A Trust-Funnel Algorithm for Nonlinear Programming

Size: px
Start display at page:

Download "A Trust-Funnel Algorithm for Nonlinear Programming"

Transcription

1 for Nonlinear Programming Daniel P. Robinson Johns Hopins University Department of Applied Mathematics and Statistics Collaborators: Fran E. Curtis (Lehigh University) Nic I. M. Gould (Rutherford Appleton Laboratory) Philippe Toint (University of Namur) Southern California Optimization Day May 23, 2014 trust-funnel SoCalOptDay / 25

2 Outline 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

3 Outline 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

4 Outline 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

5 The aim of this tal Present an algorithm based on the trust-funnel concept for min x f(x) s.t. c(x) 0 By introducing slacs, we have the problem min x, s where c(x, s) := c(x) + s f(x) s.t. c(x, s) = 0, s 0 We consider solving a sequence of barrier subproblems min x, s f(x) µ ln([s] i ) =: f(x, s) s.t. c(x, s) = 0 The naive approach of applying the equality constrained algorithm will not wor because of the implicit constraint s > 0 In particular, we require fraction-to-the boundary constraints, a slac reset procedure, and variable scaling trust-funnel SoCalOptDay / 25

6 The barrier subproblem min x, s f(x) µ ln([s] i ) =: f(x, s) s.t. c(x, s) = 0 Basic subproblem: min d=(d x,d s ) mf (d) = f(x, s ) + f(x, s ) T d dt H d subject to c(x, s ) + J(x, s )d = 0 P 1 d 2 δ s + d s κ fb s where κ fb (0, 1), J(x, s) := c(x, s), ( ) ( ) I 0 2 xx L(x, y ) 0 P = and H 0 S := 0 Y S 1 trust-funnel SoCalOptDay / 25

7 Normal step computation Projected gradient step computation Tangential step computation y-iterations t C d = (x, s) + n + t t f-iterations r n (x, s) + n c + Jd = 0 v-iterations m f (n) (x, s) c + Jd 2 2 ν δ s 0 κfbs trust-funnel SoCalOptDay / 25

8 Outline The normal step 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

9 The normal step The normal step n The idea Aim to reduce v(x, s) = c(x, s) 2 How do we do this? By computing an approximate solution to min m v n (n) s.t. P 1 n δ v, s + n s κ fb s m v (n) = c(x, s ) + J(x, s )n 2 κ (0, 1) δ v > 0 is a trust-region radius Note: Assume that we now a value v max such that v(x, s ) v max trust-funnel SoCalOptDay / 25

10 The normal step The normal step n What do we mean by an approximate solution? We require that n satisfies P 1 n δ v s + n s κ fbs m v (n ) m v (nc ) P 1 n range ( P J(x, s ) T) (x, s) + n (x, s) n δ v c(x, s) + J(x, s)n = 0 How can we guarantee this? truncated preconditioned CG dogleg approach π v = P J(x, y ) T c(x, s ) Main diagram s 0 κfbs trust-funnel SoCalOptDay / 25

11 Outline The projected gradient step 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

12 The projected gradient step An approximate projected gradient r Define the approximate projected gradient as r = P 2 [ f m (n ) + J(x, s ) T ] y where y is an approximate solution to 1 min y R m 2 P [ f m (n ) + J(x, s ) T y ] 2 that satisfies at least one of 1 π f ɛ and v ɛ (approximate KKT) 2 π f 1 2 πv (do not compute a tangential step) 3 χ f 1 2 πf (descent direction) where π f = P [ f m (n ) + J(x, s ) T ] f y and χ = mf (n ) T r π f Main diagram trust-funnel SoCalOptDay / 25

13 Outline The tangential step 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

14 The tangential step Relaxed SQP tangential step t Define the Cauchy point ( t t C := tc (αc), where T tc (α) := C x ) (α) t Cs (α) and α C is the minimizer of T min m f ( n + t C(α)) α 0 s.t. P 1 ( n + t C(α)) min{δ v, δf } s + n s + tc s (α) κ fb (s + n s ) Then, t is a relaxed SQP tangential step if m f (n + t ) m f (n + t C ) s + n s + ts κ fb(s + n s ) ( ) r x := α r s = αr (1a) (1b) P 1 (n + t ) 2 min{δ v, δf } (1c) m v (n + t ) κ tg m v (0) + (1 κ tg)m v (n ) (1d) Main diagram trust-funnel SoCalOptDay / 25

15 The tangential step Very Relaxed SQP tangential step t Define the Cauchy point ( t t C = tc (αc), where T tc (α) := C x ) (α) t Cs (α) and α C is the minimizer of T min α 0 s.t. m f P 1 ( n + t C (α)) ( ) r x := α r s = αr ( n + t C (α)) min{δ v, δf, κ vv max s + n s + tc s (α) κ fb (s + n s ) Then, t is a very relaxed SQP tangential step if Main diagram } m f (n ) m f (n + t ) m f (n ) m f (n + t C ) s + n s + ts κ fb(s + n s ) (2a) (2b) P 1 (n + t ) min{δ v, δf, κ vv max } (2c) m v (n + t ) κ tt v max (2d) trust-funnel SoCalOptDay / 25

16 Outline Which steps to compute? 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

17 Which steps to compute? Normal step Have to compute it: π v > 1 2 πf 1 or v 0.9v max Option to compute: π v > 0 Do not compute: π v = 0 Projected gradient step Compute it: P 1 n 0.9 min{δ v, δf } Option to compute it otherwise. Tangential step Compute iff a projected gradient was computed and π f > 1 2 πv trust-funnel SoCalOptDay / 25

18 Outline 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

19 Three types of steps: y-iterations focus on better multiplier estimates f-iterations focus on reducing the barrier function f v-iterations focus on reducing infeasibility as measured by v trust-funnel SoCalOptDay / 25

20 Step computation diagram Definition of a y-iteration We classify the th iteration as a y-iteration if n = t = 0. Updates for a y-iteration w +1 w δ f +1 δf, v max +1 vmax δv +1 δv Notation: w = (x, s ) and w +1 = (x +1, s +1 ) trust-funnel SoCalOptDay / 25

21 Step computation diagram Definition of an f-iteration We classify the th iteration as an f-iteration if t 0 v(w + d ) v max (recall v(w ) v max ) m f (w ) m f (w + d ) 1 [ f 2 m (w + n ) m f (w + d ) ] Updates for an f-iteration δ v +1 δv, vmax +1 vmax If f(w ) f(w + d ) 1 2 else w +1 w + d perform a slac reset possibly increase δ f w +1 w decrease δ f [ m f (w ) m f (w + d ) ] then trust-funnel SoCalOptDay / 25

22 Step computation diagram Definition of a v-iteration The th iteration as a v-iteration if it is not a y- or an f-iteration. Updates for a v-iteration δ f +1 δf If n 0, m v (w ) m v (w + d ) 1 2[ m v (w ) m v (w + n ) ], and v(w ) v(w + d ) 1 2[ m v (w ) m v (w + d ) ] then w +1 w + d perform a slac reset possibly increase δ v decrease v max else w +1 w, v max +1 vmax, decrease δv trust-funnel SoCalOptDay / 25

23 Outline 1 The normal step The projected gradient step The tangential step Which steps to compute? trust-funnel SoCalOptDay / 25

24 Presented an inexact barrier-sqp algorithm for solving general nonlinear optimization problems based on a trust-funnel approach. Trial steps are composite steps formed from a normal step (designed to improve feasibility) and a tangential step (designed to decrease the barrier objective function). The method is matrix free, i.e., all conditions may be obtained via iterative methods. Subsets of core calculations are performed during each iteration based on appropriate criticality measures. Effective preconditioning is a challenge. Numerical results are in progress (part of GALAHAD) trust-funnel SoCalOptDay / 25

25 References Nicholas I. M. Gould and Ph. L. Toint, Nonlinear programming without a penalty function or a filter. Mathematical Programming, Nicholas I. M. Gould and Daniel P. Robinson and Ph. L. Toint, Corrigendum: Nonlinear programming without a penalty function or a filter. Mathematical Programming, trust-funnel SoCalOptDay / 25

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity Mohammadreza Samadi, Lehigh University joint work with Frank E. Curtis (stand-in presenter), Lehigh University

More information

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke, University of Washington Daniel

More information

A New Penalty-SQP Method

A New Penalty-SQP Method Background and Motivation Illustration of Numerical Results Final Remarks Frank E. Curtis Informs Annual Meeting, October 2008 Background and Motivation Illustration of Numerical Results Final Remarks

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

Recent Adaptive Methods for Nonlinear Optimization

Recent Adaptive Methods for Nonlinear Optimization Recent Adaptive Methods for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke (U. of Washington), Richard H. Byrd (U. of Colorado), Nicholas I. M. Gould

More information

Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization

Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization Denis Ridzal Department of Computational and Applied Mathematics Rice University, Houston, Texas dridzal@caam.rice.edu

More information

An Inexact Newton Method for Nonlinear Constrained Optimization

An Inexact Newton Method for Nonlinear Constrained Optimization An Inexact Newton Method for Nonlinear Constrained Optimization Frank E. Curtis Numerical Analysis Seminar, January 23, 2009 Outline Motivation and background Algorithm development and theoretical results

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

Survey of NLP Algorithms. L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

Survey of NLP Algorithms. L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA Survey of NLP Algorithms L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA NLP Algorithms - Outline Problem and Goals KKT Conditions and Variable Classification Handling

More information

Lecture 15: SQP methods for equality constrained optimization

Lecture 15: SQP methods for equality constrained optimization Lecture 15: SQP methods for equality constrained optimization Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lecture 15: SQP methods for equality constrained

More information

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience

Adaptive augmented Lagrangian methods: algorithms and practical numerical experience Optimization Methods and Software ISSN: 1055-6788 (Print) 1029-4937 (Online) Journal homepage: http://www.tandfonline.com/loi/goms20 Adaptive augmented Lagrangian methods: algorithms and practical numerical

More information

arxiv: v1 [math.oc] 20 Aug 2014

arxiv: v1 [math.oc] 20 Aug 2014 Adaptive Augmented Lagrangian Methods: Algorithms and Practical Numerical Experience Detailed Version Frank E. Curtis, Nicholas I. M. Gould, Hao Jiang, and Daniel P. Robinson arxiv:1408.4500v1 [math.oc]

More information

A trust-funnel method for nonlinear optimization problems with general nonlinear constraints and its application to derivative-free optimization

A trust-funnel method for nonlinear optimization problems with general nonlinear constraints and its application to derivative-free optimization A trust-funnel method for nonlinear optimization problems with general nonlinear constraints and its application to derivative-free optimization by Ph. R. Sampaio and Ph. L. Toint Report naxys-3-25 January

More information

Lecture 13: Constrained optimization

Lecture 13: Constrained optimization 2010-12-03 Basic ideas A nonlinearly constrained problem must somehow be converted relaxed into a problem which we can solve (a linear/quadratic or unconstrained problem) We solve a sequence of such problems

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Inexact Newton Methods and Nonlinear Constrained Optimization

Inexact Newton Methods and Nonlinear Constrained Optimization Inexact Newton Methods and Nonlinear Constrained Optimization Frank E. Curtis EPSRC Symposium Capstone Conference Warwick Mathematics Institute July 2, 2009 Outline PDE-Constrained Optimization Newton

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

Infeasibility Detection in Nonlinear Optimization

Infeasibility Detection in Nonlinear Optimization Infeasibility Detection in Nonlinear Optimization Frank E. Curtis, Lehigh University Hao Wang, Lehigh University SIAM Conference on Optimization 2011 May 16, 2011 (See also Infeasibility Detection in Nonlinear

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

A GLOBALLY CONVERGENT STABILIZED SQP METHOD: SUPERLINEAR CONVERGENCE

A GLOBALLY CONVERGENT STABILIZED SQP METHOD: SUPERLINEAR CONVERGENCE A GLOBALLY CONVERGENT STABILIZED SQP METHOD: SUPERLINEAR CONVERGENCE Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-14-1 June 30,

More information

1. Introduction. We consider nonlinear optimization problems of the form. f(x) ce (x) = 0 c I (x) 0,

1. Introduction. We consider nonlinear optimization problems of the form. f(x) ce (x) = 0 c I (x) 0, AN INTERIOR-POINT ALGORITHM FOR LARGE-SCALE NONLINEAR OPTIMIZATION WITH INEXACT STEP COMPUTATIONS FRANK E. CURTIS, OLAF SCHENK, AND ANDREAS WÄCHTER Abstract. We present a line-search algorithm for large-scale

More information

Analysis of Inexact Trust-Region Interior-Point SQP Algorithms. Matthias Heinkenschloss Luis N. Vicente. TR95-18 June 1995 (revised April 1996)

Analysis of Inexact Trust-Region Interior-Point SQP Algorithms. Matthias Heinkenschloss Luis N. Vicente. TR95-18 June 1995 (revised April 1996) Analysis of Inexact rust-region Interior-Point SQP Algorithms Matthias Heinkenschloss Luis N. Vicente R95-18 June 1995 (revised April 1996) Department of Computational and Applied Mathematics MS 134 Rice

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Numerical Methods for PDE-Constrained Optimization

Numerical Methods for PDE-Constrained Optimization Numerical Methods for PDE-Constrained Optimization Richard H. Byrd 1 Frank E. Curtis 2 Jorge Nocedal 2 1 University of Colorado at Boulder 2 Northwestern University Courant Institute of Mathematical Sciences,

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

A SHIFTED PRIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OPTIMIZATION

A SHIFTED PRIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OPTIMIZATION A SHIFTED RIMAL-DUAL INTERIOR METHOD FOR NONLINEAR OTIMIZATION hilip E. Gill Vyacheslav Kungurtsev Daniel. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-18-1 February 1, 2018

More information

A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE

A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE Nic I. M. Gould Daniel P. Robinson Oxford University Computing Laboratory Numerical Analysis Group Technical Report 08-21 December 2008 Abstract In [19],

More information

A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION

A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION A SHIFTED PRIMAL-DUAL PENALTY-BARRIER METHOD FOR NONLINEAR OPTIMIZATION Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-19-3 March

More information

AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING

AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING XIAO WANG AND HONGCHAO ZHANG Abstract. In this paper, we propose an Augmented Lagrangian Affine Scaling (ALAS) algorithm for general

More information

Nonmonotone Trust Region Methods for Nonlinear Equality Constrained Optimization without a Penalty Function

Nonmonotone Trust Region Methods for Nonlinear Equality Constrained Optimization without a Penalty Function Nonmonotone Trust Region Methods for Nonlinear Equality Constrained Optimization without a Penalty Function Michael Ulbrich and Stefan Ulbrich Zentrum Mathematik Technische Universität München München,

More information

An interior-point l 1 -penalty method for nonlinear optimization

An interior-point l 1 -penalty method for nonlinear optimization RAL-TR-2003-022 An interior-point l 1 -penalty method for nonlinear optimization Nicholas I. M. Gould 1,2,3, Dominique Orban 4,5 and Philippe L. Toint 6,7,8 Abstract A mixed interior/exterior-point method

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

A SECOND DERIVATIVE SQP METHOD : THEORETICAL ISSUES

A SECOND DERIVATIVE SQP METHOD : THEORETICAL ISSUES A SECOND DERIVATIVE SQP METHOD : THEORETICAL ISSUES Nicholas I. M. Gould Daniel P. Robinson Oxford University Computing Laboratory Numerical Analysis Group Technical Report 08/18 November 2008 Abstract

More information

Trust-region methods for rectangular systems of nonlinear equations

Trust-region methods for rectangular systems of nonlinear equations Trust-region methods for rectangular systems of nonlinear equations Margherita Porcelli Dipartimento di Matematica U.Dini Università degli Studi di Firenze Joint work with Maria Macconi and Benedetta Morini

More information

A STABILIZED SQP METHOD: SUPERLINEAR CONVERGENCE

A STABILIZED SQP METHOD: SUPERLINEAR CONVERGENCE A STABILIZED SQP METHOD: SUPERLINEAR CONVERGENCE Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-14-1 June 30, 2014 Abstract Regularized

More information

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization Noname manuscript No. (will be inserted by the editor) A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization Fran E. Curtis February, 22 Abstract Penalty and interior-point methods

More information

Optimal Newton-type methods for nonconvex smooth optimization problems

Optimal Newton-type methods for nonconvex smooth optimization problems Optimal Newton-type methods for nonconvex smooth optimization problems Coralia Cartis, Nicholas I. M. Gould and Philippe L. Toint June 9, 20 Abstract We consider a general class of second-order iterations

More information

On the complexity of an Inexact Restoration method for constrained optimization

On the complexity of an Inexact Restoration method for constrained optimization On the complexity of an Inexact Restoration method for constrained optimization L. F. Bueno J. M. Martínez September 18, 2018 Abstract Recent papers indicate that some algorithms for constrained optimization

More information

On the Implementation of an Interior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations

On the Implementation of an Interior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations On the Implementation of an Interior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations Frank E. Curtis Lehigh University Johannes Huber University of Basel Olaf Schenk University

More information

A trust region method based on interior point techniques for nonlinear programming

A trust region method based on interior point techniques for nonlinear programming Math. Program., Ser. A 89: 149 185 2000 Digital Object Identifier DOI 10.1007/s101070000189 Richard H. Byrd Jean Charles Gilbert Jorge Nocedal A trust region method based on interior point techniques for

More information

PDE-Constrained and Nonsmooth Optimization

PDE-Constrained and Nonsmooth Optimization Frank E. Curtis October 1, 2009 Outline PDE-Constrained Optimization Introduction Newton s method Inexactness Results Summary and future work Nonsmooth Optimization Sequential quadratic programming (SQP)

More information

On Lagrange multipliers of trust-region subproblems

On Lagrange multipliers of trust-region subproblems On Lagrange multipliers of trust-region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Programy a algoritmy numerické matematiky 14 1.- 6. června 2008

More information

A SECOND-DERIVATIVE TRUST-REGION SQP METHOD WITH A TRUST-REGION-FREE PREDICTOR STEP

A SECOND-DERIVATIVE TRUST-REGION SQP METHOD WITH A TRUST-REGION-FREE PREDICTOR STEP A SECOND-DERIVATIVE TRUST-REGION SQP METHOD WITH A TRUST-REGION-FREE PREDICTOR STEP Nicholas I. M. Gould Daniel P. Robinson University of Oxford, Mathematical Institute Numerical Analysis Group Technical

More information

Large-Scale Nonlinear Optimization with Inexact Step Computations

Large-Scale Nonlinear Optimization with Inexact Step Computations Large-Scale Nonlinear Optimization with Inexact Step Computations Andreas Wächter IBM T.J. Watson Research Center Yorktown Heights, New York andreasw@us.ibm.com IPAM Workshop on Numerical Methods for Continuous

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

On the use of piecewise linear models in nonlinear programming

On the use of piecewise linear models in nonlinear programming Math. Program., Ser. A (2013) 137:289 324 DOI 10.1007/s10107-011-0492-9 FULL LENGTH PAPER On the use of piecewise linear models in nonlinear programming Richard H. Byrd Jorge Nocedal Richard A. Waltz Yuchen

More information

HYBRID FILTER METHODS FOR NONLINEAR OPTIMIZATION. Yueling Loh

HYBRID FILTER METHODS FOR NONLINEAR OPTIMIZATION. Yueling Loh HYBRID FILTER METHODS FOR NONLINEAR OPTIMIZATION by Yueling Loh A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore,

More information

The Squared Slacks Transformation in Nonlinear Programming

The Squared Slacks Transformation in Nonlinear Programming Technical Report No. n + P. Armand D. Orban The Squared Slacks Transformation in Nonlinear Programming August 29, 2007 Abstract. We recall the use of squared slacks used to transform inequality constraints

More information

A STABILIZED SQP METHOD: GLOBAL CONVERGENCE

A STABILIZED SQP METHOD: GLOBAL CONVERGENCE A STABILIZED SQP METHOD: GLOBAL CONVERGENCE Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-13-4 Revised July 18, 2014, June 23,

More information

c 2018 Society for Industrial and Applied Mathematics Dedicated to Roger Fletcher, a great pioneer for the field of nonlinear optimization

c 2018 Society for Industrial and Applied Mathematics Dedicated to Roger Fletcher, a great pioneer for the field of nonlinear optimization SIAM J. OPTIM. Vol. 28, No. 1, pp. 930 958 c 2018 Society for Industrial and Applied Mathematics A SEQUENTIAL ALGORITHM FOR SOLVING NONLINEAR OPTIMIZATION PROBLEMS WITH CHANCE CONSTRAINTS FRANK E. CURTIS,

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lecture 11 and

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm

A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm Journal name manuscript No. (will be inserted by the editor) A Primal-Dual Augmented Lagrangian Penalty-Interior-Point Filter Line Search Algorithm Rene Kuhlmann Christof Büsens Received: date / Accepted:

More information

arxiv: v1 [math.na] 8 Jun 2018

arxiv: v1 [math.na] 8 Jun 2018 arxiv:1806.03347v1 [math.na] 8 Jun 2018 Interior Point Method with Modified Augmented Lagrangian for Penalty-Barrier Nonlinear Programming Martin Neuenhofen June 12, 2018 Abstract We present a numerical

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

POWER SYSTEMS in general are currently operating

POWER SYSTEMS in general are currently operating TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS 1 Robust Optimal Power Flow Solution Using Trust Region and Interior-Point Methods Andréa A. Sousa, Geraldo L. Torres, Member IEEE, Claudio A. Cañizares,

More information

A PRIMAL-DUAL TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION

A PRIMAL-DUAL TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION Optimization Technical Report 02-09, October 2002, UW-Madison Computer Sciences Department. E. Michael Gertz 1 Philip E. Gill 2 A PRIMAL-DUAL TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION 7 October

More information

Constrained Nonlinear Optimization Algorithms

Constrained Nonlinear Optimization Algorithms Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu Institute for Mathematics and its Applications University of Minnesota August 4, 2016

More information

Flexible Penalty Functions for Nonlinear Constrained Optimization

Flexible Penalty Functions for Nonlinear Constrained Optimization IMA Journal of Numerical Analysis (2005) Page 1 of 19 doi: 10.1093/imanum/dri017 Flexible Penalty Functions for Nonlinear Constrained Optimization FRANK E. CURTIS Department of Industrial Engineering and

More information

1. Introduction. We analyze a trust region version of Newton s method for the optimization problem

1. Introduction. We analyze a trust region version of Newton s method for the optimization problem SIAM J. OPTIM. Vol. 9, No. 4, pp. 1100 1127 c 1999 Society for Industrial and Applied Mathematics NEWTON S METHOD FOR LARGE BOUND-CONSTRAINED OPTIMIZATION PROBLEMS CHIH-JEN LIN AND JORGE J. MORÉ To John

More information

Key words. minimization, nonlinear optimization, large-scale optimization, constrained optimization, trust region methods, quasi-newton methods

Key words. minimization, nonlinear optimization, large-scale optimization, constrained optimization, trust region methods, quasi-newton methods SIAM J. OPTIM. c 1998 Society for Industrial and Applied Mathematics Vol. 8, No. 3, pp. 682 706, August 1998 004 ON THE IMPLEMENTATION OF AN ALGORITHM FOR LARGE-SCALE EQUALITY CONSTRAINED OPTIMIZATION

More information

Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization

Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization Frank E. Curtis, Lehigh University Beyond Convexity Workshop, Oaxaca, Mexico 26 October 2017 Worst-Case Complexity Guarantees and Nonconvex

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

1. Introduction. In this paper we discuss an algorithm for equality constrained optimization problems of the form. f(x) s.t.

1. Introduction. In this paper we discuss an algorithm for equality constrained optimization problems of the form. f(x) s.t. AN INEXACT SQP METHOD FOR EQUALITY CONSTRAINED OPTIMIZATION RICHARD H. BYRD, FRANK E. CURTIS, AND JORGE NOCEDAL Abstract. We present an algorithm for large-scale equality constrained optimization. The

More information

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM THAT COMBINES MERIT FUNCTION AND FILTER IDEAS

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM THAT COMBINES MERIT FUNCTION AND FILTER IDEAS A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM THAT COMBINES MERIT FUNCTION AND FILTER IDEAS FRANCISCO A. M. GOMES Abstract. A sequential quadratic programming algorithm for solving nonlinear programming

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints Klaus Schittkowski Department of Computer Science, University of Bayreuth 95440 Bayreuth, Germany e-mail:

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization

How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization Frank E. Curtis Department of Industrial and Systems Engineering, Lehigh University Daniel P. Robinson Department

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation

Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation Continuous Optimisation, Chpt 6: Solution methods for Constrained Optimisation Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version:

More information

A penalty-interior-point algorithm for nonlinear constrained optimization

A penalty-interior-point algorithm for nonlinear constrained optimization Math. Prog. Comp. (2012) 4:181 209 DOI 10.1007/s12532-012-0041-4 FULL LENGTH PAPER A penalty-interior-point algorithm for nonlinear constrained optimization Fran E. Curtis Received: 26 April 2011 / Accepted:

More information

Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models by E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos and Ph. L. Toint Report NAXYS-08-2015

More information

Worst Case Complexity of Direct Search

Worst Case Complexity of Direct Search Worst Case Complexity of Direct Search L. N. Vicente May 3, 200 Abstract In this paper we prove that direct search of directional type shares the worst case complexity bound of steepest descent when sufficient

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Data Assimilation for Weather Forecasting: Reducing the Curse of Dimensionality

Data Assimilation for Weather Forecasting: Reducing the Curse of Dimensionality Data Assimilation for Weather Forecasting: Reducing the Curse of Dimensionality Philippe Toint (with S. Gratton, S. Gürol, M. Rincon-Camacho, E. Simon and J. Tshimanga) University of Namur, Belgium Leverhulme

More information

An introduction to complexity analysis for nonconvex optimization

An introduction to complexity analysis for nonconvex optimization An introduction to complexity analysis for nonconvex optimization Philippe Toint (with Coralia Cartis and Nick Gould) FUNDP University of Namur, Belgium Séminaire Résidentiel Interdisciplinaire, Saint

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Lecture 14 Ellipsoid method

Lecture 14 Ellipsoid method S. Boyd EE364 Lecture 14 Ellipsoid method idea of localization methods bisection on R center of gravity algorithm ellipsoid method 14 1 Localization f : R n R convex (and for now, differentiable) problem:

More information

A GLOBALLY CONVERGENT STABILIZED SQP METHOD

A GLOBALLY CONVERGENT STABILIZED SQP METHOD A GLOBALLY CONVERGENT STABILIZED SQP METHOD Philip E. Gill Daniel P. Robinson July 6, 2013 Abstract Sequential quadratic programming SQP methods are a popular class of methods for nonlinearly constrained

More information

A stabilized SQP method: superlinear convergence

A stabilized SQP method: superlinear convergence Math. Program., Ser. A (2017) 163:369 410 DOI 10.1007/s10107-016-1066-7 FULL LENGTH PAPER A stabilized SQP method: superlinear convergence Philip E. Gill 1 Vyacheslav Kungurtsev 2 Daniel P. Robinson 3

More information

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study International Journal of Mathematics And Its Applications Vol.2 No.4 (2014), pp.47-56. ISSN: 2347-1557(online) Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms:

More information

On Stability of Fuzzy Multi-Objective. Constrained Optimization Problem Using. a Trust-Region Algorithm

On Stability of Fuzzy Multi-Objective. Constrained Optimization Problem Using. a Trust-Region Algorithm Int. Journal of Math. Analysis, Vol. 6, 2012, no. 28, 1367-1382 On Stability of Fuzzy Multi-Objective Constrained Optimization Problem Using a Trust-Region Algorithm Bothina El-Sobky Department of Mathematics,

More information

Hot-Starting NLP Solvers

Hot-Starting NLP Solvers Hot-Starting NLP Solvers Andreas Wächter Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu 204 Mixed Integer Programming Workshop Ohio

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

On Lagrange multipliers of trust region subproblems

On Lagrange multipliers of trust region subproblems On Lagrange multipliers of trust region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Applied Linear Algebra April 28-30, 2008 Novi Sad, Serbia Outline

More information

On sequential optimality conditions for constrained optimization. José Mario Martínez martinez

On sequential optimality conditions for constrained optimization. José Mario Martínez  martinez On sequential optimality conditions for constrained optimization José Mario Martínez www.ime.unicamp.br/ martinez UNICAMP, Brazil 2011 Collaborators This talk is based in joint papers with Roberto Andreani

More information

An example of slow convergence for Newton s method on a function with globally Lipschitz continuous Hessian

An example of slow convergence for Newton s method on a function with globally Lipschitz continuous Hessian An example of slow convergence for Newton s method on a function with globally Lipschitz continuous Hessian C. Cartis, N. I. M. Gould and Ph. L. Toint 3 May 23 Abstract An example is presented where Newton

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties

A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties Xinwei Liu and Yaxiang Yuan Abstract. We present a null-space primal-dual interior-point algorithm

More information