Lecture 15: SQP methods for equality constrained optimization

Size: px
Start display at page:

Download "Lecture 15: SQP methods for equality constrained optimization"

Transcription

1 Lecture 15: SQP methods for equality constrained optimization Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lecture 15: SQP methods for equality constrained optimization p. 1/22

2 Nonlinear equality-constrained problems again! min f(x) subject to c(x) = 0, (ecp) x R n where f : R n R, c = (c 1,...,c m ) : R n R m are C 1 or C 2 (when needed), with m n. easily generalized to inequality constraints... but may be better to use interior-point methods for these. (ecp): attempt to find local solutions or at least KKT points: L(x,y) = f(x) J(x) T y = 0 and c(x) = 0 nonlinear and square system in x and y (linear in y) = use Newton s method to find a correction (s,w) to (x,y) 2 L(x,y) J(x) T J(x) 0 s w = L(x,y) c(x) Lecture 15: SQP methods for equality constrained optimization p. 2/22

3 Alternative formulations Recall: the Lagrangian function is L(x,y) = f(x) y T c(x). unsymmetric: 2 L(x,y) J(x) T J(x) 0 s w = L(x,y) c(x) or symmetric: 2 L(x,y) J(x) T J(x) 0 s w = L(x,y) c(x) or (with y + = y + w) symmetric: 2 L(x,y) J(x) T J(x) 0 s y + = [unsymmetric also possible] f(x) c(x) Lecture 15: SQP methods for equality constrained optimization p. 3/22

4 Some more details often approximate with symmetric B 2 L(x,y) = e.g. B J(x)T J(x) 0 solve system using s y + unsymmetric (LU) factorization of = symmetric (indefinite) factorization of f(x) c(x) B J(x)T J(x) 0 B J(x)T J(x) 0 symmetric factorizations of B and the Schur complement J(x)B 1 J(x) T iterative method (GMRES(k), MINRES, CG within N(J), etc.) Lecture 15: SQP methods for equality constrained optimization p. 4/22

5 An alternative interpretation QP : minimize s IR n f(x) T s st Bs subject to J(x)s = c(x) QP = quadratic program first-order model of constraints c(x + s) second-order model of objective f(x + s)... but B includes curvature of constraints Solution to (QP) satisfies B J(x)T J(x) 0 s y + = f(x) c(x) Lecture 15: SQP methods for equality constrained optimization p. 5/22

6 Sequential quadratic programming - SQP or successive quadratic programming or recursive quadratic programming (RQP) A basic SQP method Given (x 0,y 0 ), set k = 0 Until convergence iterate: Compute a suitable symmetric B k using (x k,y k ) Find the solution of (QP k ) s k = arg min s IR n f(xk ) T s + 1 2s T B k s subject to J(x k )s = c(x k ) along with associated Lagrange multiplier estimates y k+1. Set x k+1 = x k + s k and let k := k + 1. Lecture 15: SQP methods for equality constrained optimization p. 6/22

7 Sequential quadratic programming - SQP... Advantanges of SQP: simple fast quadratically convergent with B k = 2 L(x k,y k ) superlinearly convergent with good B k 2 L(x k,y k ) don t actually need B k 2 L(x k,y k ) Issues with pure SQP how to choose B k? [similar to Newton s method for unconstrained opt and systems] what if QP k is unbounded from below? and when? how do we globalize the SQP iteration? Lecture 15: SQP methods for equality constrained optimization p. 7/22

8 Sequential quadratic programming - SQP... The QP k subproblem: minimize s IR n f(x k ) T s + 1 2sB k s subject to J(x k )s = c(x k ) need constraints to be consistent OK if J(x k ) is full rank need B k to be positive (semi-) definite when J(x k )s = 0 N T k Bk N k positive (semi-) definite where the columns of N k form a basis for the null space of J(x k ) Bk J(x k ) T J(x k ) 0 (is non-singular and) has m ve eigenvalues Lecture 15: SQP methods for equality constrained optimization p. 8/22

9 Linesearch SQP methods s k = arg min s IR n f(xk ) T s + 1 2s T B k s subject to J(x k )s = c(x k ) Linesearch SQP: Set x k+1 = x k + α k s k, where α k is chosen so that Φ(x k + α k s k,σ k ) < Φ(x k,σ k ) where Φ(x,σ) is a suitable merit function and σ k are parameters. Recall unconstrained GLM: crucial that s k is a descent direction for Φ(x,σ k ) at x k ; normally require that B k is positive definite. Lecture 15: SQP methods for equality constrained optimization p. 9/22

10 Suitable merit functions for SQP Recall the quadratic penalty function: Φ(x,σ) = f(x) + 1 2σ c(x) 2 Theorem 30: Suppose that B k is positive definite, and that (s k,y k+1 ) are the SQP search direction and its associated Lagrange multiplier estimates for the problem the (ecp) problem at x k. Then if x k is not a KKT point of (ecp), then s k is a descent direction for the quadratic penalty function Φ(x,σ k ) at x k whenever σ k c(xk ) y k+1. Lecture 15: SQP methods for equality constrained optimization p. 10/22

11 Suitable merit functions for SQP... Proof of Theorem 30: SQP direction s k and associated multiplier estimates y k+1 satisfy B k s k J(x k ) T y k+1 = f(x k ) ( ) J(x k )s k = c(x k ) ( ) (*) + (**) = (s k ) T f(x k ) = (s k ) T B k s k + (s k ) T J(x k ) T y k+1 (**) = c(x k ) T J(x k )s k = c(x k ) 2. = (s k ) T B k s k c(x k ) T y k+1 These, the positive definiteness of B k, the Cauchy-Schwarz inequality, the required bound on σ k, and s k 0 if x k is not critical = Lecture 15: SQP methods for equality constrained optimization p. 11/22

12 Suitable merit functions for SQP... Proof of Theorem 30: (continued) (s k ) T x Φ(x k,σ k ) = (s k ) ( f(x T k ) + 1 ) ) T c(x k ) σ kj(xk = (s k ) T B k s k c(x k ) T y k+1 c(xk ) 2 ( ) σ k c(x k < c(x k ) ) y k+1 0, and so s k is descent for Φ(x k,σ k ). Other suitable merit functions: The non-differentiable exact penalty function: [widely used] Ψ(x,ρ) = f(x) + ρ c(x), where can be any norm and ρ > 0. recall that minimizers of (ecp) correspond to those of Ψ(x, ρ) for ρ sufficiently large (and finite! ρ > y D ); equivalent of Th 30 holds (ρ k y k+1 D ). σ k Lecture 15: SQP methods for equality constrained optimization p. 12/22

13 The Maratos effect merit function may prevent acceptance of the full SQP step (so α k 1) arbitrarily close to x = slow convergence x * 0.1 x k +s k x k f(x) = 2(x x2 2 1) x 1 and c(x) = x x2 2 1; solution: x = (1,0), y = 2. 3 Here: l 1 non-differentiable exact penalty function (ρ = 1) but other merit fcts. have similar behaviour. Lecture 15: SQP methods for equality constrained optimization p. 13/22

14 Avoiding the Maratos effect The Maratos effect occurs because the curvature of the constraints is not adequately represented by linearization in the SQP model: c(x k + s k ) = O( s k 2 ) = need to correct for this curvature Use a second-order correction from x k + s k : c(x k + s k + s k C ) = o( sk 2 ). Also, do not want to destroy potential for fast convergence = s k C = o(sk ). Lecture 15: SQP methods for equality constrained optimization p. 14/22

15 Popular second-order corrections minimum norm solution to c(x k + s k ) + J(x k + s k )s k C = 0 I J(x k + s k ) T J(x k + s k ) 0 sk C y k+1 C = 0 c(x k + s k ) minimum norm solution to c(x k + s k ) + J(x k )s k C = 0 I J(xk ) T J(x k ) 0 sk C y k+1 C = 0 c(x k + s k ) another SQP step from x k + s k...and so on... 2 L(x k + s k,y+ k ) J(xk + s k ) T J(x k + s k ) 0 sk C y k+1 C = L(xk + s k ) c(x k + s k ) Lecture 15: SQP methods for equality constrained optimization p. 15/22

16 Second-order corrections in action x * x k +s k +s c k 0.1 x k +s k x k f(x) = 2(x x 2 2 1) x 1 and c(x) = x x 2 2 1; solution: x = (1,0), y = 3 2. Here: l 1 non-differentiable exact penalty function (ρ = 1) but other merit fcts. have similar behaviour. fast convergence x k + s k + s k C reduces Φ = global convergence Lecture 15: SQP methods for equality constrained optimization p. 16/22

17 Trust-region SQP methods Obvious trust-region approach: s k = arg min s IR n f(xk ) T s st B k s subject to J(x k )s = c(x k ) and s k do not require that B k be positive definite = can use B k = 2 L(x k,y k ) if k < CRIT where CRIT def = min s subject to J(x k )s = c(x k ) = no solution to trust-region subproblem = simple trust-region approach to SQP is flawed if c(x k ) 0 = need to consider alternatives Lecture 15: SQP methods for equality constrained optimization p. 17/22

18 Ã È ÈÈÈÈ ÈÕ Æ Infeasibility of the SQP step Ì Ð Ò Ö Þ ÓÒ ØÖ ÒØ ØÖÙ Ø Ö ÓÒ ¹ Ì + Ì ÒÓÒÐ Ò Ö ÓÒ ØÖ ÒØ Lecture 15: SQP methods for equality constrained optimization p. 18/22

19 An alternative: Composite-step methods Aim: find composite step s k = n k + t k where the normal step n k moves towards feasibility of the linearized constraints (within the trust region) J(x k )n k + c(x k ) < c(x k ) (model objective may get worse) the tangential step t k reduces the model objective function (within the trust-region) without sacrificing feasibility obtained from n k J(x k )(n k + t k ) = J(x k )n k = J(x k )t k = 0 Lecture 15: SQP methods for equality constrained optimization p. 19/22

20 Ò È ÈÈÈÈ ÈÕ Ò Normal and tangential steps Points on dotted line are all potential tangential steps Ì Ð Ò Ö Þ ÓÒ ØÖ ÒØ Æ Ö Ø ÔÓ ÒØ ÓÒ Ð Ò Ö Þ ÓÒ ØÖ ÒØ ÐÓ ØÓ Ò Ö Ø ÔÓ ÒØ ØÖÙ Ø Ö ÓÒ ¹ Ì + + Lecture 15: SQP methods for equality constrained optimization p. 20/22

21 Constraint reduction [Byrd-Omojokun] normal step: replace J(x k )s = c(x k ) and s k by approximately minimize J(x k )n + c(x k ) subject to n k tangential step: (approximate) arg min t IR n subject to ( f(x k ) + B k n k ) T t + 1 2t T B k t J(x k )t = 0 and n k + t k use conjugate gradients to solve both subproblems = Cauchy conditions satisfied in both cases globally convergent basis of successful KNITRO package Lecture 15: SQP methods for equality constrained optimization p. 21/22

22 Other alternatives composite step SQP methods constraint relaxation (Vardi) - not addressed here constraint reduction (Byrd Omojokun) -covered constraint lumping (Celis Dennis Tapia) - not addressed the Sl p QP method of Fletcher - not addressed here the filter-sqp approach of Fletcher and Leyffer - not addressed An important class of methods not addressed: active-set methods for linearly-constrained nonlinear problems (ie, generalization of simplex methods from the LP to the nonlinear case). Lecture 15: SQP methods for equality constrained optimization p. 22/22

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lecture 11 and

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity

A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity A Trust Funnel Algorithm for Nonconvex Equality Constrained Optimization with O(ɛ 3/2 ) Complexity Mohammadreza Samadi, Lehigh University joint work with Frank E. Curtis (stand-in presenter), Lehigh University

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Lecture 13: Constrained optimization

Lecture 13: Constrained optimization 2010-12-03 Basic ideas A nonlinearly constrained problem must somehow be converted relaxed into a problem which we can solve (a linear/quadratic or unconstrained problem) We solve a sequence of such problems

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization. Nick Gould (RAL)

Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization. Nick Gould (RAL) Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization Nick Gould (RAL) x IR n f(x) subject to c(x) = Part C course on continuoue optimization CONSTRAINED MINIMIZATION x

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Constrained Nonlinear Optimization Algorithms

Constrained Nonlinear Optimization Algorithms Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu Institute for Mathematics and its Applications University of Minnesota August 4, 2016

More information

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study International Journal of Mathematics And Its Applications Vol.2 No.4 (2014), pp.47-56. ISSN: 2347-1557(online) Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms:

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Lecture 3: Linesearch methods (continued). Steepest descent methods

Lecture 3: Linesearch methods (continued). Steepest descent methods Lecture 3: Linesearch methods (continued). Steepest descent methods Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lecture 3: Linesearch methods (continued).

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

A New Penalty-SQP Method

A New Penalty-SQP Method Background and Motivation Illustration of Numerical Results Final Remarks Frank E. Curtis Informs Annual Meeting, October 2008 Background and Motivation Illustration of Numerical Results Final Remarks

More information

Survey of NLP Algorithms. L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA

Survey of NLP Algorithms. L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA Survey of NLP Algorithms L. T. Biegler Chemical Engineering Department Carnegie Mellon University Pittsburgh, PA NLP Algorithms - Outline Problem and Goals KKT Conditions and Variable Classification Handling

More information

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke, University of Washington Daniel

More information

Nonmonotone Trust Region Methods for Nonlinear Equality Constrained Optimization without a Penalty Function

Nonmonotone Trust Region Methods for Nonlinear Equality Constrained Optimization without a Penalty Function Nonmonotone Trust Region Methods for Nonlinear Equality Constrained Optimization without a Penalty Function Michael Ulbrich and Stefan Ulbrich Zentrum Mathematik Technische Universität München München,

More information

On Lagrange multipliers of trust-region subproblems

On Lagrange multipliers of trust-region subproblems On Lagrange multipliers of trust-region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Programy a algoritmy numerické matematiky 14 1.- 6. června 2008

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

An Inexact Newton Method for Nonlinear Constrained Optimization

An Inexact Newton Method for Nonlinear Constrained Optimization An Inexact Newton Method for Nonlinear Constrained Optimization Frank E. Curtis Numerical Analysis Seminar, January 23, 2009 Outline Motivation and background Algorithm development and theoretical results

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

A Trust-Funnel Algorithm for Nonlinear Programming

A Trust-Funnel Algorithm for Nonlinear Programming for Nonlinear Programming Daniel P. Robinson Johns Hopins University Department of Applied Mathematics and Statistics Collaborators: Fran E. Curtis (Lehigh University) Nic I. M. Gould (Rutherford Appleton

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

POWER SYSTEMS in general are currently operating

POWER SYSTEMS in general are currently operating TO APPEAR IN IEEE TRANSACTIONS ON POWER SYSTEMS 1 Robust Optimal Power Flow Solution Using Trust Region and Interior-Point Methods Andréa A. Sousa, Geraldo L. Torres, Member IEEE, Claudio A. Cañizares,

More information

Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization

Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization Denis Ridzal Department of Computational and Applied Mathematics Rice University, Houston, Texas dridzal@caam.rice.edu

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Seminal papers in nonlinear optimization

Seminal papers in nonlinear optimization Seminal papers in nonlinear optimization Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk) December 7, 2006 The following papers are classics in the field. Although many of them cover

More information

The Squared Slacks Transformation in Nonlinear Programming

The Squared Slacks Transformation in Nonlinear Programming Technical Report No. n + P. Armand D. Orban The Squared Slacks Transformation in Nonlinear Programming August 29, 2007 Abstract. We recall the use of squared slacks used to transform inequality constraints

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Nonlinear Optimization Solvers

Nonlinear Optimization Solvers ICE05 Argonne, July 19, 2005 Nonlinear Optimization Solvers Sven Leyffer leyffer@mcs.anl.gov Mathematics & Computer Science Division, Argonne National Laboratory Nonlinear Optimization Methods Optimization

More information

Steering Exact Penalty Methods for Nonlinear Programming

Steering Exact Penalty Methods for Nonlinear Programming Steering Exact Penalty Methods for Nonlinear Programming Richard H. Byrd Jorge Nocedal Richard A. Waltz April 10, 2007 Technical Report Optimization Technology Center Northwestern University Evanston,

More information

A PRIMAL-DUAL TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION

A PRIMAL-DUAL TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION Optimization Technical Report 02-09, October 2002, UW-Madison Computer Sciences Department. E. Michael Gertz 1 Philip E. Gill 2 A PRIMAL-DUAL TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION 7 October

More information

Sequential Quadratic Programming Methods

Sequential Quadratic Programming Methods Sequential Quadratic Programming Methods Klaus Schittkowski Ya-xiang Yuan June 30, 2010 Abstract We present a brief review on one of the most powerful methods for solving smooth constrained nonlinear optimization

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

PDE-Constrained and Nonsmooth Optimization

PDE-Constrained and Nonsmooth Optimization Frank E. Curtis October 1, 2009 Outline PDE-Constrained Optimization Introduction Newton s method Inexactness Results Summary and future work Nonsmooth Optimization Sequential quadratic programming (SQP)

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

CONSTRAINED NONLINEAR PROGRAMMING

CONSTRAINED NONLINEAR PROGRAMMING 149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

Recent Adaptive Methods for Nonlinear Optimization

Recent Adaptive Methods for Nonlinear Optimization Recent Adaptive Methods for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke (U. of Washington), Richard H. Byrd (U. of Colorado), Nicholas I. M. Gould

More information

On nonlinear optimization since M.J.D. Powell

On nonlinear optimization since M.J.D. Powell On nonlinear optimization since 1959 1 M.J.D. Powell Abstract: This view of the development of algorithms for nonlinear optimization is based on the research that has been of particular interest to the

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming 1 2

Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming 1 2 Inexact-Restoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming 1 2 J. M. Martínez 3 December 7, 1999. Revised June 13, 2007. 1 This research was supported

More information

CONVEXIFICATION SCHEMES FOR SQP METHODS

CONVEXIFICATION SCHEMES FOR SQP METHODS CONVEXIFICAION SCHEMES FOR SQP MEHODS Philip E. Gill Elizabeth Wong UCSD Center for Computational Mathematics echnical Report CCoM-14-06 July 18, 2014 Abstract Sequential quadratic programming (SQP) methods

More information

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way.

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way. AMSC 607 / CMSC 878o Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 3: Penalty and Barrier Methods Dianne P. O Leary c 2008 Reference: N&S Chapter 16 Penalty and Barrier

More information

Feasible Interior Methods Using Slacks for Nonlinear Optimization

Feasible Interior Methods Using Slacks for Nonlinear Optimization Feasible Interior Methods Using Slacks for Nonlinear Optimization Richard H. Byrd Jorge Nocedal Richard A. Waltz February 28, 2005 Abstract A slack-based feasible interior point method is described which

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

x 2. x 1

x 2. x 1 Feasibility Control in Nonlinear Optimization y M. Marazzi z Jorge Nocedal x March 9, 2000 Report OTC 2000/04 Optimization Technology Center Abstract We analyze the properties that optimization algorithms

More information

1. Introduction. We consider the general smooth constrained optimization problem:

1. Introduction. We consider the general smooth constrained optimization problem: OPTIMIZATION TECHNICAL REPORT 02-05, AUGUST 2002, COMPUTER SCIENCES DEPT, UNIV. OF WISCONSIN TEXAS-WISCONSIN MODELING AND CONTROL CONSORTIUM REPORT TWMCC-2002-01 REVISED SEPTEMBER 2003. A FEASIBLE TRUST-REGION

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Computational Finance

Computational Finance Department of Mathematics at University of California, San Diego Computational Finance Optimization Techniques [Lecture 2] Michael Holst January 9, 2017 Contents 1 Optimization Techniques 3 1.1 Examples

More information

Inexact Newton Methods and Nonlinear Constrained Optimization

Inexact Newton Methods and Nonlinear Constrained Optimization Inexact Newton Methods and Nonlinear Constrained Optimization Frank E. Curtis EPSRC Symposium Capstone Conference Warwick Mathematics Institute July 2, 2009 Outline PDE-Constrained Optimization Newton

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints Klaus Schittkowski Department of Computer Science, University of Bayreuth 95440 Bayreuth, Germany e-mail:

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

HYBRID FILTER METHODS FOR NONLINEAR OPTIMIZATION. Yueling Loh

HYBRID FILTER METHODS FOR NONLINEAR OPTIMIZATION. Yueling Loh HYBRID FILTER METHODS FOR NONLINEAR OPTIMIZATION by Yueling Loh A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore,

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

A SECOND DERIVATIVE SQP METHOD : THEORETICAL ISSUES

A SECOND DERIVATIVE SQP METHOD : THEORETICAL ISSUES A SECOND DERIVATIVE SQP METHOD : THEORETICAL ISSUES Nicholas I. M. Gould Daniel P. Robinson Oxford University Computing Laboratory Numerical Analysis Group Technical Report 08/18 November 2008 Abstract

More information

AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING

AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING XIAO WANG AND HONGCHAO ZHANG Abstract. In this paper, we propose an Augmented Lagrangian Affine Scaling (ALAS) algorithm for general

More information

Some Theoretical Properties of an Augmented Lagrangian Merit Function

Some Theoretical Properties of an Augmented Lagrangian Merit Function Some Theoretical Properties of an Augmented Lagrangian Merit Function Philip E. GILL Walter MURRAY Michael A. SAUNDERS Margaret H. WRIGHT Technical Report SOL 86-6R September 1986 Abstract Sequential quadratic

More information

A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE

A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE Nic I. M. Gould Daniel P. Robinson Oxford University Computing Laboratory Numerical Analysis Group Technical Report 08-21 December 2008 Abstract In [19],

More information

Analysis of Inexact Trust-Region Interior-Point SQP Algorithms. Matthias Heinkenschloss Luis N. Vicente. TR95-18 June 1995 (revised April 1996)

Analysis of Inexact Trust-Region Interior-Point SQP Algorithms. Matthias Heinkenschloss Luis N. Vicente. TR95-18 June 1995 (revised April 1996) Analysis of Inexact rust-region Interior-Point SQP Algorithms Matthias Heinkenschloss Luis N. Vicente R95-18 June 1995 (revised April 1996) Department of Computational and Applied Mathematics MS 134 Rice

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 11 On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method ROMAN A. POLYAK Department of SEOR and Mathematical

More information

Trust Region Methods. Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh. Convex Optimization /36-725

Trust Region Methods. Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh. Convex Optimization /36-725 Trust Region Methods Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh Convex Optimization 10-725/36-725 Trust Region Methods min p m k (p) f(x k + p) s.t. p 2 R k Iteratively solve approximations

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Key words. minimization, nonlinear optimization, large-scale optimization, constrained optimization, trust region methods, quasi-newton methods

Key words. minimization, nonlinear optimization, large-scale optimization, constrained optimization, trust region methods, quasi-newton methods SIAM J. OPTIM. c 1998 Society for Industrial and Applied Mathematics Vol. 8, No. 3, pp. 682 706, August 1998 004 ON THE IMPLEMENTATION OF AN ALGORITHM FOR LARGE-SCALE EQUALITY CONSTRAINED OPTIMIZATION

More information

Optimal Newton-type methods for nonconvex smooth optimization problems

Optimal Newton-type methods for nonconvex smooth optimization problems Optimal Newton-type methods for nonconvex smooth optimization problems Coralia Cartis, Nicholas I. M. Gould and Philippe L. Toint June 9, 20 Abstract We consider a general class of second-order iterations

More information

LINEAR AND NONLINEAR PROGRAMMING

LINEAR AND NONLINEAR PROGRAMMING LINEAR AND NONLINEAR PROGRAMMING Stephen G. Nash and Ariela Sofer George Mason University The McGraw-Hill Companies, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

arxiv: v1 [math.na] 8 Jun 2018

arxiv: v1 [math.na] 8 Jun 2018 arxiv:1806.03347v1 [math.na] 8 Jun 2018 Interior Point Method with Modified Augmented Lagrangian for Penalty-Barrier Nonlinear Programming Martin Neuenhofen June 12, 2018 Abstract We present a numerical

More information

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions CE 191: Civil and Environmental Engineering Systems Analysis LEC : Optimality Conditions Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 214 Prof. Moura

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

A STABILIZED SQP METHOD: GLOBAL CONVERGENCE

A STABILIZED SQP METHOD: GLOBAL CONVERGENCE A STABILIZED SQP METHOD: GLOBAL CONVERGENCE Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report CCoM-13-4 Revised July 18, 2014, June 23,

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

Optimisation in Higher Dimensions

Optimisation in Higher Dimensions CHAPTER 6 Optimisation in Higher Dimensions Beyond optimisation in 1D, we will study two directions. First, the equivalent in nth dimension, x R n such that f(x ) f(x) for all x R n. Second, constrained

More information