposite angular speed becomes circulator near the clinders, however, the induced whole flow can not pass through the gap between two circular clinders. Hence, the stagnation points eist on the -ais. Figure 3 shows the profile of the -component of velocit on the -ais. We see that the velocit of the upper and lower side of the clinders is almost proportional to /r with the development of time. The velocit in the gap becomes larger than the circumferential velocit of the clinder for the long time. Figure 4 shows the velocit profiles along the ais. This figure shows the remarkable change of the velocit near the gap. Further, this figure shows that the velocit increases with and becomes maimum at some distance, = O/R e ), and after then it becomes graduall zero with. Thus, we see that the Jeffer parado eists in the Stoke region. We see that the magnitude of the velocit becomes graduall maimum and its gradient is graduall small with. This feature implies that Smith s asmptotic solution is not reasonable. Figure 5 shows the time development of the drag and lift coefficients of the clinder, C D and C L. The suffi p and f denote the pressure and friction forces respectivel. We see that the friction drag is comparable with the pressure drag for R e = and the drag force becomes zero with the development of time, as predicted b Elliott et al.995). The lift coefficient is negative from the reason that the velocit in the gap is larger than the circumferential velocit, as shown in Fig.3, and the lift force due to the pressure is dominant. Figure shows the comparison with the present theor for the long time of motion. The global feature is almost the same. CONCLUSIONS The present paper treats the low Renolds number flow generated b two circular clinders of equal radii which rotates with opposite angular velocit abruptl in flow initiall at rest. For the stead flow of this problem, there is 5 Copright c 999 b ASME

6 4 C D C Df C Dp C D t

FEDSM PRESSURE DISTRIBUTION ON THE GROUND BY IMPINGING TWO-DIMENSIONAL JET DUE TO A VORTEX METHOD

FEDSM PRESSURE DISTRIBUTION ON THE GROUND BY IMPINGING TWO-DIMENSIONAL JET DUE TO A VORTEX METHOD Proceedings of the 3rd SME/JSME Joint Fluids Engineering Conferences July 8-23, 999, San Francisco, California, US FEDSM99-685 PRESSURE DISTRIBUTION ON THE GROUND BY IMPINGING TWO-DIMENSIONL JET DUE TO

More information

Apply mass and momentum conservation to a differential control volume. Simple classical solutions of NS equations

Apply mass and momentum conservation to a differential control volume. Simple classical solutions of NS equations Module 5: Navier-Stokes Equations: Appl mass and momentum conservation to a differential control volume Derive the Navier-Stokes equations Simple classical solutions of NS equations Use dimensional analsis

More information

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin.

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin. THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY 1. Introduction V. A. Sharifulin Perm State Technical Universit, Perm, Russia e-mail: sharifulin@perm.ru Water

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

Joule Heating Effects on MHD Natural Convection Flows in Presence of Pressure Stress Work and Viscous Dissipation from a Horizontal Circular Cylinder

Joule Heating Effects on MHD Natural Convection Flows in Presence of Pressure Stress Work and Viscous Dissipation from a Horizontal Circular Cylinder Journal of Applied Fluid Mechanics, Vol. 7, No., pp. 7-3, 04. Available online at www.jafmonline.net, ISSN 735-357, EISSN 735-3645. Joule Heating Effects on MHD Natural Convection Flows in Presence of

More information

OUTLINE FOR Chapter 3

OUTLINE FOR Chapter 3 013/4/ OUTLINE FOR Chapter 3 AERODYNAMICS (W-1-1 BERNOULLI S EQUATION & integration BERNOULLI S EQUATION AERODYNAMICS (W-1-1 013/4/ BERNOULLI S EQUATION FOR AN IRROTATION FLOW AERODYNAMICS (W-1-.1 VENTURI

More information

Method of Images

Method of Images . - Marine Hdrodnamics, Spring 5 Lecture 11. - Marine Hdrodnamics Lecture 11 3.11 - Method of Images m Potential for single source: φ = ln + π m ( ) Potential for source near a wall: φ = m ln +( ) +ln

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Fast waves during transient flow in an asymmetric channel

Fast waves during transient flow in an asymmetric channel Int. Conference on Boundar and Interior Laers BAIL 6 G. Lube, G. Rapin (Eds) c Universit of Göttingen, German, 6. Introduction Fast waves during transient flow in an asmmetric channel Dick Kachuma & Ian

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

Chapter 2 Basic Conservation Equations for Laminar Convection

Chapter 2 Basic Conservation Equations for Laminar Convection Chapter Basic Conservation Equations for Laminar Convection Abstract In this chapter, the basic conservation equations related to laminar fluid flow conservation equations are introduced. On this basis,

More information

The Gas-assisted Expelled Fluid Flow in the Front of a Long Bubble in a Channel

The Gas-assisted Expelled Fluid Flow in the Front of a Long Bubble in a Channel C. H. Hsu, P. C. Chen,. Y. ung, G. C. uo The Gas-assisted Epelled Fluid Flow in the Front of a Long Bubble in a Channel C.H. Hsu 1, P.C. Chen 3,.Y. ung, and G.C. uo 1 1 Department of Mechanical Engineering

More information

Hurricane Modeling E XPANDING C ALCULUS H ORIZON

Hurricane Modeling E XPANDING C ALCULUS H ORIZON Februar 5, 2009 :4 Hurricane Modeling E XPANDING THE Sheet number Page number can magenta ellow black C ALCULUS H ORIZON Hurricane Modeling... Each ear population centers throughout the world are ravaged

More information

Flow past a slippery cylinder

Flow past a slippery cylinder Faculty of Mathematics, University of Waterloo, Canada EFMC12, September 9-13, 2018, Vienna, Austria Problem description and background Conformal mapping Boundary conditions Rescaled equations Asymptotic

More information

Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers

Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers J. Fluid Mech. (2009), vol. 620, pp. 195 220. c 2009 Cambridge Universit Press doi:10.1017/s0022112008004217 Printed in the United Kingdom 195 Effects of wavelength and amplitude of a wav clinder in cross-flow

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

Saturation of inertial instability in rotating planar shear flows

Saturation of inertial instability in rotating planar shear flows J. Fluid Mech. (27), vol. 583, pp. 413 422. c 27 Cambridge Universit Press doi:1.117/s2211276593 Printed in the United Kingdom 413 Saturation of inertial instabilit in rotating planar shear flows R. C.

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

CONSERVATION LAWS AND CONSERVED QUANTITIES FOR LAMINAR RADIAL JETS WITH SWIRL

CONSERVATION LAWS AND CONSERVED QUANTITIES FOR LAMINAR RADIAL JETS WITH SWIRL Mathematical and Computational Applications,Vol. 15, No. 4, pp. 742-761, 21. c Association for Scientific Research CONSERVATION LAWS AND CONSERVED QUANTITIES FOR LAMINAR RADIAL JETS WITH SWIRL R. Naz 1,

More information

International Journal of Applied Mathematics and Physics, 3(2), July-December 2011, pp Global Research Publications, India

International Journal of Applied Mathematics and Physics, 3(2), July-December 2011, pp Global Research Publications, India International Journal of Applied Mathematics and Phsics, 3(), Jul-December 0, pp. 55-67 Global Research Publications, India Effects of Chemical Reaction with Heat and Mass Transfer on Peristaltic Flow

More information

The Control-Volume Finite-Difference Approximation to the Diffusion Equation

The Control-Volume Finite-Difference Approximation to the Diffusion Equation The Control-Volume Finite-Difference Approimation to the Diffusion Equation ME 448/548 Notes Gerald Recktenwald Portland State Universit Department of Mechanical Engineering gerr@mepdedu ME 448/548: D

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Chapter 4 Transport of Pollutants

Chapter 4 Transport of Pollutants 4- Introduction Phs. 645: Environmental Phsics Phsics Department Yarmouk Universit hapter 4 Transport of Pollutants - e cannot avoid the production of pollutants. hat can we do? - Transform pollutants

More information

FLOW GENERATED BY A VORTEX OUTSIDE A CIRCULAR CYLINDER

FLOW GENERATED BY A VORTEX OUTSIDE A CIRCULAR CYLINDER International Mathematical Forum, 1, 2006, no. 21, 1017-1032 FLOW GENERATED BY A VORTEX OUTSIDE A CIRCULAR CYLINDER T.B.A. El Bashir Department of Mathematics and Statistics Sultan Qaboos University, P.O.

More information

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

STABILIZED FEM SOLUTIONS OF MHD EQUATIONS AROUND A SOLID AND INSIDE A CONDUCTING MEDIUM

STABILIZED FEM SOLUTIONS OF MHD EQUATIONS AROUND A SOLID AND INSIDE A CONDUCTING MEDIUM Available online: March 09, 2018 Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 197 208 (2019) DOI: 10.1501/Commua1_0000000901 ISSN 1303 5991 http://communications.science.ankara.edu.tr/index.php?series=a1

More information

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD V. G. Guedes a, G. C. R. Bodstein b, and M. H. Hirata c a Centro de Pesquisas de Energia Elétrica Departamento de Tecnologias

More information

Lift Enhancement on Unconventional Airfoils

Lift Enhancement on Unconventional Airfoils Lift Enhancement on nconventional Airfoils W.W.H. Yeung School of Mechanical and Aerospace Engineering Nanang Technological niversit, North Spine (N3), Level 2 50 Nanang Avenue, Singapore 639798 mwheung@ntu.edu.sg

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 4. Potential Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

Numerical Analysis of Heat Transfer in the Unsteady Flow of a non- Newtonian Fluid over a Rotating cylinder

Numerical Analysis of Heat Transfer in the Unsteady Flow of a non- Newtonian Fluid over a Rotating cylinder Bulletin of Environment, Pharmacolog and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 215: 318-323 214 Academ for Environment and Life Sciences, India Online ISSN 2277-188 Journal

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at.sciencedirect.com ScienceDirect Procedia Engineering 9 (14 383 388 1th International Conference on Mechanical Engineering, ICME 13 Effects of volumetric heat source and temperature

More information

UNIT 4 HEAT TRANSFER BY CONVECTION

UNIT 4 HEAT TRANSFER BY CONVECTION UNIT 4 HEAT TRANSFER BY CONVECTION 4.1 Introduction to convection 4. Convection boundar laers 4..1 Hdrodnamic boundar laer over flat plate 4.. Thermal boundar laer 4..3 Concentration boundar laer 4.3 Dimensional

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

Spherical Pressure Vessels

Spherical Pressure Vessels Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

More information

EFFECTS OF THERMAL RADIATION AND HEAT TRANSFER OVER AN UNSTEADY STRETCHING SURFACE EMBEDDED IN A POROUS MEDIUM IN THE PRESENCE OF HEAT SOURCE OR SINK

EFFECTS OF THERMAL RADIATION AND HEAT TRANSFER OVER AN UNSTEADY STRETCHING SURFACE EMBEDDED IN A POROUS MEDIUM IN THE PRESENCE OF HEAT SOURCE OR SINK THERMAL SCIENCE, Year 011, Vol. 15, No., pp. 477-485 477 EFFECTS OF THERMAL RADIATION AND HEAT TRANSFER OVER AN UNSTEADY STRETCHING SURFACE EMBEDDED IN A POROUS MEDIUM IN THE PRESENCE OF HEAT SOURCE OR

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is ragsdale (zdr8) HW7 ditmire (585) This print-out should have 8 questions. Multiple-choice questions ma continue on the net column or page find all choices efore answering. 00 0.0 points A wire carring

More information

General Solution of the Incompressible, Potential Flow Equations

General Solution of the Incompressible, Potential Flow Equations CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential

More information

Viktor Shkolnikov, Juan G. Santiago*

Viktor Shkolnikov, Juan G. Santiago* Supplementar Information: Coupling Isotachophoresis with Affinit Chromatograph for Rapid and Selective Purification with High Column Utilization. Part I: Theor Viktor Shkolnikov, Juan G. Santiago* Department

More information

Numerical Solution of Non-Darcian Effects on Natural Convection in a Rectangular Porous Enclosure with Heated Walls

Numerical Solution of Non-Darcian Effects on Natural Convection in a Rectangular Porous Enclosure with Heated Walls International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 8, Number 1 (18), pp. 71-86 Research India Publications http://www.ripublication.com Numerical Solution of Non-Darcian Effects

More information

International Journal of Scientific Research and Reviews

International Journal of Scientific Research and Reviews Research article Available online www.ijsrr.org ISSN: 2279 543 International Journal of Scientific Research and Reviews Soret effect on Magneto Hdro Dnamic convective immiscible Fluid flow in a Horizontal

More information

MAE 101A. Homework 7 - Solutions 3/12/2018

MAE 101A. Homework 7 - Solutions 3/12/2018 MAE 101A Homework 7 - Solutions 3/12/2018 Munson 6.31: The stream function for a two-dimensional, nonviscous, incompressible flow field is given by the expression ψ = 2(x y) where the stream function has

More information

Vortex motion. Wasilij Barsukow, July 1, 2016

Vortex motion. Wasilij Barsukow, July 1, 2016 The concept of vorticity We call Vortex motion Wasilij Barsukow, mail@sturzhang.de July, 206 ω = v vorticity. It is a measure of the swirlyness of the flow, but is also present in shear flows where the

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

Differentiation 2 first principles

Differentiation 2 first principles Differentiation first principles J A Rossiter Slides b Anthon Rossiter Introduction The previous video introduces the concept of differentiation and the term derivative. Net we need to look at how differentiation

More information

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction 1 Module 1 : The equation of continuit Lecture 4: Fourier s Law of Heat Conduction NPTEL, IIT Kharagpur, Prof. Saikat Chakrabort, Department of Chemical Engineering Fourier s Law of Heat Conduction According

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, )

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, ) Midterm Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the domain and graph the function. ) G(t) = t - 3 ) 3 - -3 - - 3 - - -3

More information

Dynamics of quantum vortices in a toroidal trap

Dynamics of quantum vortices in a toroidal trap PHYSICAL REVIEW A 79, 4362 29 Dnamics of quantum vortices in a toroidal trap Peter Mason and Natalia G. Berloff Department of Applied Mathematics and Theoretical Phsics, Universit of Cambridge, Wilberforce

More information

Magnetic field generated by current filaments

Magnetic field generated by current filaments Journal of Phsics: Conference Series OPEN ACCESS Magnetic fiel generate b current filaments To cite this article: Y Kimura 2014 J. Phs.: Conf. Ser. 544 012004 View the article online for upates an enhancements.

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

1.060 Engineering Mechanics II Spring Problem Set 3

1.060 Engineering Mechanics II Spring Problem Set 3 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 6th Problem Set 3 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

TRANSIENT FLOW AROUND A VORTEX RING BY A VORTEX METHOD

TRANSIENT FLOW AROUND A VORTEX RING BY A VORTEX METHOD Proceedings of The Second International Conference on Vortex Methods, September 26-28, 21, Istanbul, Turkey TRANSIENT FLOW AROUND A VORTEX RING BY A VORTEX METHOD Teruhiko Kida* Department of Energy Systems

More information

Three-dimensional numerical simulation of a vortex ring impacting a bump

Three-dimensional numerical simulation of a vortex ring impacting a bump HEOREICAL & APPLIED MECHANICS LEERS 4, 032004 (2014) hree-dimensional numerical simulation of a vorte ring impacting a bump Heng Ren, 1, a) 2, Changue Xu b) 1) China Electronics echnolog Group Corporation

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Some Basic Plane Potential Flows

Some Basic Plane Potential Flows Some Basic Plane Potential Flows Uniform Stream in the x Direction A uniform stream V = iu, as in the Fig. (Solid lines are streamlines and dashed lines are potential lines), possesses both a stream function

More information

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-1-107-00452-8 - Metal Forming: Mechanics Metallurg, Fourth Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for the analsis of metal forming operations.

More information

Numerical Simulation and Its Possibility of Application to Green Environment

Numerical Simulation and Its Possibility of Application to Green Environment Numerical Simulation and Its Possibility of Application to Green Environment Anna Kuwana 1,a, Tetuya Kawamura 2,b 1 Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu City, Gunma

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

Pan Pearl River Delta Physics Olympiad 2005

Pan Pearl River Delta Physics Olympiad 2005 1 Jan. 29, 25 Morning Session (9 am 12 pm) Q1 (5 Two identical worms of length L are ling on a smooth and horizontal surface. The mass of the worms is evenl distributed along their bod length. The starting

More information

Heat Conduction in semi-infinite Slab

Heat Conduction in semi-infinite Slab 1 Module : Diffusive heat and mass transfer Lecture 11: Heat Conduction in semi-infinite Slab with Constant wall Temperature Semi-infinite Solid Semi-infinite solids can be visualized as ver thick walls

More information

DNS CODE VALIDATION FOR COMPRESSIBLE SHEAR FLOWS USING LST

DNS CODE VALIDATION FOR COMPRESSIBLE SHEAR FLOWS USING LST Copright c 2016 ABCM DNS CODE VALIDATION FOR COMPRESSIBLE SHEAR FLOWS USING LST Jônatas Ferreira Lacerda, jonatasflacerda@hotmail.com Leandro Franco de Souza, lefraso@icmc.usp.br Josuel Kruppa Rogenski,

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS *A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas

More information

Velocity Limit in DPD Simulations of Wall-Bounded Flows

Velocity Limit in DPD Simulations of Wall-Bounded Flows Velocit Limit in DPD Simulations of Wall-Bounded Flows Dmitr A. Fedosov, Igor V. Pivkin and George Em Karniadakis Division of Applied Mathematics, Brown Universit, Providence, RI 2912 USA Abstract Dissipative

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

Sound Propagation in Ducts

Sound Propagation in Ducts Sound Propagation in Ducts Hongbin Ju Department of Mathematics Florida State Universit, Tallahassee, FL.3306 www.aeroacoustics.info Please send comments to: hju@math.fsu.edu In this section we will discuss

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill

More information

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru Two-Dimensional Potential Flow Session delivered by: Prof. M. D. Deshpande 1 Session Objectives -- At the end of this session the delegate would have understood PEMP The potential theory and its application

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Computational Fluid Dynamics (CFD, CHD)*

Computational Fluid Dynamics (CFD, CHD)* 1 / 1 Computational Fluid Dnamics (CFD, CHD)* PDE (Shocks 1st); Part I: Basics, Part II: Vorticit Fields Rubin H Landau Sall Haerer, Producer-Director Based on A Surve of Computational Phsics b Landau,

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

And similarly in the other directions, so the overall result is expressed compactly as,

And similarly in the other directions, so the overall result is expressed compactly as, SQEP Tutorial Session 5: T7S0 Relates to Knowledge & Skills.5,.8 Last Update: //3 Force on an element of area; Definition of principal stresses and strains; Definition of Tresca and Mises equivalent stresses;

More information

2.6 Oseen s improvement for slow flow past a cylinder

2.6 Oseen s improvement for slow flow past a cylinder Lecture Notes on Fluid Dynamics.63J/.J) by Chiang C. Mei, MIT -6oseen.tex [ef] Lamb : Hydrodynamics.6 Oseen s improvement for slow flow past a cylinder.6. Oseen s criticism of Stokes approximation Is Stokes

More information

Two-Dimensional Formulation.

Two-Dimensional Formulation. Two-Dimensional Formulation mi@seu.edu.cn Outline Introduction( 概论 ) Two vs. Three-Dimensional Problems Plane Strain( 平面应变 ) Plane Stress( 平面应力 ) Boundar Conditions( 边界条件 ) Correspondence between Plane

More information

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM Budi Santoso Center For Partnership in Nuclear Technolog, National Nuclear Energ Agenc (BATAN) Puspiptek, Serpong ABSTRACT DIGITAL

More information

On Heat Transfer in case of a Viscous Flow over a Plane Wall with Periodic Suction by Artificial Neural Network U. K. Tripathy #1, S. M.

On Heat Transfer in case of a Viscous Flow over a Plane Wall with Periodic Suction by Artificial Neural Network U. K. Tripathy #1, S. M. On Heat Transfer in case of a Viscous Flow over a Plane Wall with Periodic Suction b Artificial Neural Network U. K. Tripath #, S. M. Patel * # td. Professor & Head Dept of Mathematics V.S.S.Universit,

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 23 How does this wave-particle dualit require us to alter our thinking about the electron? In our everda lives, we re accustomed to a deterministic world.

More information

Numerical Investigation of Laminar Flow over a Rotating Circular Cylinder

Numerical Investigation of Laminar Flow over a Rotating Circular Cylinder International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:13 No:3 32 Numerical Investigation of Laminar Flow over a Rotating Circular Cylinder Ressan Faris Al-Maliky Department of

More information

Scale-Adaptive Simulation (SAS) Turbulence Modeling. F.R. Menter, ANSYS Germany GmbH

Scale-Adaptive Simulation (SAS) Turbulence Modeling. F.R. Menter, ANSYS Germany GmbH Scale-Adaptive Simulation (SAS) Turbulence Modeling F.. Menter, ANSYS German GmbH 1 Unstead ANS Based Models UANS (Unstead enolds averaged Navier Stoes) Methods UANS gives unphsical single mode unstead

More information

. (70.1) r r. / r. Substituting, we have the following equation for f:

. (70.1) r r. / r. Substituting, we have the following equation for f: 7 Spherical waves Let us consider a sound wave in which the distribution of densit velocit etc, depends only on the distance from some point, ie, is spherically symmetrical Such a wave is called a spherical

More information

International Journal of Mathematical Engineering and Science ISSN : Volume 1 Issue 2

International Journal of Mathematical Engineering and Science ISSN : Volume 1 Issue 2 ISSN : 77-698 Volume Issue The Mathematical Structure and Analsis of an MHD Flow in Porous Media () () Naji Qatanani and Mai Musmar () Department of Mathematics, An-Najah National Universit Nablus-Palestine

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

STEADY VISCOUS FLOW THROUGH A VENTURI TUBE

STEADY VISCOUS FLOW THROUGH A VENTURI TUBE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 12, Number 2, Summer 2004 STEADY VISCOUS FLOW THROUGH A VENTURI TUBE K. B. RANGER ABSTRACT. Steady viscous flow through an axisymmetric convergent-divergent

More information

Unsteady free MHD convection flow past a vertical porous plate in slip-flow regime under fluctuating thermal and mass diffusion *

Unsteady free MHD convection flow past a vertical porous plate in slip-flow regime under fluctuating thermal and mass diffusion * CHAPTER 4 Unstead free MHD convection flow past a vertical porous plate in slip-flow regime under fluctuating thermal and mass diffusion * 4. Nomenclature A : Suction parameter C : Dimensionless species

More information

Cover sheet and Problem 1

Cover sheet and Problem 1 over sheet and Problem nstructions M 33 FNL M FLL SMSTR 0 Time allowed: hours. There are 4 problems, each problem is of equal value. The first problem consists of three smaller sub-problems. egin each

More information

Exercise 9: Model of a Submarine

Exercise 9: Model of a Submarine Fluid Mechanics, SG4, HT3 October 4, 3 Eample : Submarine Eercise 9: Model of a Submarine The flow around a submarine moving at a velocity V can be described by the flow caused by a source and a sink with

More information

Closed form expressions for the gravitational inner multipole moments of homogeneous elementary solids

Closed form expressions for the gravitational inner multipole moments of homogeneous elementary solids Closed form epressions for the gravitational inner multipole moments of homogeneous elementar solids Julian Stirling 1,2, and Stephan Schlamminger 1 1 National Institute of Standards and Technolog, 1 Bureau

More information

Physics of Tsunamis. This is an article from my home page: Ole Witt-Hansen 2011 (2016)

Physics of Tsunamis. This is an article from my home page:   Ole Witt-Hansen 2011 (2016) Phsics of Tsunamis This is an article from m home page: www.olewitthansen.dk Ole Witt-Hansen 11 (16) Contents 1. Constructing a differential equation for the Tsunami wave...1. The velocit of propagation

More information

STRESSES AROUND UNDERGROUND OPENINGS CONTENTS

STRESSES AROUND UNDERGROUND OPENINGS CONTENTS STRESSES AROUND UNDERGROUND OPENINGS CONTENTS 6.1 Introduction 6. Stresses Around Underground Opening 6.3 Circular Hole in an Elasto-Plastic Infinite Medium Under Hdrostatic Loading 6.4 Plastic Behaviour

More information

17. Find the moments of inertia I x, I y, I 0 for the lamina of. 4. D x, y 0 x a, 0 y b ; CAS. 20. D is enclosed by the cardioid r 1 cos ; x, y 3

17. Find the moments of inertia I x, I y, I 0 for the lamina of. 4. D x, y 0 x a, 0 y b ; CAS. 20. D is enclosed by the cardioid r 1 cos ; x, y 3 SCTION 2.5 TRIPL INTGRALS 69 2.4 XRCISS. lectric charge is distributed over the rectangle, 2 so that the charge densit at, is, 2 2 (measured in coulombs per square meter). Find the total charge on the

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1 AE/ME 339 Professor of Aerospace Engineering December 21, 2001 topic13_grid_generation 1 The basic idea behind grid generation is the creation of the transformation laws between the phsical space and the

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

THE full Navier-Stokes equations are difficult or impossible

THE full Navier-Stokes equations are difficult or impossible Unsteady Reversed Stagnation-Point Flow over a Flat Plate Vai Kuong Sin, Member, ASME; Fellow, MIEME, and Chon Kit Chio arxiv:130.997v1 [physics.flu-dyn] 13 Feb 013 Abstract This paper investigates the

More information

ON THE INTERPRETATION OF THE LAGRANGE MULTIPLIERS IN THE CONSTRAINT FORMULATION OF CONTACT PROBLEMS; OR WHY ARE SOME MULTIPLIERS ALWAYS ZERO?

ON THE INTERPRETATION OF THE LAGRANGE MULTIPLIERS IN THE CONSTRAINT FORMULATION OF CONTACT PROBLEMS; OR WHY ARE SOME MULTIPLIERS ALWAYS ZERO? Proceedings of the ASME 214 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 214 August 17-2, 214, Buffalo, New York, USA DETC214-3479

More information

Elastic Cylinders Subjected to End Loadings.

Elastic Cylinders Subjected to End Loadings. Elastic Clinders Subjected to End Loadings mi@seu.edu.cn Outline Elastic Clinders with End Loading ( 端部受载柱体 ) Etension of Clinders ( 拉伸 ) Torsion of Clinders ( 扭转 ) Stress Function Formulation ( 应力函数体系

More information

The vorticity field. A dust devil

The vorticity field. A dust devil The vorticity field The vector ω = u curl u is twice the local angular velocity in the flow, and is called the vorticity of the flow (from Latin for a whirlpool). Vortex lines are everywhere in the direction

More information