A Combinatorial Optimization Problem in Wireless Communications and Its Analysis

Size: px
Start display at page:

Download "A Combinatorial Optimization Problem in Wireless Communications and Its Analysis"

Transcription

1 A Combinatorial Optimization Problem in Wireless Communications and Its Analysis Ralf R. Müller EE Dept, NTNU Benjamin Zaidel Tel Aviv Rodrigo de Miguel SINTEF, Trondheim Vesna Gardašević EE Dept, NTNU Dongning Guo EECS Dept, Northwestern Aris Moustakas Physics Dept, NCUA Finn Knudsen Math Dept, NTNU

2 Introduction 2 Let with x C K and J C K K. Example (sphere): The Problem E := K min x X x Jx X = {x : x x = K} = E = minλ(j) Example 2 (cube): X = {+, } K =??? Example 3 (vector precoding): X = (4Z+) K =???

3 Introduction 2 Let with x C K and J C K K. Example (sphere): The Problem E := K min x X x Jx X = {x : x x = K} = E = minλ(j) Example 2 (cube): X = {+, } K =??? Example 3 (vector precoding): X = (4Z+) K =???

4 Introduction 2 Let with x C K and J C K K. Example (sphere): The Problem E := K min x X x Jx X = {x : x x = K} = E = minλ(j) Example 2 (cube): X = {+, } K =??? Example 3 (vector precoding): X = (4Z+) K =???

5 Introduction 2 Let with x C K and J C K K. Example (sphere): The Problem E := K min x X x Jx X = {x : x x = K} = E = minλ(j) Example 2 (cube): X = {+, } K =??? Example 3 (vector precoding): X = (4Z+) K =???

6 Application 3 The Gaussian Vector Channel Let the received vector be given by where t is the transmitted vector y = Ht+n n is uncorrelated (white) Gaussian noise H is a coupling matrix accounting for crosstalk In many applications, e.g. antenna arrays, code-division multiple-access, the coupling matrix is modelled as a random matrix with independent identically distributed entries (i.i.d. model). Crosstalk can be processed either at receiver or transmitter

7 Application 4

8 Application 5 Processing at Transmitter If the transmitter is a base-station and the receiver is a hand-held device one would prefer to have the complexity at the transmitter. E.g. let the transmitted vector be where x = s is the data to be sent. t = H (HH ) x Then, y = s+n. No crosstalk anymore due to channel inversion.

9 Application 6 Problems of Simple Channel Inversion Channel inversion implies a significant power amplification, i.e. x ( HH ) x > x x. In particular, let α = K N ; the entries of H are i.i.d. with variance /N. Then, for fixed aspect ratio α with probability. x ( HH ) x lim K x x = α

10 Vector Precoding 7 Lattice-Relaxation Precoding Tomlinson 7, Harashima & Miyakawa 72 Choose that representation that gives the smallest transmit power.

11 Vector Precoding 7 Lattice-Relaxation Precoding Tomlinson 7, Harashima & Miyakawa 72 Choose that representation that gives the smallest transmit power.

12 Vector Precoding 7 Lattice-Relaxation Precoding Tomlinson 7; Harashima & Miyakawa 72 Choose that representation that gives the smallest transmit power.

13 Vector Precoding 7 Lattice-Relaxation Precoding Tomlinson 7, Harashima & Miyakawa 72 Instead of representing the logical 0 by +, we present it by any element of the set {..., 7, 3,+,+5,...} = 4Z+. Correspondingly, the logical is represented by any element of the set 4Z. Choose that representation that gives the smallest transmit power.

14 Vector Precoding 8 General Relaxation Precoding Let B 0 and B denote the sets presenting 0 and, resp. Let (s,s 2,s 3,...,s K ) {0,} K denote the data to be transmitted. Then, the transmitted energy per data symbol is given by with and E = K min x X x Jx X = B s B s2 B sk J = (HH ). What is a smart choice for B 0 and B?

15 Replica Method 9 Zero Temperature Formulation Quadratic programming is the problem of finding the zero temperature limit of a quadratic energy potential. The transmitted power is written as a zero temperature limit E = lim β lim β lim K E J e βtr(x Jx) βk log x X βk log x X e βtr(jxx ) with β denoting temperature.

16 Replica Method 9 Zero Temperature Formulation Quadratic programming is the problem of finding the zero temperature limit of a quadratic energy potential. The transmitted power is written as a zero temperature limit E = lim β lim β lim K E J e βtr(x Jx) βk log x X βk log x X e βtr(jxx ) with β denoting temperature.

17 Replica Method 0 The Harish-Chandra Integral (also called the Itzykson-Zuber integral) Let P be any positive semi-definite matrix of bounded rank n and let J be bi-unitarily invariant. Then, lim K K log E J e KtrJP = n a= λ a (P) 0 R J ( w)dw with λ a denoting the positive eigenvalues of P and R J (w) denoting the R-transform of the spectral measure of J (Marinari et al. 94; Guionnet & Maïda 05).

18 Replica Method We want lim K with K E J log x X The Replica Method e βtr(jxx ) = lim K lim = lim K lim = lim K lim = lim K lim nk log E J nk log E J Q ab := K x ax b. ( x X n a= x a X nk log E J x X nk log E Q exp e βtr(jxx ) ) n ( e βtr Jx a x ) a K x n X n a= ( e tr Jβ n ) x a x a a= βλ a (Q) 0 R J ( w)dw

19 Replica Method We want lim K with K E J log x X The Replica Method e βtr(jxx ) = lim K lim = lim K lim = lim K lim = lim K lim nk log E J nk log E J Q ab := K x ax b. ( n x X a= x a X nk log E J x X nk log E Q exp e βtr(jxx ) ) n ( e βtr Jx a x a ) K x n X n a= ( e tr Jβ n ) x a x a a= βλ a (Q) 0 R J ( w)dw

20 Replica Method We want lim K with K E J log x X The Replica Method e βtr(jxx ) = lim K lim = lim K lim = lim K lim = lim K lim nk log E J nk log E J Q ab := K x ax b. ( n x X a= x a X nk log E J x X nk log E Q exp e βtr(jxx ) ) n ( e βtr Jx a x a ) K x n X n a= ( e tr Jβ n ) x a x a a= βλ a (Q) 0 R J ( w)dw

21 Replica Method We want lim K with K E J log x X The Replica Method e βtr(jxx ) = lim K lim = lim K lim = lim K lim = lim K lim nk log E J nk log E J Q ab := K x ax b. ( n x X a= x a X nk log E J x X nk log E Q exp e βtr(jxx ) ) n ( e βtr Jx a x ) a K x n X n a= ( e tr Jβ n ) x a x a a= βλ a (Q) 0 R J ( w)dw

22 Replica Method 2 We find lim K K E J log x X e βtr(jxx ) Laplace Integration = lim K lim = min Q:Pr(Q)>0 lim min Q:Pr(Q)>0 lim nk log E Q exp n log K n a= n a= βλ a (Q) n tr[qr J( βq)]. 0 βλ a (Q) 0 R J ( w)dw R J ( w)dw How to optimize over Q?

23 Replica Method 2 We find lim K K E J log x X e βtr(jxx ) Laplace Integration = lim K lim = min Q:Pr(Q)>0 lim min Q:Pr(Q)>0 lim nk log E Q exp n log K n a= n a= βλ a (Q) n tr[qr J( βq)]. 0 βλ a (Q) 0 R J ( w)dw R J ( w)dw How to optimize over Q?

24 Replica Method 2 We find lim K K E J log x X e βtr(jxx ) Laplace Integration = lim K lim = min Q:Pr(Q)>0 lim min Q:Pr(Q)>0 lim nk log E Q exp n log K n a= n a= βλ a (Q) n tr[qr J( βq)]. 0 βλ a (Q) 0 R J ( w)dw R J ( w)dw How to optimize over Q?

25 Replica Symmetry 3 Replica Symmetric (RS) Ansatz We assume a certain structure for a matrix Q. The easiest try is q + χ β q q q q q + χ... β q q Q := q q... q + χ β q q q q q + χ β with some parameters q and χ. This is a critical step. Sometimes, the structure of Q is more complicated.

26 Replica Symmetry 4 RS Solution Let P(s) denote the limit of the empirical distribution of the information symbols s,s 2,...,s K as K. Let q and χ be the simultaneous solutions to 2 q = argmin z 2qR ( χ) 2xR( χ) DzdP(s) x B s z χ = argmin 2qR ( χ) 2xR( χ) z DzdP(s) 2qR ( χ) x B s where Dz = exp( z 2 /2)dz/ 2π, R( ) is the R-transform of the limiting eigenvalue spectrum of J, and 0 < χ <. Then, replica symmetry (RS) implies as K. K min x X x Jx q χ χr( χ)

27 Replica Symmetry 5 Some R-Transforms I : R(w) = HH : R(w) = αw Marchenko-Pastur (MP) law (HH ) : R(w) = α ( α) 2 4αw 2αw inv. MP

28 Replica Symmetry 6 Odd Integer Quadrature Lattice

29 Replica Symmetry 7 Complex Lattice Precoding 8 RS Solution Lower Bound 7 E [db] π ( α) α α

30 Replica Symmetry 8 8 RS Solution Lower Bound K=27 K= E [db] α

31 Replica Symmetry Breaking 9 -Step Replica Symmetry Breaking Q := µ β { columns }}{ ai aaaaaaaaaaaaaaaa q +p+ χ β q +p q q q q q +p q +p+ χ β q q q q q q q +p+ χ β q +p... q q q q q +p q +p+ χ β q q q q q q q +p+ χ β q +p q q q q q +p q +p+ χ β with the macroscopic parameters q,p and χ and the blocksize µ β.

32 Replica Symmetry Breaking 20 -Step Replica Symmetry Breaking E = ( q +p+ χ ) R( χ µp) χ µ µ R( χ) q(µp+χ)r ( χ µp) The macroscopic parameters q, p, χ and µ are given by 4 coupled non-linear equations. Solving those equations numerically is a tedious and tricky task.

33 Replica Symmetry Breaking 2 8 RS Solution Lower Bound RSB Solution 7 6 K=27 K=64 E [db] α

34 Convex Precoding 22 Complex Convex Relaxation... allows for convex programming (and is replica symmetric).

35 Convex Precoding Energy Penalty Comparison (QPSK) RS Solution Lower Bound RSB Solution L=2 RSB Solution L=3 Discrete Lattice (L=2) Simulation Results: K=27 Discrete Lattice (L=2) Simulation Results: K=64 CR QPSK RS Solution CR QPSK Simulation Results: K=64 E [db] α

36 Inverting Singular Channels 24 Inverting Singular Channels What happens if the MP-law has a mass point at zero (K > N)? Can we precode without interference? The precoder produces The received signal becomes lim argmin ǫ 0 x X x (HH +ǫi) x K y = lim ǫ 0 HH (HH +ǫi) x+n. If the energy is finite, there is no interference.

37 Inverting Singular Channels 24 Inverting Singular Channels What happens if the MP-law has a mass point at zero (K > N)? Can we precode without interference? The precoder produces The received signal becomes lim argmin ǫ 0 x X x (HH +ǫi) x K y = lim ǫ 0 HH (HH +ǫi) x+n. If the energy is finite, there is no interference.

38 Inverting Singular Channels 24 Inverting Singular Channels What happens if the MP-law has a mass point at zero (K > N)? Can we precode without interference? The precoder produces The received signal becomes lim argmin ǫ 0 x X x (HH +ǫi) x K y = lim ǫ 0 HH (HH +ǫi) x+n. If the energy is finite, there is no interference.

39 Inverting Singular Channels 25 Overloaded Convex Precoding. quadrant The probability that a random N dimensional subspace in K real dimensions intersects the. K-tant is N P(K,N) = 2 K l=0 ( K l ) subspace As K,N to infinity, we get K < 2N P(K,N) = /2 K = 2N 0 K > 2N

40 Inverting Singular Channels 25 Overloaded Convex Precoding. quadrant The probability that a random N dimensional subspace in K real dimensions intersects the. K-tant is N P(K,N) = 2 K l=0 ( K l ) subspace As K,N to infinity, we get K < 2N P(K,N) = /2 K = 2N 0 K > 2N

41 Inverting Singular Channels 25 Overloaded Convex Precoding. quadrant The probability that a random N dimensional subspace in K complex dimensions intersects the. K-tant is 2N P(K,N) = 2 2K l=0 ( 2K l ) subspace As K,N to infinity, we get K < 2N P(K,N) = /2 K = 2N 0 K > 2N

42 Inverting Singular Channels 26 Overloaded Convex Precoding P(K,N) N=4 N=8 N=6 N=32 N=64 N= α

43 Open Problems 27 Wanted lim K K log E A,B e KtrAPBP = f {R A ( ),R B ( ),...}... or other more complicated exponents.

44 Appendix 28 Negative Entropy 0 4 entropy 0 3 RSB S = χr( χ) χ R( w)dw S RS α The closer the entropy is to zero, the better the RSB approximation.

Minimization of Quadratic Forms in Wireless Communications

Minimization of Quadratic Forms in Wireless Communications Minimization of Quadratic Forms in Wireless Communications Ralf R. Müller Department of Electronics & Telecommunications Norwegian University of Science & Technology, Trondheim, Norway mueller@iet.ntnu.no

More information

Vector Precoding for Wireless MIMO Systems: A Replica Analysis

Vector Precoding for Wireless MIMO Systems: A Replica Analysis Vector Precoding for Wireless MIMO Systems: A Replica Analysis Ralf R. Müller, Dongning Guo, and Aris L. Moustakas Abstract arxiv:76.69v [cs.it] 8 Jun 7 We apply the replica method to analyze vector precoding,

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012 1413 Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking Benjamin M. Zaidel, Member, IEEE, Ralf

More information

Vector Precoding for Wireless MIMO Systems and Its Replica Analysis

Vector Precoding for Wireless MIMO Systems and Its Replica Analysis JOURNAL OF SELECTED AREAS IN COMMUNICATIONS, VOL. 6, NO. 4, MAY 8 Vector Precoding for Wireless MIMO Systems and Its Replica Analysis Ralf R. Müller, Senior Member, IEEE, Dongning Guo, Member, IEEE, and

More information

The Effect of Spatial Correlations on MIMO Capacity: A (not so) Large N Analytical Approach: Aris Moustakas 1, Steven Simon 1 & Anirvan Sengupta 1,2

The Effect of Spatial Correlations on MIMO Capacity: A (not so) Large N Analytical Approach: Aris Moustakas 1, Steven Simon 1 & Anirvan Sengupta 1,2 The Effect of Spatial Correlations on MIMO Capacity: A (not so) Large N Analytical Approach: Aris Moustakas 1, Steven Simon 1 & Anirvan Sengupta 1, 1, Rutgers University Outline Aim: Calculate statistics

More information

On the Optimum Asymptotic Multiuser Efficiency of Randomly Spread CDMA

On the Optimum Asymptotic Multiuser Efficiency of Randomly Spread CDMA On the Optimum Asymptotic Multiuser Efficiency of Randomly Spread CDMA Ralf R. Müller Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Digitale Übertragung 13 December 2014 1. Introduction

More information

Burgers equation in the complex plane. Govind Menon Division of Applied Mathematics Brown University

Burgers equation in the complex plane. Govind Menon Division of Applied Mathematics Brown University Burgers equation in the complex plane Govind Menon Division of Applied Mathematics Brown University What this talk contains Interesting instances of the appearance of Burgers equation in the complex plane

More information

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws Random Matrices: Beyond Wigner and Marchenko-Pastur Laws Nathan Noiry Modal X, Université Paris Nanterre May 3, 2018 Wigner s Matrices Wishart s Matrices Generalizations Wigner s Matrices ij, (n, i, j

More information

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws Symeon Chatzinotas February 11, 2013 Luxembourg Outline 1. Random Matrix Theory 1. Definition 2. Applications 3. Asymptotics 2. Ensembles

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

MIMO Capacities : Eigenvalue Computation through Representation Theory

MIMO Capacities : Eigenvalue Computation through Representation Theory MIMO Capacities : Eigenvalue Computation through Representation Theory Jayanta Kumar Pal, Donald Richards SAMSI Multivariate distributions working group Outline 1 Introduction 2 MIMO working model 3 Eigenvalue

More information

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver E. A. Jorswieck 1, A. Sezgin 1, H. Boche 1 and E. Costa 2 1 Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut 2

More information

A Comparative Analysis of Detection Filters in the Doctrine of MIMO Communications Systems

A Comparative Analysis of Detection Filters in the Doctrine of MIMO Communications Systems A Comparative Analysis of Detection Filters in the Doctrine of MIMO Communications Systems Vikram Singh Department of Electrical Engineering Indian Institute of Technology Kanpur, U.P 08016 Email: vikrama@iitk.ac.in

More information

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Multiplexing,

More information

Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction 1

Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction 1 Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction 1 Mahmoud Taherzadeh, Amin Mobasher, and Amir K. Khandani Coding & Signal Transmission Laboratory Department of Electrical & Computer

More information

Interactions of Information Theory and Estimation in Single- and Multi-user Communications

Interactions of Information Theory and Estimation in Single- and Multi-user Communications Interactions of Information Theory and Estimation in Single- and Multi-user Communications Dongning Guo Department of Electrical Engineering Princeton University March 8, 2004 p 1 Dongning Guo Communications

More information

Applications of Lattices in Telecommunications

Applications of Lattices in Telecommunications Applications of Lattices in Telecommunications Dept of Electrical and Computer Systems Engineering Monash University amin.sakzad@monash.edu Oct. 2013 1 Sphere Decoder Algorithm Rotated Signal Constellations

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences. possible signals has been transmitted.

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences. possible signals has been transmitted. Introduction I We have focused on the problem of deciding which of two possible signals has been transmitted. I Binary Signal Sets I We will generalize the design of optimum (MPE) receivers to signal sets

More information

Non white sample covariance matrices.

Non white sample covariance matrices. Non white sample covariance matrices. S. Péché, Université Grenoble 1, joint work with O. Ledoit, Uni. Zurich 17-21/05/2010, Université Marne la Vallée Workshop Probability and Geometry in High Dimensions

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Random Matrices and Wireless Communications

Random Matrices and Wireless Communications Random Matrices and Wireless Communications Jamie Evans Centre for Ultra-Broadband Information Networks (CUBIN) Department of Electrical and Electronic Engineering University of Melbourne 3.5 1 3 0.8 2.5

More information

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling Degrees-of-Freedom for the -User SISO Interference Channel with Improper Signaling C Lameiro and I Santamaría Dept of Communications Engineering University of Cantabria 9005 Santander Cantabria Spain Email:

More information

Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters 1

Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters 1 2005 Conference on Information Sciences and Systems, The Johns Hopkins University, March 6 8, 2005 Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters Alkan

More information

National University of Singapore. Ralf R. Müller

National University of Singapore. Ralf R. Müller Ê ÔÐ Å Ø Ó Ò Ï Ö Ð ÓÑÑÙÒ Ø ÓÒ Ì National University of Singapore March 006 Ralf R. Müller Professor for Wireless Networks Norwegian University of Science & Technology mueller@iet.ntnu.no Ê ÔÐ Å Ø Ó Ò ÅÙÐØ

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

arxiv:cs/ v1 [cs.it] 11 Sep 2006

arxiv:cs/ v1 [cs.it] 11 Sep 2006 0 High Date-Rate Single-Symbol ML Decodable Distributed STBCs for Cooperative Networks arxiv:cs/0609054v1 [cs.it] 11 Sep 2006 Zhihang Yi and Il-Min Kim Department of Electrical and Computer Engineering

More information

Robust Subspace DOA Estimation for Wireless Communications

Robust Subspace DOA Estimation for Wireless Communications Robust Subspace DOA Estimation for Wireless Communications Samuli Visuri Hannu Oja ¾ Visa Koivunen Laboratory of Signal Processing Computer Technology Helsinki Univ. of Technology P.O. Box 3, FIN-25 HUT

More information

Replica Symmetry Breaking in Compressive Sensing

Replica Symmetry Breaking in Compressive Sensing Replica Symmetry Breaking in Compressive Sensing Ali Bereyhi, Ralf Müller, Hermann Schulz-Baldes Institute for Digital Communications (IDC), Department of Mathematics, Friedrich Alexander University (FAU),

More information

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Özgür Oyman ), Rohit U. Nabar ), Helmut Bölcskei 2), and Arogyaswami J. Paulraj ) ) Information Systems Laboratory, Stanford

More information

Exploiting Sparsity for Wireless Communications

Exploiting Sparsity for Wireless Communications Exploiting Sparsity for Wireless Communications Georgios B. Giannakis Dept. of ECE, Univ. of Minnesota http://spincom.ece.umn.edu Acknowledgements: D. Angelosante, J.-A. Bazerque, H. Zhu; and NSF grants

More information

DSP Applications for Wireless Communications: Linear Equalisation of MIMO Channels

DSP Applications for Wireless Communications: Linear Equalisation of MIMO Channels DSP Applications for Wireless Communications: Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt Digital Signal Processing (ECE407) Lecture no. 5 August

More information

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm HongSun An Student Member IEEE he Graduate School of I & Incheon Korea ahs3179@gmail.com Manar Mohaisen Student Member IEEE

More information

EUSIPCO

EUSIPCO EUSIPCO 03 56974375 ON THE RESOLUTION PROBABILITY OF CONDITIONAL AND UNCONDITIONAL MAXIMUM LIKELIHOOD DOA ESTIMATION Xavier Mestre, Pascal Vallet, Philippe Loubaton 3, Centre Tecnològic de Telecomunicacions

More information

DOA Estimation using MUSIC and Root MUSIC Methods

DOA Estimation using MUSIC and Root MUSIC Methods DOA Estimation using MUSIC and Root MUSIC Methods EE602 Statistical signal Processing 4/13/2009 Presented By: Chhavipreet Singh(Y515) Siddharth Sahoo(Y5827447) 2 Table of Contents 1 Introduction... 3 2

More information

Phase Precoded Compute-and-Forward with Partial Feedback

Phase Precoded Compute-and-Forward with Partial Feedback Phase Precoded Compute-and-Forward with Partial Feedback Amin Sakzad, Emanuele Viterbo Dept. Elec. & Comp. Sys. Monash University, Australia amin.sakzad,emanuele.viterbo@monash.edu Joseph Boutros, Dept.

More information

Problem Set 7 Due March, 22

Problem Set 7 Due March, 22 EE16: Probability and Random Processes SP 07 Problem Set 7 Due March, Lecturer: Jean C. Walrand GSI: Daniel Preda, Assane Gueye Problem 7.1. Let u and v be independent, standard normal random variables

More information

Chaotic diffusion in randomly perturbed dynamical systems

Chaotic diffusion in randomly perturbed dynamical systems Chaotic diffusion in randomly perturbed dynamical systems Rainer Klages Queen Mary University of London, School of Mathematical Sciences Max Planck Institute for Mathematics in the Sciences Leipzig, 30

More information

Algebra II Vocabulary Alphabetical Listing. Absolute Maximum: The highest point over the entire domain of a function or relation.

Algebra II Vocabulary Alphabetical Listing. Absolute Maximum: The highest point over the entire domain of a function or relation. Algebra II Vocabulary Alphabetical Listing Absolute Maximum: The highest point over the entire domain of a function or relation. Absolute Minimum: The lowest point over the entire domain of a function

More information

Vector Channel Capacity with Quantized Feedback

Vector Channel Capacity with Quantized Feedback Vector Channel Capacity with Quantized Feedback Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 9697-65 Email: syed@ece.uci.edu,

More information

Sudoku and Matrices. Merciadri Luca. June 28, 2011

Sudoku and Matrices. Merciadri Luca. June 28, 2011 Sudoku and Matrices Merciadri Luca June 28, 2 Outline Introduction 2 onventions 3 Determinant 4 Erroneous Sudoku 5 Eigenvalues Example 6 Transpose Determinant Trace 7 Antisymmetricity 8 Non-Normality 9

More information

Efficient Joint Maximum-Likelihood Channel. Estimation and Signal Detection

Efficient Joint Maximum-Likelihood Channel. Estimation and Signal Detection Efficient Joint Maximum-Likelihood Channel Estimation and Signal Detection H. Vikalo, B. Hassibi, and P. Stoica Abstract In wireless communication systems, channel state information is often assumed to

More information

On corrections of classical multivariate tests for high-dimensional data. Jian-feng. Yao Université de Rennes 1, IRMAR

On corrections of classical multivariate tests for high-dimensional data. Jian-feng. Yao Université de Rennes 1, IRMAR Introduction a two sample problem Marčenko-Pastur distributions and one-sample problems Random Fisher matrices and two-sample problems Testing cova On corrections of classical multivariate tests for high-dimensional

More information

Decoupling of CDMA Multiuser Detection via the Replica Method

Decoupling of CDMA Multiuser Detection via the Replica Method Decoupling of CDMA Multiuser Detection via the Replica Method Dongning Guo and Sergio Verdú Dept. of Electrical Engineering Princeton University Princeton, NJ 08544, USA email: {dguo,verdu}@princeton.edu

More information

Wigner s semicircle law

Wigner s semicircle law CHAPTER 2 Wigner s semicircle law 1. Wigner matrices Definition 12. A Wigner matrix is a random matrix X =(X i, j ) i, j n where (1) X i, j, i < j are i.i.d (real or complex valued). (2) X i,i, i n are

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages Degrees of Freedom Region of the Gaussian MIMO Broadcast hannel with ommon and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and omputer Engineering University of Maryland, ollege

More information

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels TO APPEAR IEEE INTERNATIONAL CONFERENCE ON COUNICATIONS, JUNE 004 1 Dirty Paper Coding vs. TDA for IO Broadcast Channels Nihar Jindal & Andrea Goldsmith Dept. of Electrical Engineering, Stanford University

More information

ON DECREASING THE COMPLEXITY OF LATTICE-REDUCTION-AIDED K-BEST MIMO DETECTORS.

ON DECREASING THE COMPLEXITY OF LATTICE-REDUCTION-AIDED K-BEST MIMO DETECTORS. 17th European Signal Processing Conference (EUSIPCO 009) Glasgow, Scotland, August 4-8, 009 ON DECREASING THE COMPLEXITY OF LATTICE-REDUCTION-AIDED K-BEST MIMO DETECTORS. Sandra Roger, Alberto Gonzalez,

More information

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels Saeed Kaviani and Witold A. Krzymień University of Alberta / TRLabs, Edmonton, Alberta, Canada T6G 2V4 E-mail: {saeed,wa}@ece.ualberta.ca

More information

Supelec Randomness in Wireless Networks: how to deal with it?

Supelec Randomness in Wireless Networks: how to deal with it? Supelec Randomness in Wireless Networks: how to deal with it? Mérouane Debbah Alcatel-Lucent Chair on Flexible Radio merouane.debbah@supelec.fr The performance dilemma... La théorie, c est quand on sait

More information

Design of MMSE Multiuser Detectors using Random Matrix Techniques

Design of MMSE Multiuser Detectors using Random Matrix Techniques Design of MMSE Multiuser Detectors using Random Matrix Techniques Linbo Li and Antonia M Tulino and Sergio Verdú Department of Electrical Engineering Princeton University Princeton, New Jersey 08544 Email:

More information

k-protected VERTICES IN BINARY SEARCH TREES

k-protected VERTICES IN BINARY SEARCH TREES k-protected VERTICES IN BINARY SEARCH TREES MIKLÓS BÓNA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k from

More information

3. Numerical integration

3. Numerical integration 3. Numerical integration... 3. One-dimensional quadratures... 3. Two- and three-dimensional quadratures... 3.3 Exact Integrals for Straight Sided Triangles... 5 3.4 Reduced and Selected Integration...

More information

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lectures 10-12 Lectures 10,11 Slide# 1 Today s Lecture 1. Introduction to norms: L 1,L 2,L. 2. Casting absolute value and max operators. 3. Norm minimization problems.

More information

Some Review Problems for Exam 1: Solutions

Some Review Problems for Exam 1: Solutions Math 3355 Fall 2018 Some Review Problems for Exam 1: Solutions Here is my quick review of proof techniques. I will focus exclusively on propositions of the form p q, or more properly, x P (x) Q(x) or x

More information

10-725/36-725: Convex Optimization Prerequisite Topics

10-725/36-725: Convex Optimization Prerequisite Topics 10-725/36-725: Convex Optimization Prerequisite Topics February 3, 2015 This is meant to be a brief, informal refresher of some topics that will form building blocks in this course. The content of the

More information

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Advanced 3 G and 4 G Wireless Communication Prof. Aditya K Jagannathan Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 19 Multi-User CDMA Uplink and Asynchronous CDMA

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY Uplink Downlink Duality Via Minimax Duality. Wei Yu, Member, IEEE (1) (2)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY Uplink Downlink Duality Via Minimax Duality. Wei Yu, Member, IEEE (1) (2) IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY 2006 361 Uplink Downlink Duality Via Minimax Duality Wei Yu, Member, IEEE Abstract The sum capacity of a Gaussian vector broadcast channel

More information

BALANCING GAUSSIAN VECTORS. 1. Introduction

BALANCING GAUSSIAN VECTORS. 1. Introduction BALANCING GAUSSIAN VECTORS KEVIN P. COSTELLO Abstract. Let x 1,... x n be independent normally distributed vectors on R d. We determine the distribution function of the minimum norm of the 2 n vectors

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding

Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding Schur-convexity of the Symbol Error Rate in Correlated MIMO Systems with Precoding and Space-time Coding RadioVetenskap och Kommunikation (RVK 08) Proceedings of the twentieth Nordic Conference on Radio

More information

Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel

Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel Christian Guthy and Wolfgang Utschick Associate Institute for Signal Processing, Technische Universität München Joint

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

On the Fluctuation of Mutual Information in Double Scattering MIMO Channels

On the Fluctuation of Mutual Information in Double Scattering MIMO Channels Research Collection Conference Paper On the Fluctuation of Mutual Information in Double Scattering MIMO Channels Author(s): Zheng, Zhong; Wei, Lu; Speicher, Roland; Müller, Ralf; Hämäläinen, Jyri; Corander,

More information

When combining power functions into a single polynomial function, there are a few new features we like to look for, such as

When combining power functions into a single polynomial function, there are a few new features we like to look for, such as Section 1.2 Characteristics of Polynomial Functions In section 1.1 we explored Power Functions, a single piece of a polynomial function. This modelling method works perfectly for simple real world problems

More information

Applications and fundamental results on random Vandermon

Applications and fundamental results on random Vandermon Applications and fundamental results on random Vandermonde matrices May 2008 Some important concepts from classical probability Random variables are functions (i.e. they commute w.r.t. multiplication)

More information

2. LINEAR ALGEBRA. 1. Definitions. 2. Linear least squares problem. 3. QR factorization. 4. Singular value decomposition (SVD) 5.

2. LINEAR ALGEBRA. 1. Definitions. 2. Linear least squares problem. 3. QR factorization. 4. Singular value decomposition (SVD) 5. 2. LINEAR ALGEBRA Outline 1. Definitions 2. Linear least squares problem 3. QR factorization 4. Singular value decomposition (SVD) 5. Pseudo-inverse 6. Eigenvalue decomposition (EVD) 1 Definitions Vector

More information

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne Outline Eigenvalue PDFs Peter Forrester, M&S, University of Melbourne Hermitian matrices with real, complex or real quaternion elements Circular ensembles and classical groups Products of random matrices

More information

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs LECTURE 18 Last time: White Gaussian noise Bandlimited WGN Additive White Gaussian Noise (AWGN) channel Capacity of AWGN channel Application: DS-CDMA systems Spreading Coding theorem Lecture outline Gaussian

More information

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary Spatial Correlation Ahmed K Sadek, Weifeng Su, and K J Ray Liu Department of Electrical and Computer Engineering, and Institute for Systems

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem

Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem Karol Życzkowski Institute of Physics, Jagiellonian University, Cracow and Center for Theoretical Physics, PAS, Warsaw

More information

672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY We only include here some relevant references that focus on the complex

672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY We only include here some relevant references that focus on the complex 672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 2, FEBRUARY 2009 Ordered Eigenvalues of a General Class of Hermitian Rom Matrices With Application to the Performance Analysis of MIMO Systems Luis

More information

Lecture 5b: Line Codes

Lecture 5b: Line Codes Lecture 5b: Line Codes Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE421: Communications I Digitization Sampling (discrete analog signal). Quantization (quantized discrete

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Problem Set 3 Due Oct, 5

Problem Set 3 Due Oct, 5 EE6: Random Processes in Systems Lecturer: Jean C. Walrand Problem Set 3 Due Oct, 5 Fall 6 GSI: Assane Gueye This problem set essentially reviews detection theory. Not all eercises are to be turned in.

More information

Channel Estimation with Low-Precision Analog-to-Digital Conversion

Channel Estimation with Low-Precision Analog-to-Digital Conversion Channel Estimation with Low-Precision Analog-to-Digital Conversion Onkar Dabeer School of Technology and Computer Science Tata Institute of Fundamental Research Mumbai India Email: onkar@tcs.tifr.res.in

More information

Power-Efficient Transmission Design for MISO Broadcast Systems with QoS Constraints

Power-Efficient Transmission Design for MISO Broadcast Systems with QoS Constraints Power-Efficient ransmission Design for MISO Broadcast Systems with QoS Constraints Chunshan Liu Department of Engineering Macquarie University NSW 2109, Australia Email: chunshan.liu@mq.edu.au Min Li Department

More information

926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 3, MARCH Monica Nicoli, Member, IEEE, and Umberto Spagnolini, Senior Member, IEEE (1)

926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 3, MARCH Monica Nicoli, Member, IEEE, and Umberto Spagnolini, Senior Member, IEEE (1) 926 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 3, MARCH 2005 Reduced-Rank Channel Estimation for Time-Slotted Mobile Communication Systems Monica Nicoli, Member, IEEE, and Umberto Spagnolini,

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway Linear Algebra: Lecture Notes Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway November 6, 23 Contents Systems of Linear Equations 2 Introduction 2 2 Elementary Row

More information

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels Title Equal Gain Beamforming in Rayleigh Fading Channels Author(s)Tsai, Shang-Ho Proceedings : APSIPA ASC 29 : Asia-Pacific Signal Citationand Conference: 688-691 Issue Date 29-1-4 Doc URL http://hdl.handle.net/2115/39789

More information

ORIE 4741: Learning with Big Messy Data. Regularization

ORIE 4741: Learning with Big Messy Data. Regularization ORIE 4741: Learning with Big Messy Data Regularization Professor Udell Operations Research and Information Engineering Cornell October 26, 2017 1 / 24 Regularized empirical risk minimization choose model

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Reading: Ch. 5 in Kay-II. (Part of) Ch. III.B in Poor. EE 527, Detection and Estimation Theory, # 5c Detecting Parametric Signals in Noise

More information

Angular matrix integrals

Angular matrix integrals Montreal, 25 August 2008 1 Angular matrix integrals Montreal, 25 August 2008 J.-B. uber A. Prats Ferrer, B. Eynard, P. Di Francesco, J.-B... Correlation Functions of Harish-Chandra Integrals over the Orthogonal

More information

MAXIMUM A POSTERIORI ESTIMATION OF SIGNAL RANK. PO Box 1500, Edinburgh 5111, Australia. Arizona State University, Tempe AZ USA

MAXIMUM A POSTERIORI ESTIMATION OF SIGNAL RANK. PO Box 1500, Edinburgh 5111, Australia. Arizona State University, Tempe AZ USA MAXIMUM A POSTERIORI ESTIMATION OF SIGNAL RANK Songsri Sirianunpiboon Stephen D. Howard, Douglas Cochran 2 Defence Science Technology Organisation PO Box 500, Edinburgh 5, Australia 2 School of Mathematical

More information

Lattices and Lattice Codes

Lattices and Lattice Codes Lattices and Lattice Codes Trivandrum School on Communication, Coding & Networking January 27 30, 2017 Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology Hyderabad

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Pritam Mukherjee Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 074 pritamm@umd.edu

More information

EE 5407 Part II: Spatial Based Wireless Communications

EE 5407 Part II: Spatial Based Wireless Communications EE 5407 Part II: Spatial Based Wireless Communications Instructor: Prof. Rui Zhang E-mail: rzhang@i2r.a-star.edu.sg Website: http://www.ece.nus.edu.sg/stfpage/elezhang/ Lecture II: Receive Beamforming

More information

Time Series 3. Robert Almgren. Sept. 28, 2009

Time Series 3. Robert Almgren. Sept. 28, 2009 Time Series 3 Robert Almgren Sept. 28, 2009 Last time we discussed two main categories of linear models, and their combination. Here w t denotes a white noise: a stationary process with E w t ) = 0, E

More information

Lecture 2. Capacity of the Gaussian channel

Lecture 2. Capacity of the Gaussian channel Spring, 207 5237S, Wireless Communications II 2. Lecture 2 Capacity of the Gaussian channel Review on basic concepts in inf. theory ( Cover&Thomas: Elements of Inf. Theory, Tse&Viswanath: Appendix B) AWGN

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Blind MIMO communication based on Subspace Estimation

Blind MIMO communication based on Subspace Estimation Blind MIMO communication based on Subspace Estimation T. Dahl, S. Silva, N. Christophersen, D. Gesbert T. Dahl, S. Silva, and N. Christophersen are at the Department of Informatics, University of Oslo,

More information

26. Filtering. ECE 830, Spring 2014

26. Filtering. ECE 830, Spring 2014 26. Filtering ECE 830, Spring 2014 1 / 26 Wiener Filtering Wiener filtering is the application of LMMSE estimation to recovery of a signal in additive noise under wide sense sationarity assumptions. Problem

More information