Metamodeling with Gaussian processes

Size: px
Start display at page:

Download "Metamodeling with Gaussian processes"

Transcription

1 Metamodelng wth Gaussan processes Bertrand Iooss EDF R&D /06/2014

2 Uncertantes n energy producton systems Many uncertantes for the energy producton and the safety due to: hazards (demand, weather, ), ncomplete system knowledge (ageng, physcs, ), nternal agressons (falures, ) external agressons (earthquake, ) In order to better understand, prove the safety and optmze ts ndustral processes, EDF R&D develops some physcal numercal smulaton codes Problems of uncertanty management n computer experments Summer school SAMO B. Iooss - 26/06/14 2

3 Example: Smulaton of thermal-hydraulc accdent Scenaro : Loss of prmary coolant accdent due to a large break n cold leg [ De Crecy et al ] Pressurzed water nuclear reactor K ~ nput random varables : geometry, materal propertes, envronmental condtons, Computer code Y =f () Tme cost ~ h - n ~ Interest output varable Y : Peak of claddng temperature Goals: numercal model exploraton, senstvty analyss, uncertanty analyss Source: CEA Summer school SAMO B. Iooss - 26/06/14 3

4 Man problems n global senstvty analyss P0a) f (.) s complex (nteractons, non monotonc, dscontnuous, ) Sobol (varance), entropy, dstrbuton-based dstances, P0b) f (.) s costly (nb of smulatons : n << 1000) screenng, metamodels P1) The dmenson of Y s large or Y have a functonal (temporal/spatal) nature functonal decompostons P2) The dmenson of s large (K >> 10) or have a functonal nature screenng, groups of nputs, usng the dervatves [ see Sergeï s lecture ] P3) The quantty of nterest s lnked to rare events (falure probablty, hgh quantle) [ see Lemaître et al., 2014 and Paul Lemaître PhD thess (2014) ] P4) The nputs are dependent [ see Therry s lecture ] P5) f (.) s stochastc [ see Marrel et al., 2012 ] Summer school SAMO B. Iooss - 26/06/14 4

5 Global senstvty analyss: Identfyng nfluent nputs The model : Y = f ( 1,, K ) Calculatons of all types of ndces (Sobol, dstrbuton-based, ) + man effects E(Y ) Complexty/regularty of model f Non monotonc Screenng Morrs Metamodel Varance decomposton Sobol ndces Monotonc + nteractons Monotonc wthout nteracton Lnear 1 st degree Super screenng 0 Desgn of experment Monte-Carlo samplng Rank regresson Lnear regresson K 2K 10K 1000K Summer school SAMO B. Iooss - 26/06/14 5 Number of model evaluatons

6 Metamodelng steps Desgn of experments: Ponts to perform smulatons Smulaton : Performng smulatons Metamodelng : Approxmaton of the computer code 1 Computer code 2 Dfferent type of metamodels: [ Smpson et al ] [ Storle & Helton 2008 ] Lnear regresson - Polynomals - Splnes Addtve models/gam Regresson trees - Neural networks Support Vector Machnes Chaos polynomals Krgng/Gaussan process Summer school SAMO B. Iooss - 26/06/14 6

7 Usng krgng metamodels to estmate Sobol ndces Man effects: S = Var[E( Y Var( Y ) )] ; Total effects: S T = 1 Var[E( Y Var( Y ) )] Many methods to estmate Sobol ndces: Samplng (Monte Carlo, quas-mc, spectral approaches), smoothng methods, metamodels, To reduce the cost (number of model evaluatons), the krgng metamodel s effcent and allows to propagate the metamodel error on S and S T estmates Summer school SAMO B. Iooss - 26/06/14 7

8 Gaussan process (krgng) metamodel Summer school SAMO B. Iooss - 26/06/14 8

9 Krgng metamodel Krgng [ Matheron 63 ] for computer codes reles on the dea to nterpolate the code outputs n dmenson K [ Sacks et al. 89 ] as a spatal cartography Krgng (or Gaussan process) s nterestng because: t nterpolates the outputs, t gves predctor assocated wth confdence bands Example n 1D : Theoretcal functon (K =1) : Y = f ( ) = sn( ) Smulaton of n = 7 computaton ponts Summer school SAMO B. Iooss - 26/06/14 [ Chevaler, ]

10 Spatal statstcs: krgng nterpolaton Lnear combnaton of N data: Y * (u) = N = 1 λ Y( u ) Krgng can take nto account the data confguraton, the dstance between data and target, the spatal correlatons and potental external nformaton u 7 u 1 u 5 u 6 u u 2 u 4 Y * (u) u 3 u 8 Probablstc framework Estmaton wthout bas: E [ Y * (u) Y (u) ] = 0 the mean of the errors s zero Estmaton Y * (u) s optmal: Var [ Y * (u) Y (u) ] s mnmal the dsperson of the errors s reduced Summer school SAMO B. Iooss - 26/06/14 10

11 Stochastc model for Y(x) The random feld Y (x), wth Y R and x R p, s characterzed by ts mean and ts covarance Y (x) s statonary of second order: 1. E[Y (x)] = m does not depend on x 2. Covarance: Cov[ ( x), Y( x+ h)] = Ε[ Y( x+ h) Y( x) ] E[ Y( x+ h) ] E[ Y( x) ] Y = C( h) does not depend on x C(h) varance Covarance functon h Summer school SAMO B. Iooss - 26/06/14 11

12 In practce varance C(h) N( h) = 1 [ ] 2 Y( x + h) Y( x ) C( h) = m Var[Y(x)] = C(0) Y(x) Y(x+h) Y(x) Y(x+2h) Nugget effect (measure error or mcrostructure) Covarance functon Range = maxmal dstance of correlaton = correlaton length h Summer school SAMO B. Iooss - 26/06/14 12

13 Examples of stochastc processes (Gaussan) 1D [ from: Marcotte ] 2D 3D [ from: Bag, 2003 ] Summer school SAMO B. Iooss - 26/06/14 13

14 Smple krgng (known mean) Y * (u) N = = 1 λ ( u ) Mn { E [ Y * (u) Y (u) ] 2 } λ multple lnear regresson by least squares Best Lnear Unbased Predctor (BLUP) [ Y( u ) m ] + m (m = known constant) Krgng weghts λ (u) for Y (u ) are obtaned by: N j = 1 λ j ( u ) C( u u j ) = C ( u u ) = 1K N System of N lnear equatons wth N unknowns whch have an unque soluton (for non sngular covarance matrx) Krgng varance (estmaton error): does not depend on the Y values 2 σ K ( u) = C(0) λ ( u) C( u => Vsualsaton of regons wth mprecse estmatons => Put new observaton ponts n these regons u) Summer school SAMO B. Iooss - 26/06/14 14 N = 1

15 Example : cartography of ar polluton Varogram 73 measures of benzene concentraton (Rouen, France) [ from: Bobba, Metlck & Roth, 2000 ] γ (h) = C(0) C(h) Krgng mean Krgng standard devaton Summer school SAMO B. Iooss - 26/06/14 15

16 Gaussan process metamodel (1/2) Idea: Computer code results are nterpolated wth the krgng technque Necessary hypothess: Gaussan process Stochastc process Z wth : Defnton: Y(x) = βf(x) + Z(x) Regresson stochastc part Parametrc choces: F : polynomal of degree 1 R : statonary => covarance functon Example: Gaussan covarance βf(x) = β + R(x, u) E[Z(x)] = 0 Cov(Z(x), Z(u)) = σ²r( R(x, u) where σ² s the varance and R the correlaton functon Z~N(0, σ²r) K 2 ( x - u) = exp θ x u = R = 1 Ansotropy: θ s are not equal (correlaton length of each nput varable) Summer school SAMO B. Iooss - 26/06/ K = 1 β x

17 Gaussan process metamodel (2/2) Jont dstrbuton : Gaussan process (GP) model : Y(x) = βf(x) + Z(x), x R p Learnng sample () of N smulatons : (,Y ) Condtonal GP metamodel : (1) ( N ) ( ) ( k ) ( x,..., x ), F = F( ), R = ( R( x, x ) k =, Y ~ N( βf, σ ² R ) Y ( x), ~ Y GP Mean : Yˆ( x) = Ε Covarance : Cov [ ] 1 Y ( x) = βf( x) + r( x R [ Y βf ] ), Y wth r( x) = (1) ( [ R( x, x),..., R( x x) ] N ), ( ) t 1 Y ( u), Y ( v) = σ ² ( R( u, v) + r( u) R r( v) ) Varance Mean Square Error (MSE), Y, Y Summer school SAMO B. Iooss - 26/06/14 17

18 Y Illustraton Y 2 code runs 3 code runs mean 95% confdence ntervals (from MSE) Y x * gaussan law 5 code runs Concluson: Gven a suffcent number of ponts, we obtan an accurate metamodel Summer school SAMO B. Iooss - 26/06/14 18

19 ln L Hyperparameters estmaton Maxmum lkelhood method Lkelhood maxmsaton on the learnng bass (( s,y s ): wth t 1 ( Y, β,θ, σ) = ln( 2πσ² ) ln( detr ) σ² [ Y βf ] R [ Y βf ] * * * ( β,θ,σ ) N 2 = Argmax ( β,θ,σ ) 1 2 ln L Y (, β,θ, σ) 1 2 Jont estmaton of β and σ : * β = * 1 σ² = N [ ] t 1 F R F t 1 t 1 [ ] [ ] * 1 * Y β F R Y β F F R Y Estmaton of correlaton parameters θ : ( θ ) Argmn ψ ( θ) * = ( ) * θ wth 1 ψ θ = N σ ² R Summer school SAMO B. Iooss - 26/06/14 19

20 Estmaton and valdaton Hyperparameters (θ ι ) =1 K estmated by lkelhood maxmzaton K 2 ( u - v) = exp u v R( u, v) = R θ = 1 Smplex method, stochastc algorthms Problems n hgh dmensonal context (K > 10), can be solved by sequental fttng algorthms [ Marrel et al ] Predctor valdaton: Predctvty coeffcent Q ( Y, Yˆ ) - Test sample - or leave-one-out - or k-fold cross valdaton 2 n = 1 = 1 n = 1 ( Y Yˆ ) ( Y Y ) code run (test pont) 3 code runs MSE valdaton: Percentage of predcted values nsde confdence bounds Summer school SAMO B. Iooss - 26/06/14 20

21 Effects of the hyperparameters θ and σ f ( x) = sn( 4πx) 2 σ = 1; θ = σ = 1; θ = σ = 4; θ = σ = 4; θ = 10 Summer school SAMO B. Iooss - 26/06/ [ Le Gratet, 2011 ]

22 Effects of the covarance structure [ Chevaler, 2011 ] Summer school SAMO B. Iooss - 26/06/14 22

23 GP metamodel n summary [ Le Gratet, 2014 ] The unkown functon smulatons condtonal smulatons Man hypothess: z(x) s the realzaton of a Gaussan process (defned by ts mean and cov) mean observatons 95%-confdence nterval GP metamodel s gven by the the probablty law of Z(x) condtonally to the observatons Its mean gves the GP predctor Its varance gves the error Summer school SAMO B. Iooss - 26/06/14 23

24 The best way to buld GP: Model-based adaptve desgns Y Example: crteron of the Gaussan process MSE (Mean Square Error) MSE( x) = σ ² + x new r( x) R u( x) = βf( x) x D t t 1 r( x) + u( x)( k( x) R = arg max MSE( x) 1 βf t ( βf Y ) R 1 βf t ) u( x) 2 code runs 3 code runs x new x new Remark: other crtera are possble (e.g. focusng to actve varables) Concluson: Model-based adaptve desgns are the most effcent ones, but are not always applcable In practce, we need to ntate the process wth a space-fllng desgn Summer school SAMO B. Iooss - 26/06/14 24

25 Estmaton of rare events probablty usng GP [ Bect et al ] Industral problems: safety analyss wth computer code (nuclear, transport, ) Problem: fnd P f = Prob [ f ( ) > T ] wth = random nputs ; T = treshold Reasonable varance everywhere Large errors n the target regon Τ New adaptve desgn * IMSET = MSE( x)1 ( x) dx T s a small tube around T T = arg mn( IMSE T ) [ from: Pcheny et al ] Τ Large varance n non-target regon Good accuracy n target regon Summer school SAMO B. Iooss - 26/06/14 25

26 Sobol ndces estmaton usng Gaussan process metamodel Summer school SAMO B. Iooss - 26/06/14 26

27 Sobol ndces Defntons for a determnstc functon Y = f ( 1, K, K ) Frst order Total : S T Notaton : : = V Var [ Ε( f ( 1, K, S = = V V V Var [ Ε( f (,, K ) 1 K = V V K ) )] )] [,,,, ] V =, Var( Y ) ; = 1 K K K Hypothess: ndependent nputs Classcal approach estmaton: replace f () by Ŷ (GP mean) + Computatonally cheap (possble to perform analytcal calculatons) - Do not nfer from the metamodel error Summer school SAMO B. Iooss - 26/06/14 27

28 Senstvty analyss wth GP model : 2 analytcal approaches Gp model condtonally to ponts : Computaton of Sobol ndces : From predctor formula [ Chen et al ] ˆ [ Y (, ω) ] Y ( ) = EΩ, Y a( ) = Var S = E Do not nfer from metamodel error Y( x, ω), Y [ Yˆ ( ) / ] [ E ˆ ( Y ( Var ( Yˆ ) ) / )] ~ GP ˆ From full GP model [ ] Y ( x, ω) Y ( x) = EΩ, Y ( Y ( u, ω), Y ( v, ω ) Cov Ω ), Y, Y a(, ω) = E V ( ω) = Var ~ S Y (, ω), Y a(,ω)) : stochastc process of V : random varables [ ] Y(, ω) /, Y [ ( )] E Y(, ω) /, Y V = µ = E Var Y (, ω) Ω, Y E Ω ~ ( S ) Summer school SAMO B. Iooss - 26/06/14 28

29 Analytcal senstvty ndces from full GP model Sobol ndces: µ = E Ω ( [ ( )] Var E Y (, ω) ) E Ω Var, Y Y (, ω), Y [ Oakley & O Hagan 2004; Marrel et al ] σ ι = Var Ω ( [ ( )] Var ) Ε Y (, ω ), Y [ ] E Var Y (, ω ) 2 2 Ω, Y Infer from the metamodel error Computaton: Analytcal calculatons Smple and double numercal ntegrals => computatonally expensve Other lmts: Addtonal hypothess : GP covarance s product of one-dmensonal covarance Ths estmator s not the true expectaton of the Sobol ndex Not possble to estmate the total Sobol ndces Summer school SAMO B. Iooss - 26/06/14 29

30 S ω GP-smulaton based Sobol ndces (1/2) Var [ ( )] E Y (, ω) = s a random varable Var, Y Y (, ω), Y [ Le Gratet et al ] We want to buld an unbased Monte Carlo estmator the number of Monte Carlo partcles ˆ S, m where m represents and an estmator of the varance of ˆ S, m Algorthm: 1. Generate 2 m -sze matrces ( 1, 2 ) and compute the pck-freeze matrx (the one whch used n Sobol ndces estmaton formula) 2. For k=1,, nsm Perform a condtonal smulaton y * k of the GP at ponts n Compute ˆ S, m, k Bootstrap procedure (b = 1,, B replcas) gves ˆ S, m, k, b Summer school SAMO B. Iooss - 26/06/14 30

31 GP-smulaton based Sobol ndces (2/2) [ Le Gratet et al ] The estmator of Sobol ndex: Sˆ, m = 1 nsm B nsm B k = 1 b = 1 Sˆ, m, k, b The varance of ths estmator: σˆ 1 nsm B ( Sˆ, m, k, b S, m ) 2 = ˆ nsm ( B 1) k = 1 b = 1 It ntegrates the metamodelng error + the Monte Carlo ntegraton error σˆ 1 B nsm 1 ( S, m, k, b S, m b ) 2 (PG) = ˆ, B b = 1 nsm 1 k = 1 σˆ 1 nsm k = 1 B 1 b = 1, nsm B 1 ( S, m, k, b S, m k ) 2 (MC) = ˆ Remark: Same algorthm for total Sobol ndces Summer school SAMO B. Iooss - 26/06/14 31

32 Example: Ishgam functon (K = 3) Learnng sample: space fllng desgn (n = 40 to 200) Gaussan process wth 5/2 Matérn cov. m = nsm = 500 B = 300 GP predctvty coef In practce, n s fxed and m can be calbrated n order to balance the error Summer school SAMO B. Iooss - 26/06/14 32

33 Spatal output Summer school SAMO B. Iooss - 26/06/14 33

34 Senstvty analyss when model ouputs are functons Thermal-hydraulc example Hydrogeologcal applcaton 2 elementary cases: senstvty analyss on each scalar output (q pxels): Very small CPU tme consumng model Lnear regresson model => use of standardzed regresson coef. (SRC) Dffcult case: Complex/Non lnear model need of Sobol ndces (for example) and CPU tme expensve model need of metamodel Summer school SAMO B. Iooss - 26/06/14 34

35 Senstvty analyss for spatal outputs: Methodology Computer code f (.) : Input: = ( 1,, K ) random vector Output for nput x * : y = f (x *, z ), z D z R 2 [ Marrel et al ] In practce, D z s dscretzed n q ponts (here: 64 x 64 = 4096 ponts) (,Y (,z) ) = nput-output sample of sze N Decomposton of Y (z) on a functonal bass, for example: Prncpal component analyss PCA) gves functons ftted on the data, A wavelet bass s well-suted f there are dscontnutes Modelng of the decomposton coeffcents by a GP metamodel Selecton procedure of the most mportant coeffcents Predcton: x* => predcton of coeff. => spatal output map reconstructon Functonal metamodel Senstvty analyss : Spatal maps of senstvty ndces Summer school SAMO B. Iooss - 26/06/14 35

36 Metamodel fttng: Methodology for spatal output (map) Step 1 : Decomposton n bass functons of each map Step 2 : Krgng metamodelng of the man coeffcents (the most varables) n foncton of ; constant for the other coef. Computatonal challenge: we have to ft as many GP as man coeffcents Step 3 : Predcton for a new nput x* x* => predcton of the coeffcents => spatal output map reconstructon Senstvty analyss (spatal map of Sobol ndces) The estmaton of Sobol ndces requre a large number of smulatons computaton of the Sobol ndces by the way of the metamodel Computatonal challenge to manage thousand of calls of the functonal metamodel Summer school SAMO B. Iooss - 26/06/14 36

37 Descrpton of CERES-MITHRA test case Complex spato-temporal dynamcs analyss by model reducton and senstvty analyss ( ) Assessment of the consequences on human health of radonuclde accdental or routne releases (atmospherc releases) Modellng of radonuclde atmospherc dsperson based on Gaussan puff model Developpement of an atmospherc dsperson code : CERES-MITHRA (C-M) mpact calculatons relatve to CEA facltes [ CEA applcaton: Marrel & Perot, 2012 ] Summer school SAMO B. Iooss - 26/06/14 37

38 Descrpton of the scenaro C-M INPUTS Release parameters 2 release locatons (uncertan heghts) Radonuclde quantty (uncertan) Deposton velocty (uncertan) Release duraton (1h) Radonuclede: Cesum 137 C-M OUTPUTS 2D maps of tme ntegrated actvty concentratons (Bqsm -3 ) for dfferent nstants (=> 2 hours) Meteorologcal parameters Wnd speed & drecton (uncertan) Atmospherc stablty Ran Temperature Objectves C-M Smulator CPU tme from 30s to 30mn Identfy the nfluence of each uncertan parameters Cs137+ concentraton map after 20 mnutes Problems CPU tme requred for each smulaton lmted number of avalable smulatons Spato-temporal outputs (very large dmenson of model outputs) Summer school SAMO B. Iooss - 26/06/14 Cs137+ concentraton map at the end 38 of the release

39 Uncertanty quantfcaton Uncertan parameters (K = 6) Parameters Reference Value Varaton Interval Probablty dstrbuton Release hegth (m) Deposton velocty (m.s -1 ) Quantty released (Bq) A 15 [7.5 ; 22.5] Unform B 45 [22.5 ; 67.5] Unform Cs [ ; ] Log-Unform Cs [10 8 ; ] Log-Unform Wnd drecton (WD) (degree azmuth) Wnd speed (WS) (m.s -1 ) 291 [249 ; 333] 5.3 [0 ; 12.5] Truncated AR(1) process Truncated AR(1) process Summer school SAMO B. Iooss - 26/06/14 39

40 Expermental desgn and learnng sample Numercal expermental desgn : Space fllng desgn n order to have a good coverage of the nput space => Optmzed Latn hypercube Samplng (LHS) Number of C-M smulatons : n = 200 smulatons Compromse between CPU tme and nvestgaton of uncertan parameter doman Smulatons wth C-M : Learnng sample creaton Notatons ( ) s = ( x ) = 1, L, n Y ( ) ( ) ( z) = y( x, z) = 1, Ln learnng sample C-M outputs (q = 4000 pxels) Examples of Cs137+ ntegrated actvty maps (logarthmc scale) Summer school SAMO B. Iooss - 26/06/14 40

41 Approxmaton by a metamodel Spatal metamodel : Proper Orthogonal Decomposton + Gaussan Process Step A : Spatal decomposton on a functonal bass (Chatterjee( [2000]) Selecton of the h man coeffcents of the decomposton Input parameters = [ 1,... K ] Y (, z) = µ ( z) + h h α Step B : Modelng of the k man PCA coeffcents n functon of Gaussan Process metamodel Computer code ( ) φ ( z) wth α ( ) = ( Y(, z) µ ( z) ) φ ( z) j j j j= 1 D Smulated maps POD decomposton Selecton of man coeffcents GP Metamodel j dz Modelng of coefs n functon of Step C : Predcton for any new nput x* New parameters * = [* 1,... * K ] GP Metamodel Predcton of the h man coeffcents POD reconstructon Predcted map Spatal surrogate model Summer school SAMO B. Iooss - 26/06/14 41

42 Basc prncple of prncpal component analyss (PCA) Transformaton of dependent numercal varables to ndependent varables nformaton reducton PCA: sequental search of new varables = lnear combnatons of Y wth a maxmal dsperson (varance or nerta) on each axs V= t Y c Y c varance-covarance matrx of Y c (matrx of centered functons) Dagonalsaton of the varance-covarance matrx to obtan ordered egen vectors (nerta axes) Egen values are prncpal component varances and gve the total nerta (percentage of explaned varance) The matrx (N x q ) of prncpal component s H = Y c L wth L the egen vector matrx Remark: data adaptve bass whle the wavelet bases are fxed Summer school SAMO B. Iooss - 26/06/14 42

43 Selecton of PCA coeffcents Applcaton to C-M data & results : h = 15 selected PCA components = 99% of nformaton explaned 15 coeffcents to be modelled by GP metamodels Summer school SAMO B. Iooss - 26/06/14 43

44 Summer school SAMO B. Iooss - 26/06/14 44 Valdaton of the spatal metamodel accuracy Predctvty coeffcent : -Q² estmated by cross valdaton - Average value of Q 2 on the map 92 % Global and local analyss of the metamodel predctvty ( ) [ ] = = = = n n n z Y n z Y z Y z x Y z Q ) ( ) ( 1 2 ) ( ) ( ) ( 1 ) ( ) (, ˆ 1 ) ²( Q² map wth 15 PCA components modelled wth GP, for t = 40mn

45 Metamodel qualty for the varous moments Summer school SAMO B. Iooss - 26/06/14 45

46 Senstvty Analyss Use of the metamodel POD+GP to perform smulatons requred for Sobol ndces estmatons (RBD-FAST method) Frst order Sobol ndces for t = 40mn Input nfluence : Predomnant : - Wnd drecton - Release quantty : located n the center of the plume - Wnd speed : located at the edges of the plume Neglgble : deposton velocty, release heghts Sum of 1 er order ndces 75% Interactons : 25% of model varabllty Summer school SAMO B. Iooss - 26/06/14 46

47 Total Sobol ndces for t=40mn Dfferences between 1 st order and total ndces : - An average of 25% of dfference for wnd drecton and speed => Strong nteracton Wnd drecton x Wnd speed? => 2 nd order ndces: (located on the edges of the dsperson plume) CONCLUSION : An average of 97% of the C-M output varance explaned by : Wnd Drecton (34%) - Wnd Drecton x Wnd Speed (23%) Cs137+ released quantty (20%) - Wnd Speed (20%) Summer school SAMO B. Iooss - 26/06/14 47

48 Tme evoluton of Sobol ndces Sgnfcant augmentaton of nteracton wnd drecton x wnd speed nfluence: Less than 10% at the release begnnng and more than 40% at the end Summer school SAMO B. Iooss - 26/06/14 48

49 Concluson: proposed methodology Uncertanty quantfcaton : nput parameters + assocated probablty dstrbutons Uncertanty quantfcaton : Constructon of a realstc smulator of weather condtons Samplng desgn : N smulatons Samplng desgn : Latn Hypercube Sample (LHS) wth optmal recoverng propertes Smulator (C-M M code) Metamodel valdaton Learnng sample Statstcal modellng : Metamodel or Surrogate model Metamodel : Spatal decomposton wth PCA + metamodellng of PCA coeffcents wth Gaussan processes Senstvty analyss Uncertanty propagaton Senstvty analyss : Computaton of Sobol ndces Interpretaton Summer school SAMO B. Iooss - 26/06/14 49

50 Senstvty analyss n R Summer school SAMO B. Iooss - 26/06/14 50

51 Uncertanty studes: several packages In R = software envronment for statstcal computng (Open Source) Samplng: randtoolbox, DceDesgn Uncertanty propagaton: mstral Senstvty analyss: senstvty, CompModSA, planor Gaussan process metamodelng: DceKrgng Optmzaton usng metamodel: DceOptm, KrgInv Functonal outputs: multsens, modelcf Summer school SAMO B. Iooss - 26/06/14 51

52 R package «senstvty» - Demo on Ishgam functon (K=3) lbrary(senstvty) Samplng method (n = boostrap rep. - N = n(k+2) = 5e4 model runs) 1 = data.frame(matrx(runf(3*n,-p,p),nrow=n)) ; 2 = sa1 = sobol2002(model = shgam.fun, 1, 2, nboot = 100); plot(sa1) GP metamodel from a Monte Carlo sample (,Y) (n = 100 model runs): lbrary(dcekrgng) x = data.frame(matrx(runf(3*n,-p,p),nrow=n)) ; y = shgam.fun(x) PG = km(formula=~1,x,y) ; prnt(pg) ; plot(pg) GP valdaton usng metamodel predctvty (Q 2 coeffcent wth ntest=1000): test = ; ytest = shgam.fun(xtest) Q2 = 1 - (mean(ytest-predct(pg,xtest,type="uk")$mean)^2)/var(ytest) Senstvty ndces computed va the GP predctor: sa2 = sobol2002(model = NULL, 1, 2, nboot = 100) Y = predct(pg,sa2$,type="uk")$mean ; tell(sa2,y) ; plot(sa2) Senstvty ndces computed va the full GP: sa3=sobolgp(model=pg,type="uk",mcmethod="sobol2002",1,2,canddate=x); plot(sa3) Summer school SAMO B. Iooss - 26/06/14 52

53 Concluson Summer school SAMO B. Iooss - 26/06/14 53

54 Stakes of uncertanty management n computer experments Modelng phase Improve the model Explore the best as possble dfferent nput combnatons Identfy the predomnant nputs and phenomena n order to prorze R&D Valdaton phase Reduce predcton uncertantes Calbrate the model parameters Practcal use of a model Safety studes: assess a rsk of falure (rare events) Concepton studes: optmze system performances and robustness Advantages of a probablstc approach to propagate the uncertantes, to perform global senstvty analyss to desgn/optmze the system takng nto account uncertantes to gve rgorous safety margns, Summer school SAMO B. Iooss - 26/06/14 54

55 Uncertanty management - The generc methodology Step C : Propagaton of uncertanty sources Step B: Quantfcaton of uncertanty sources Modelsaton wth probablty dstrbutons Input varables Uncertan :: x Fxed :: u Step A : Problem specfcaton Model (or measurement process) f(x,u) Varables of nterest Y = f(x,u) Quantty of nterest Ex: varance, probablty.... Drect methods, statstcs, expertse Step C : Senstvty analyss, Prortzaton Step B : Quantfcaton of sources Inverse methods, calbraton, assmlaton Observed varables Y obs obs Feedback Decson crteron Summer school SAMO B. Iooss - 26/06/14 process Ex: Probablty < 10 -b 55

56 Open TURNS The software mplementaton of the uncertanty methodology TURNS : Treatments of Uncertantes, Rsk n Statstcs Snce 2005 Open : Open source : LGPL (code), FDL (doc.) Envronment : Lnux, Wndows Languages : C++ (lbrares), Python (command scrpts) IHM Efcas Summer school SAMO B. Iooss - 26/06/14 56

57 Man features n OpenTURNS Use of non-ntrusve technques generc Wrappng of external codes, consdered as mathematcal functons n OpenTurns Step B: modelng uncertanty of nputs Wth data: parametrc & non-parametrc stats Assessng experts advce Dependence: defnton by margnals + copula Step C: Uncertanty propagaton Standard and advanced Monte Carlo technques (Importance samplng, drectonal samplng ) FORM-SORM method Metamodels: Polynomals, polynomal chaos expanson, Gaussan processw Step C : Senstvty analyss - Lnear & rank regresson, Sobol, polynomal chaos, relablty mportance factors Summer school SAMO B. Iooss - 26/06/14 57

58 On the Gaussan process metamodel Valuable tool when computer code s cpu-tme expensve (n ~ hundreds runs) GP model constructon s possble for moderate dmensonal cas (K < 50) Man advantage of GP: probablstc metamodel whch gves confdence bands n addton to a predctor Full nterest n senstvty analyss Fttng qualty s dependent of the ntal desgn GP model s well adapted to sequental and adaptatve desgns Caveats: t can requre a large amount of effort durng the fttng process and cases wth more than 1000 ponts begn to be dffcult (matrx nverson) Desgns for specfc objectves (optmzaton, quantle, probablty, etc.) Other hot topcs: calbraton and valdaton of computer codes Summer school SAMO B. Iooss - 26/06/14 58

59 Bblography Books: - Chlès & Delfner, Geostatstcs, Wley, 1999 Fang, L & Sudjanto, Desgn and modelng for computer experments, Chapman, 2006 Metamodels: Smpson, Peplnsk, Koc & Allen, Metamodels for computer-based engneerng desgn: Survey and recommendatons, Engneerng wth computers, 17, 2001 Storle, Swler, Helton & Salaberry, Implementaton and evaluaton of nonparametrc regresson procesures for senstvty analyss of computatonally, RESS, 94, 2009 Gaussan process: Koehler & Owen, Computer experments, In Handbook of Statstcs (Ghosh & Rao), 13, 1996 Marrel, Iooss, Van Dorpe & Volkova. An effcent methodology for modelng complex computer codes wth Gaussan processes. Computatonal Stat. and Data Analyss, 52, 2008 Le Gratet, Cannamela, Iooss. A Bayesan approach for global senstvty analyss of (multfdelty) computer codes. SIAM/ASA Journal of Uncertanty Quantfcaton, n press Functonal nput and output: Marrel et al., Global senstvty analyss for models wth spatally dependent outputs. Envronmetrcs, 22, 2011 Marrel, Iooss, da Vega & Rbatet. Global senstvty analyss of stochastc computer models wth jont metamodels. Statstcs and Computng, 22, 2012 Applcatons: Auder, de Crecy, Iooss & Marquès. Screenng and metamodelng of computer experments wth functonal outputs. Applcaton to thermal-hydraulc computatons. RESS, 107, 2012 Marrel and Perot. Development of a surrogate model and senstvty analyss for an atmospherc dsperson computer code. Proceedngs of ESREL 2012 Conf, Helsnk, 2012 Summer school SAMO B. Iooss - 26/06/14 59

Statistical tools to perform Sensitivity Analysis in the Context of the Evaluation of Measurement Uncertainty

Statistical tools to perform Sensitivity Analysis in the Context of the Evaluation of Measurement Uncertainty Statstcal tools to perform Senstvty Analyss n the Contet of the Evaluaton of Measurement Uncertanty N. Fscher, A. Allard Laboratore natonal de métrologe et d essas (LNE) MATHMET PTB Berln nd June Outlne

More information

risk and uncertainty assessment

risk and uncertainty assessment Optmal forecastng of atmospherc qualty n ndustral regons: rsk and uncertanty assessment Vladmr Penenko Insttute of Computatonal Mathematcs and Mathematcal Geophyscs SD RAS Goal Development of theoretcal

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Uncertainty as the Overlap of Alternate Conditional Distributions

Uncertainty as the Overlap of Alternate Conditional Distributions Uncertanty as the Overlap of Alternate Condtonal Dstrbutons Olena Babak and Clayton V. Deutsch Centre for Computatonal Geostatstcs Department of Cvl & Envronmental Engneerng Unversty of Alberta An mportant

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Some basic statistics and curve fitting techniques

Some basic statistics and curve fitting techniques Some basc statstcs and curve fttng technques Statstcs s the dscplne concerned wth the study of varablty, wth the study of uncertanty, and wth the study of decsonmakng n the face of uncertanty (Lndsay et

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Originated from experimental optimization where measurements are very noisy Approximation can be actually more accurate than

Originated from experimental optimization where measurements are very noisy Approximation can be actually more accurate than Surrogate (approxmatons) Orgnated from expermental optmzaton where measurements are ver nos Approxmaton can be actuall more accurate than data! Great nterest now n applng these technques to computer smulatons

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

Bias-correction under a semi-parametric model for small area estimation

Bias-correction under a semi-parametric model for small area estimation Bas-correcton under a sem-parametrc model for small area estmaton Laura Dumtrescu, Vctora Unversty of Wellngton jont work wth J. N. K. Rao, Carleton Unversty ICORS 2017 Workshop on Robust Inference for

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Statistics for Business and Economics

Statistics for Business and Economics Statstcs for Busness and Economcs Chapter 11 Smple Regresson Copyrght 010 Pearson Educaton, Inc. Publshng as Prentce Hall Ch. 11-1 11.1 Overvew of Lnear Models n An equaton can be ft to show the best lnear

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function On Outler Robust Small Area Mean Estmate Based on Predcton of Emprcal Dstrbuton Functon Payam Mokhtaran Natonal Insttute of Appled Statstcs Research Australa Unversty of Wollongong Small Area Estmaton

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Learning Objectives for Chapter 11

Learning Objectives for Chapter 11 Chapter : Lnear Regresson and Correlaton Methods Hldebrand, Ott and Gray Basc Statstcal Ideas for Managers Second Edton Learnng Objectves for Chapter Usng the scatterplot n regresson analyss Usng the method

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

T E C O L O T E R E S E A R C H, I N C.

T E C O L O T E R E S E A R C H, I N C. T E C O L O T E R E S E A R C H, I N C. B rdg n g En g neern g a nd Econo mcs S nce 1973 THE MINIMUM-UNBIASED-PERCENTAGE ERROR (MUPE) METHOD IN CER DEVELOPMENT Thrd Jont Annual ISPA/SCEA Internatonal Conference

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Simulation and Probability Distribution

Simulation and Probability Distribution CHAPTER Probablty, Statstcs, and Relablty for Engneers and Scentsts Second Edton PROBABILIT DISTRIBUTION FOR CONTINUOUS RANDOM VARIABLES A. J. Clark School of Engneerng Department of Cvl and Envronmental

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

FUZZY FINITE ELEMENT METHOD

FUZZY FINITE ELEMENT METHOD FUZZY FINITE ELEMENT METHOD RELIABILITY TRUCTURE ANALYI UING PROBABILITY 3.. Maxmum Normal tress Internal force s the shear force, V has a magntude equal to the load P and bendng moment, M. Bendng moments

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

The Ordinary Least Squares (OLS) Estimator

The Ordinary Least Squares (OLS) Estimator The Ordnary Least Squares (OLS) Estmator 1 Regresson Analyss Regresson Analyss: a statstcal technque for nvestgatng and modelng the relatonshp between varables. Applcatons: Engneerng, the physcal and chemcal

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 008 Recall: man dea of lnear regresson Lnear regresson can be used to study

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X). 11.4.1 Estmaton of Multple Regresson Coeffcents In multple lnear regresson, we essentally solve n equatons for the p unnown parameters. hus n must e equal to or greater than p and n practce n should e

More information

U-Pb Geochronology Practical: Background

U-Pb Geochronology Practical: Background U-Pb Geochronology Practcal: Background Basc Concepts: accuracy: measure of the dfference between an expermental measurement and the true value precson: measure of the reproducblty of the expermental result

More information

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding Recall: man dea of lnear regresson Lecture 9: Lnear regresson: centerng, hypothess testng, multple covarates, and confoundng Sandy Eckel seckel@jhsph.edu 6 May 8 Lnear regresson can be used to study an

More information

Chapter 6. Supplemental Text Material

Chapter 6. Supplemental Text Material Chapter 6. Supplemental Text Materal S6-. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Invariant deformation parameters from GPS permanent networks using stochastic interpolation

Invariant deformation parameters from GPS permanent networks using stochastic interpolation Invarant deformaton parameters from GPS permanent networks usng stochastc nterpolaton Ludovco Bag, Poltecnco d Mlano, DIIAR Athanasos Dermans, Arstotle Unversty of Thessalonk Outlne Startng hypotheses

More information

Adaptive Reduction of Design Variables Using Global Sensitivity in Reliability-Based Optimization

Adaptive Reduction of Design Variables Using Global Sensitivity in Reliability-Based Optimization Adaptve Reducton of Desgn Varables Usng Global Senstvty n Relablty-Based Optmzaton Nam H. Km * and Haoyu Wang Dept. of Mechancal & Aerospace Engneerng, Unversty of Florda, Ganesvlle, Florda, 326 Nestor

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

4.3 Poisson Regression

4.3 Poisson Regression of teratvely reweghted least squares regressons (the IRLS algorthm). We do wthout gvng further detals, but nstead focus on the practcal applcaton. > glm(survval~log(weght)+age, famly="bnomal", data=baby)

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 13 13-1 Basc Busness Statstcs 11 th Edton Chapter 13 Smple Lnear Regresson Basc Busness Statstcs, 11e 009 Prentce-Hall, Inc. Chap 13-1 Learnng Objectves In ths chapter, you learn: How to use regresson

More information

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong Moton Percepton Under Uncertanty Hongjng Lu Department of Psychology Unversty of Hong Kong Outlne Uncertanty n moton stmulus Correspondence problem Qualtatve fttng usng deal observer models Based on sgnal

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

Sensitivity analysis of computer experiments

Sensitivity analysis of computer experiments Senstvty analyss o comuter exerments Fabrce Gamboa Bertrand Iooss 0/03/03 The global methodology o uncertanty management Ste C : Proagaton o uncertanty sources Ste B: Quantcaton o uncertanty sources Modeled

More information

Development of a Semi-Automated Approach for Regional Corrector Surface Modeling in GPS-Levelling

Development of a Semi-Automated Approach for Regional Corrector Surface Modeling in GPS-Levelling Development of a Sem-Automated Approach for Regonal Corrector Surface Modelng n GPS-Levellng G. Fotopoulos, C. Kotsaks, M.G. Sders, and N. El-Shemy Presented at the Annual Canadan Geophyscal Unon Meetng

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

Cokriging Partial Grades - Application to Block Modeling of Copper Deposits

Cokriging Partial Grades - Application to Block Modeling of Copper Deposits Cokrgng Partal Grades - Applcaton to Block Modelng of Copper Deposts Serge Séguret 1, Julo Benscell 2 and Pablo Carrasco 2 Abstract Ths work concerns mneral deposts made of geologcal bodes such as breccas

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Small Area Interval Estimation

Small Area Interval Estimation .. Small Area Interval Estmaton Partha Lahr Jont Program n Survey Methodology Unversty of Maryland, College Park (Based on jont work wth Masayo Yoshmor, Former JPSM Vstng PhD Student and Research Fellow

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models Automatc Object Trajectory- Based Moton Recognton Usng Gaussan Mxture Models Fasal I. Bashr, Ashfaq A. Khokhar, Dan Schonfeld Electrcal and Computer Engneerng, Unversty of Illnos at Chcago. Chcago, IL,

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

ISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2

ISQS 6348 Final Open notes, no books. Points out of 100 in parentheses. Y 1 ε 2 ISQS 6348 Fnal Open notes, no books. Ponts out of 100 n parentheses. 1. The followng path dagram s gven: ε 1 Y 1 ε F Y 1.A. (10) Wrte down the usual model and assumptons that are mpled by ths dagram. Soluton:

More information

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε

Y = β 0 + β 1 X 1 + β 2 X β k X k + ε Chapter 3 Secton 3.1 Model Assumptons: Multple Regresson Model Predcton Equaton Std. Devaton of Error Correlaton Matrx Smple Lnear Regresson: 1.) Lnearty.) Constant Varance 3.) Independent Errors 4.) Normalty

More information

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) Maxmum Lkelhood Estmaton (MLE) Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 01 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

HLW. Vol.9 No.2 [2,3] aleatory uncertainty 10. ignorance epistemic uncertainty. variability. variability ignorance. Keywords:

HLW. Vol.9 No.2 [2,3] aleatory uncertainty 10. ignorance epistemic uncertainty. variability. variability ignorance. Keywords: Vol.9 No.2 HLW 1 varablty2 gnorance varablty gnorance 1 2 2 Keywords: Safety assessment for geologcal dsposal of hgh level radoactve waste nevtably nvolves factors that cannot be specfed n a determnstc

More information

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the

Linear regression. Regression Models. Chapter 11 Student Lecture Notes Regression Analysis is the Chapter 11 Student Lecture Notes 11-1 Lnear regresson Wenl lu Dept. Health statstcs School of publc health Tanjn medcal unversty 1 Regresson Models 1. Answer What Is the Relatonshp Between the Varables?.

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models.

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models. Advances n Longtudnal Methods n the Socal and Behavoral Scences Fnte Mxtures of Nonlnear Mxed-Effects Models Jeff Harrng Department of Measurement, Statstcs and Evaluaton The Center for Integrated Latent

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

PM10 dispersion model in quarrying activities: a comparison of an ISC3 approach to a mono/multivariate geostatistical estimation

PM10 dispersion model in quarrying activities: a comparison of an ISC3 approach to a mono/multivariate geostatistical estimation Ar Polluton XIV 111 PM1 dsperson model n quarryng actvtes: a comparson of an ISC3 approach to a mono/multvarate geostatstcal estmaton G. Alfaro Degan, G. D Bona, D. Lppello & M. Pnzar 1 Dpartmento d Ingegnera

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information