Measurement of the neutron skin of heavy nuclei. G. M. Urciuoli INFN Sezione di Roma

Size: px
Start display at page:

Download "Measurement of the neutron skin of heavy nuclei. G. M. Urciuoli INFN Sezione di Roma"

Transcription

1 Measurement of the neutron skin of heavy nuclei G. M. Urciuoli INFN Sezione di Roma

2 Why do we measure the neutron skin of heavy nuclei? Slope unconstrained by data Adding R N eliminate the dispersion in plot. from 08 Pb will Heavy nuclei are expected to have a neutron skin structure. Both relativistic and nonrelativistic mean-field models suggest that the thickness of the neutron skin (r np ), defined as the difference between the neutron (r n ) and proton (r p ) root-mean-square (rms) radii (r np r n r p ), depends on the balance among the various nuclear matter properties. In particular, the neutron skin thickness of 08 Pb is strongly correlated with the nuclear symmetry energy or the pressure coefficients of the equation of states (EOS) in neutron matter. Moreover a precise measurement of the skin thickness of 08 Pb is very important for studying the radius, composition, and cooling system of neutron stars.

3 How do we measure the neutron skin of heavy nuclei? Proton-Nucleus Elastic Scattering Pion, alpha, d Scattering Pion Photoproduction Heavy ion collisions Rare Isotopes (dripline) Involve strong probes Magnetic scattering Most spins couple to zero. PREX (weak interaction) Theory MFT fit mostly by data other than neutron densities

4 Proton-Nucleus Elastic Scattering With high-energy polarized protons the Relativistic Impulse Approximation (RIA) with free nucleon-nucleon interactions can be applied for analyzing the data. Elaborate analysis of the experimental data. Hadronic probes exhibit uncertainties in the reaction mechanism, which is mainly caused by an incomplete knowledge of the nucleon-nucleon (NN) scattering amplitude inside the nuclear medium. To extract precise information about the neutron density distribution an appropriate probe and an effective NN interaction must be carefully chosen. Model ambiguity is an unavoidable problem in describing hadronic reactions. Information about the nuclear interior is masked by the strong absorption. Differential cross sections and analyzing powers for elastic scattering from 58 Ni and 04,06,08 Pb at Ep = 95MeV, whereas the lines are due to Murdock and Horowitz (solid) and the global Dirac optical potential (dashed). The dash-dotted lines show the MH model calculations for 58 Ni with the realistic nucleon density by an unfolding charge density Calibration of medium-effect parameters by fitting to the experimental data for 58 Ni. The solid line is the mediummodified RIA calculation with best-fit parameters The dashed and dash-dotted lines are from the original MH model with DH and realistic nucleon densities. RCNP, Osaka University Best-fit results for neutron density distributions in 04,06,08 Pb are shown as solid lines. The original MH and medium-modified RIA calculations with the DH nucleon density are also shown by dashed and dash-dotted lines. Results of fitting to the experimental data and extracted neutron density of 08 Pb with its standard error envelope (solid lines). The dashed and dashdotted lines are medium-modified RIA calculations, but using the DH nucleon densities and the 3pG neutron density by Ray [9], respectively J. Zenihiro et al., Phys. Rev. C 8 (010)

5 Pion-Nucleus Elastic Scattering The cross section of - elastic scattering on the nucleon is relatively large in the (133) resonance region and is about three times larger for neutrons than for protons. This makes - elastic scattering a promising tool for studying the neutron distribution of nuclei. Unfortunately, a strong absorption occurs at the nuclear surface, making this method very sensitive to the tail of the distributions. The method was successfully used only for studying the neutron distributions of light stable nuclei. R. R. Johnson et al., PHYS REV LETT 43, 844 (1979) TRIUMF Π - of 9.-and 49.5-MeV average energy

6 Coherent π 0 photoproduction Mainz Microtron MAMI photon beam derived from the production of Bremsstrahlung photons during the passage of the MAMI electron beam through a thin radiator. Crystal Ball Detector

7 Simple Correction for distortion For first preliminary assessment 1) Carry out simple correction of q shift using the theory ) Analyse corrected minima - fit with Bessel fn.

8 GDR KVI α of 196 MeV provided by the super-conducting cyclotron AGOR bombarded the enriched (99.0 %), self-supporting 08 Pb target with a thickness of 0 mg/cm. The energy and the scattering angle of the α particles were measured with the Big-Bite Spectrometer. The emittd γ rays were detected by a large 10x14 NaI(Tl) crystal The cross section for excitation of the GDR was calculated connecting the oscillations of the proton and neutron density distributions with the oscillations of the associated optical potential. DWBA cross sections were calculated using the code ECIS with the optical-model parameters determined by Goldberg et al. for 08 Pb. In the derivation of the coupling potentials, which are the most crucial quantities in the calculations, the prescription of Satchler was used. For the density oscillations both the Goldhaber-Teller (GT) and the Jensen-Steinwedel (JS) macroscopic models were adopted. Coulomb excitation was included in both calculations by adding the usual Coulomb transition potential. The cross sections σ αα ( E) were calculated as a function of excitation energy by assuming 100% exhaustion of the TRK EWSR. The results were then folded with the photonuclear strength distribution σ γ E) A. Krasznahorkay et al., Nuclear Physics A 731, 4 (004)

9 SDR RCNP, Osaka 3 He ++ of 90.1 MeV accelerated with the AVF cyclotron wer injected into the K 400 MeV ring cyclotron, and further accelerated to 450 MeV. The beam extracted from the ring cyclotron was achromatically transported to the 114 Sn, 116 Sn, 118 Sn, 10 Sn, 1 Sn, and 14 Sn targets with thicknesses of mg/cm. The energy of tritons was measured with the magnetic spectrometer Grand Raiden. The ejectile tritons were detected with two multiwire drift chambers (MWDC s) Krasznahorkay et al., Phys Rev Lett 8, 316 (1999)

10 PDR SIS-18 synchrotron at GSI Beam of 38 U ions of 550 MeV/nucleon Secondary radioactive ions were produced by fission in a Be target Fission products with a mass-to-charge ratio around that of 13 Sn passed through a 38 Pb target Dipole-strength distributions have been measured. A sizable fraction of pygmy Dipole strength, energetically located below the giant dipole resonance, was observed in all of these nuclei. A series of fully self-consistent RHB model plus RQRPA calculations of ground-state properties and dipole strength distributions was carried out. A set of density-dependent meson-exchange (DD-ME) effective interactions has been used, for which the parameter a4 is systematically varied in the interval 30 MeV < a4 < 38 MeV in steps of MeV, while the remaining parameters are adjusted to accurately reproduce nuclear matter properties (the binding energy, the saturation density, the compression modulus, and the volume asymmetry) and the binding energies and charge radii of a standard set of spherical nuclei. For open-shell nuclei, pairing correlations are also included in the RHB+RQRPA framework and described by the pairing part of the Gogny force. The consistent calculation of ground state properties and dipole strength distributions, using the same effective interaction, provides a direct relation between symmetry energy parameters and the predicted size of the neutron skin and the pygmy strength such as shown for 130,13 Sn A. Klimkiewicz et al. PHYSICAL REVIEW C 76, (R) (007)

11 Antiprotonic 08 Pb and 09 Bi atoms Low Energy Antiproton Ring (LEAR) CERN Antiprotons of momentum 106 MeV/c. The antiprotonic x rays emitted during the antiproton cascade were measured by three high-purity germanium (HPGe) detectors. A slow antiproton can be captured into an atom like an electron. Since its mass is about 1800 times larger than that of the electron the radius of atomic orbits becomes extremely small. This means that antiproton reaches the surface of the nucleus already at n=9,10. The strong interaction between antiproton and nucleus causes a sizable change of the energy of the last x-ray transition from its purely electromagnetic value. The nuclear absorption reduces the lifetime of the lowest accessible atomic state [the lower level, which for lead is the (n, l = 9, 8) state] and hence this x-ray line is broadened. The widths and shifts of the levels due to the strong interaction are sensitive to the interaction potential which contains, in its simplest form, a term depending on the sum of the neutron and proton densities. Using modern antiproton-nucleus optical potentials, the neutron densities in the nuclear periphery are deduced. Assuming two-parameter Fermi distributions (pf) describing the proton and neutron densities, the neutron rms radii are deduced

12

13 Lead ( 08 Pb) Radius Experiment : PREX Elastic Scattering Parity Violating Asymmetry E = 1 GeV, 5 0 electrons on lead Spokespersons Krishna Kumar Robert Michaels Kent Pascke Paul Souder Guido Maria Urciuoli 08 Pb Hall A Collaboration Experiment

14 neutron weak charge >> proton weak charge is small, best observed by parity violation ) ( ) ( ) ˆ( 5 r A r V r V ) ( ) ( / / / 3 r r r Z r d r V ) ( ) ( ) 4sin (1 ) ( r N r Z G r A N P W F ) ( Q F d d d d P Mott ) ( ) ( 4 1 ) ( 0 3 r qr j r d Q F P P ) ( ) ( 4 1 ) ( 0 3 r qr j r d Q F N N ) ( ) ( 4sin 1 Q F Q F Q G d d d d d d d d A P N W F L R L R Electron - Nucleus Potential electromagnetic axial Neutron form factor Parity Violating Asymmetry A(r) 1 4sin 1 W Proton form factor 0

15 PREX Physics Impact Measured Asymmetry Correct for Coulomb Distortions Atomic Parity Violation Weak Density at one Q Small Corrections for G n E G s E MEC Neutron Density at one Q Mean Field & Other Models Assume Surface Thickness Good to 5% (MFT) Heavy Ions Neutron Stars R n

16 Experimental Method Flux Integration Technique: HAPPEX: MHz PREX: 850 MHz

17 Consolidated techniques from the previous Hall A parity violating electron scatttering experiments (HAPPEX) Polarized Source P I T A Effect (Polarization Induced Transport Asymmetry) Intensity Feedback Beam Asymmetries

18 Upgraded Polarimetry (Sirish Nanda et al.) Compton Polarimeter (1 % Polarimetry) Upgrades: Laser Green Laser Moller Polarimeter (< 1 % Polarimetry) Upgrades: Magnet Superconducting Magnet from Hall C Target Saturated Iron Foil Targets DAQ FADC

19 Error Source PREX Result Systematic Errors Absolute (ppm) Polarization (1) Beam Asymmetries () Detector Linearity BCM Linearity Rescattering Transverse Polarization Q (1) Target Thickness C Asymmetry () Relative ( % ) A ppm 0.060( stat) Statistics limited ( 9% ) Systematic error goal achieved! (%) ( syst) Inelastic States 0 0 TOTAL (1) Normalization Correction applied R N = fm () Nonzero correction (the rest assumed zero) Neutron Skin = R N - R P = fm R N A 3.40 A

20 PREX-II Approved by PAC (Aug 011) A Rating 35 days run in 013 / 014

21 CREX PARITY-VIOLATING MEASUREMENT of the WEAK CHARGE DISTRIBUTION of 48 Ca to 0.0 fm ACCURACY PREX II and CREX together will constrain isovector contributions to the nuclear EDF. If PREX II and CREX results agree with DFT expectations, this provides confidence in theoretical predictions of isovector properties all across the periodic table.. If PREX II and CREX results disagree with DFT expectations, this will demonstrate that present parameterizations of the isovector part of energy functionals are incomplete.

22 Spare

23 Other Nuclei R N Surface thickness Shape Dependence? Parity Violating Electron Scattering Measurements of Neutron Densities Shufang Ban, C.J. Horowitz, R. Michaels arxiv: [nucl-th] R N Surface thickness

24

25 Measurement of the neutron skin in the past

26 Hall A at Jefferson Lab Polarized e - Source Hall A

27 PREX in Hall A at JLab Spectometers Lead Foil Target Hall A Pol. Source CEBAF

28 Nuclear Structure: Neutron density is a fundamental observable that remains elusive. Reflects poor understanding of symmetry energy of nuclear matter = the energy cost of N Z E( n, x) E( n, x 1/ ) S ( n) (1 x ) n n.m. density x ratio proton/neutrons Slope unconstrained by data 08 Adding R N from Pb will eliminate the dispersion in plot.

29 PREX & R calibrates EOS of N Neutron Rich Matter Crust Thickness Neutron Stars ( C.J. Horowitz, J. Piekarweicz ) - Thicker neutron skin in Pb means energy rises rapidly with density Quickly favors uniform phase. - Thick skin in Pb low transition density in star. Explain Glitches in Pulsar Frequency? Combine PREX R Neutron Star Radii with Obs. Phase Transition to Exotic Core? Strange star? Quark Star? N - The 08 Pb radius constrains the pressure of neutron matter at subnuclear densities. - The NS radius depends on the pressure at nuclear density and above.. - If Pb radius is relatively large: EOS at low density is stiff with high P. If NS radius is small than high density EOS soft. - This softening of EOS with density could strongly suggest a transition to an exotic high density phase such as quark matter, strange matter, color superconductor, kaon condensate Some Neutron Stars seem too Cold - Proton fraction Y p for matter in beta equilibrium depends on symmetry energy S(n). - R n in Pb determines density dependence of S(n). - The larger R n in Pb the lower the threshold mass for direct URCA cooling. - If R n -R p <0. fm all EOS models do not have direct URCA in 1.4 M stars. - If R n -R p >0.5 fm all models do have URCA in 1.4 M stars.

30 Atomic Parity Violation Low Q test of Standard Model Needs R to make further progress. H PNC APV G F N / 5 3 N ( r) Z (1 4sin ) ( r ) d r N 0 W P Isotope Chain Experiments e.g. Berkeley Yb e e

31 Measurement at one Q sufficient to measure R N is Pins down the symmetry energy (1 parameter) ( R.J. Furnstahl )

32 Neutron Skin and Heavy Ion Collisions (Alex Brown) E/N Skx-s15 N Skx-s0 N E/N Skx-s5 N E/N

33 High Resolution Spectrometers Spectrometer Concept: Resolve Elastic Inelastic Elastic detector Left-Right symmetry to control transverse polarization systematic target Quad Dipole Q Q

34 An electromagnetic probe, due to its simple reaction mechanism, can extract precise information about the density deep inside a nucleus

35 Points: Not sign corrected Parity Quality Beam! Helicity Correlated Position Differences Average with signs = what exp t feels < ~ 3 nm Wien Flips helped! X R X L for helicity L, R Units: microns Slug # ( ~ 1 day)

36 PREX Asymmetry (P e x A) ppm Slug ~ 1 day

37 Electron Beam Double Wien Filter Crossed E & B fields to rotate the spin Two Wien Spin Manipulators in series Solenoid rotates spin +/-90 degrees (spin rotation as B but focus as B ). Flips spin without moving the beam! SPIN Joe Grames, et. al.

38 Lead Target Three bays Lead (0.5 mm) sandwiched by diamond (0.15 mm) Liquid He cooling (30 Watts) melted LEAD Diamond melted NOT melted

39 5 0 Septum magnet (augments the High Resolution Spectrometers) (Increased Figure of Merit) HRS-L HRS-R collimator collimator target

40 DETECTORS Integrating Detection Deadtime free, 18 bit ADC with < 10-4 nonlinearity. The x, y dimensions of the quartz determined from beam test data and MC (HAMC) simulations. Quartz thickness optimized with MC.. New HRS optics tune focuses elastic events both in x & y at the PREx detector location 10 Hz pair windows asymmetry distribution. No Gaussian tails up to 5 standard deviations.

41 Beam-Normal Asymmetry in elastic electron scattering A T i.e. spin transverse to scattering plane S e ( k ek' e) Possible systematic if small transverse spin component New results PREX x k y S A T > 0 means z Pb: AT ppm 1 C: AT ppm Small A T for 08 Pb is a big (but pleasant) surprise. A T for 1 C qualitatively consistent with 4 He and available calculations (1) Afanasev ; () Gorchtein & Horowitz

42 08 Pb Radius from the Weak Charge Form Factor

43 Measured Asymmetry A ( stat) 0.014( syst) ppm Correct for Coulomb Distorsion W 0 1 e r a R F W ( q) 1 Q W d 3 r sin( qr) qr ( r) w Fourier Transform of the Weak Charge Density at q= ± fm -1 Small Corrections for G n E G s E MEC R n F W ( q) (exp) Helm Model 0.001(mod) R W (exp) 0.07(mod) fm Qw q N n R w q q p n Z N R ch r p Z N r n Z N q N n r s Assume Surface Thickness Good to 5% (MFT) R n Rw rs fm R N R n (exp) 0.06(mod) 0.005( str) fm (To be compared with R N = fm)

44 Asymmetry leads to R N A ( stat) 0.014( syst) ppm PREX data R N A 3.40 A

45 Future: PREX-II

46 r N - r P (fm) r N = r P PREX Result, cont. DATA A ( stat ) 0.014( syst ) ppm R N = fm DATA R N = fm Neutron Skin = R N - R P = fm Establishing a neutron skin at ~9 % CL theory: P. Ring Atomic Number, A

47 PREX Region After Target Tungsten Collimator Shielding & Septum Magnet Improvements for PREX-II HRS-L Q1 target HRS-R Q1 Former O-Ring location which failed & caused time loss during PREX-I Collimators PREX-II to use all-metal seals

48 scattering chamber shielding Geant 4 Radiation Calculations J. Mammei, L. Zana PREX-II shielding strategies Number of Neutrons per incident Electron beamline 0-1 MeV Strategy Tungsten ( W ) plug Shield the W MeV MeV Energy (MeV) --- PREX-I --- PREX-II, no shield --- PREX-II, shielded Energy (MeV) x 10 reduction in 0. to 10 MeV neutrons Energy (MeV) 6

49 Summary Fundamental Nuclear Physics with many applications Because of significant time-losses due to O-Ring problem and radiation damage PREX achieved a 9% stat. error in Asymmetry (original goal was 3 %). PREX measurement of Rn is nevertheless the cleanest performed so far Several experimental goals (Wien filters, 1% polarimetry at 1 GeV, etc.) were all achieved. Systematic error goal was consequently achieved too. PREX-II approved (runs in 013 or 014) 3% statistical error

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26 Parity-Violating Measurements of the Weak Charge of 208 Pb (PREX) & 48 Ca (CREX) 208 Pb 48 Ca. and possible future measurements R. Michaels, ICNT / MSU, Aug 2013 1/26 Hall A at Jefferson Lab Hall A High

More information

Neutron stars at JLAB and the Pb Radius Experiment

Neutron stars at JLAB and the Pb Radius Experiment Neutron stars at JLAB and the Pb Radius Experiment PREX uses parity violating electron scattering to accurately measure the neutron radius of 208 Pb. 208 Pb This has many implications for nuclear structure,

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

PREX Overview Extracting the Neutron Radius from 208 Pb

PREX Overview Extracting the Neutron Radius from 208 Pb PREX Overview Extracting the Neutron Radius from 208 Pb Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu March 17, 2013 Seamus Riordan CREX 2013 PREX 1/19 Outline Motivation

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

The Lead Radius Experiment PREX. Dustin McNulty Idaho State University for the PREx Collaboration July 28, 2011

The Lead Radius Experiment PREX. Dustin McNulty Idaho State University for the PREx Collaboration July 28, 2011 The Lead Radius Experiment PREX Dustin McNulty Idaho State University for the PREx Collaboration mcnulty@jlab.org July 28, 2011 The Lead Radius Experiment PREX Outline Motivation Parity Violation at JLab

More information

C-REX : Parity-Violating Measurement of the Weak Charge of

C-REX : Parity-Violating Measurement of the Weak Charge of C-REX : Parity-Violating Measurement of the Weak Charge of 48 Ca to an accuracy of 0.02 fm Spokespersons: Juliette Mammei Dustin McNulty Robert Michaels that s me Kent Paschke Seamus Riordan (contact person)

More information

The neutron skin in neutronrich nuclei at Jefferson Lab

The neutron skin in neutronrich nuclei at Jefferson Lab The neutron skin in neutronrich nuclei at Jefferson Lab Mark Dalton, University of Virginia For the PREX and CREX Collaborations Low Energy Workshop Boston 15 March 2013 1 Weak Charge Distribution of Heavy

More information

Parity Radius Experiment and Neutron Densities. C. J. Horowitz Indiana University RIA INT Workshop, Sep. 2007

Parity Radius Experiment and Neutron Densities. C. J. Horowitz Indiana University RIA INT Workshop, Sep. 2007 Parity Radius Experiment and Neutron Densities C. J. Horowitz Indiana University RIA INT Workshop, Sep. 2007 Neutron Densities Introduction: atomic parity. PREX experiment. Implications of the neutron

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

Lead ( Pb) Radius Experiment : PREX

Lead ( Pb) Radius Experiment : PREX Results from 08 Lead ( Pb) Radius Experiment : PREX Elastic Scattering Parity Violating Asymmetry E = 1 GeV, θ = electrons on lead 5 0 Spokespersons Paul Souder, Krishna Kumar Guido Urciuoli, Robert Michaels

More information

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University

Parity Violating Electron Scattering at Jefferson Lab. Rakitha S. Beminiwattha Syracuse University Parity Violating Electron Scattering at Jefferson Lab Rakitha S. Beminiwattha Syracuse University 1 Outline Parity Violating Electron Scattering (PVES) overview Testing the Standard Model (SM) with PVES

More information

Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars. C. J. Horowitz

Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars. C. J. Horowitz Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars C. J. Horowitz Dept. of Physics and Nuclear Theory Center, Indiana University, Bloomington, IN 47405 USA E-mail: horowitz@iucf.indiana.edu

More information

PREX / CREX Status. Jan 25, 2018 Bob Michaels, on behalf of the PREX collaboration. docdb

PREX / CREX Status. Jan 25, 2018 Bob Michaels, on behalf of the PREX collaboration. docdb PREX / CREX Status Jan 25, 2018 Bob Michaels, on behalf of the PREX collaboration. Wiki https://prex.jlab.org/wiki/index.php/main_page docdb http://prex.jlab.org/cgi-bin/docdb/public/documentdatabase (

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

Neutron skins of nuclei vs neutron star deformability

Neutron skins of nuclei vs neutron star deformability Neutron skins of nuclei vs neutron star deformability Chuck Horowitz, Indiana U., INT, Mar. 2018 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react with protons to make

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Photopion photoproduction and neutron radii

Photopion photoproduction and neutron radii Photopion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Jefferson Lab PREX workshop, August 2008 Talk Outline Nuclear (π

More information

Coherent and incoherent nuclear pion photoproduction

Coherent and incoherent nuclear pion photoproduction Coherent and incoherent nuclear pion photoproduction Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Gordon Conference on photonuclear reactions, August 2008

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

arxiv:astro-ph/ v2 24 Apr 2001

arxiv:astro-ph/ v2 24 Apr 2001 Neutron Star Structure and the Neutron Radius of 208 Pb C. J. Horowitz Nuclear Theory Center and Dept. of Physics, Indiana University, Bloomington, IN 47405 J. Piekarewicz Department of Physics Florida

More information

arxiv: v1 [nucl-ex] 15 Apr 2016

arxiv: v1 [nucl-ex] 15 Apr 2016 arxiv:1604.04602v1 [nucl-ex] 15 Apr 2016 Beam Normal Single Spin Asymmetry Measurements from Q weak Buddhini P. Waidyawansa for the Q weak Collaboration C122, 12000 Jefferson Avenue, Newport News, VA 23602

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Parity Violation Experiments

Parity Violation Experiments Parity Violation Experiments Krishna Kumar University of Massachusetts thanks to the HAPPEX, G0 and Qweak Collaborations, D. Armstrong, E. Beise, G. Cates, E. Chudakov, D. Gaskell, C. Furget, J. Grames,

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA

Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA EPJ manuscript No. (will be inserted by the editor) Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA C. J. Horowitz 1, K.S. Kumar 2 and R. Michaels 3 1 Indiana University, Bloomington,

More information

FAIR. Reiner Krücken for the NUSTAR collaboration

FAIR. Reiner Krücken for the NUSTAR collaboration NUSTAR @ FAIR Reiner Krücken for the NUSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics NUSTAR @ FAIR Nuclear Structure

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B investigated at relativistic energies at R 3 B for the R 3 B collaboration Technische Universität Darmstadt E-mail: fa.schindler@gsi.de Reactions of neutron-rich Sn isotopes have been measured in inverse

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

Neutron Rich Nuclei in Heaven and Earth

Neutron Rich Nuclei in Heaven and Earth First Prev Next Last Go Back Neutron Rich Nuclei in Heaven and Earth Jorge Piekarewicz with Bonnie Todd-Rutel Tallahassee, Florida, USA Page 1 of 15 Cassiopeia A: Chandra 08/23/04 Workshop on Nuclear Incompressibility

More information

Nuclear Physics with Electromagnetic Probes

Nuclear Physics with Electromagnetic Probes Nuclear Physics with Electromagnetic Probes Lawrence Weinstein Old Dominion University Norfolk, VA Lecture 2 Hampton University Graduate School 2012 Course Outline Introduction to EM probes. Electron and

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Viñas a M. Centelles a M. Warda a,b X. Roca-Maza a,c a Departament d Estructura i Constituents

More information

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II L. J. Kaufman University of Massachusetts The HAPPEX Collaboration Thomas Jefferson National Accelerator Facility

More information

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Linking nuclear reactions and nuclear structure to on the way to the drip lines Linking nuclear reactions and nuclear structure to on the way to the drip lines DREB18 6/5/2018 Motivation Green s functions/propagator method Wim Dickhoff Bob Charity Lee Sobotka Hossein Mahzoon (Ph.D.2015)

More information

Measurement of Nucleon Strange Form Factors at High Q 2

Measurement of Nucleon Strange Form Factors at High Q 2 Measurement of Nucleon Strange Form Factors at High Q 2 (HAPPEX III Collaboration) Rupesh Silwal 22 March, 2011 At very low Q2, GsE/M relates to the strange matrix elements of the nucleon (strange radius

More information

FUTURE SPIN EXPERIMENTS AT SLAC

FUTURE SPIN EXPERIMENTS AT SLAC SLAC-PUB-9658 February 2003 FUTURE SPIN EXPERIMENTS AT SLAC Stephen Rock for the Real Photon Collaboration University of Mass, Amherst MA 01003 Abstract. A series of three photo-production experiments

More information

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Dipole Polarizability and Neutron Skins in 208 Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Equation of State of neutron matter and neutron skin Proton scattering at 0 and electric

More information

Structure properties of medium and heavy exotic nuclei

Structure properties of medium and heavy exotic nuclei Journal of Physics: Conference Series Structure properties of medium and heavy exotic nuclei To cite this article: M K Gaidarov 212 J. Phys.: Conf. Ser. 381 12112 View the article online for updates and

More information

Qweak Transverse Asymmetry Measurements

Qweak Transverse Asymmetry Measurements Qweak Transverse Asymmetry Measurements Buddhini Waidyawansa For the Qweak Collaboration Hall C Collaboration Meeting 02-21-2014 Outline Physics of transverse asymmetries Qweak transverse data set Analysis

More information

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to neutron-rich nuclei Radii, skins, and halos From finite

More information

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei 7 th International Symposium on Nuclear Symmetry Energy, GANIL (France) 4-7.9.2017 Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei N.

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues An Experiments Krishna Kumar Stony Brook University The Electroweak Box Workshop at

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

Neutron Skins with α-clusters

Neutron Skins with α-clusters Neutron Skins with α-clusters GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering stochastic cooling Exotic nuclei from Super-FRS Degrader for fast slowing down The Ring Branch TOF Detector MCPs E anode ion B CR Electron cooler NESR secondary electrons Experiments: Mass- and Lifetime

More information

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section Scattering Processes General Consideration Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section The form factor Mott scattering Nuclear charge distributions and radii

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Theoretical models for nuclear structure studies Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Terzo Incontro Nazionale di Fisica Nucleare LNF,

More information

arxiv: v1 [nucl-th] 23 May 2015

arxiv: v1 [nucl-th] 23 May 2015 The full weak charge density distribution of 48 Ca from parity violating electron scattering arxiv:1505.06358v1 [nucl-th] 23 May 2015 Z. Lin 1 and C. J. Horowitz 1 1 Center for the Exploration of Energy

More information

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments V. Derya 1*, J. Endres 1, M. N. Harakeh 2,3, D. Savran 4,5, M. Spieker 1*, H. J. Wörtche 2, and A. Zilges 1 1 Institute

More information

Project P2 - The weak charge of the proton

Project P2 - The weak charge of the proton Institute for Nuclear Physics, University of Mainz E-mail: beckerd@kph.uni-mainz.de K. Gerz, S. Baunack, K. S. Kumar, F. E. Maas The goal of Project P2 is to determine the electroweak mixing angle sin

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

Hadron Physics with Real and Virtual Photons at JLab

Hadron Physics with Real and Virtual Photons at JLab Hadron Physics with Real and Virtual Photons at JLab Elton S. Smith Jefferson Lab Virtual photons shape of the nucleon Elastic scattering (form factors) Inelastic scattering (uark distributions) Exclusive

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Thomas Aumann December 11 th 2013 27 th Texas Symposium on Relativistic Astrophysics Dallas, Texas Supported by the BMBF under contract

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PHYSICAL SCIENCE TEST SERIES # 4. Atomic, Solid State & Nuclear + Particle UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE PH PHYSICAL SCIENCE TEST SERIES # 4 Atomic, Solid State & Nuclear + Particle SUBJECT CODE 05 Timing: 3: H M.M: 200 Instructions 1.

More information

An extended liquid drop approach

An extended liquid drop approach An extended liquid drop approach Symmetry energy, charge radii and neutron skins Lex Dieperink 1 Piet van Isacker 2 1 Kernfysisch Versneller Instituut University of Groningen 2 GANIL, Caen, France ECT,

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Photonuclear Reactions and Nuclear Transmutation. T. Tajima 1 and H. Ejiri 2

Photonuclear Reactions and Nuclear Transmutation. T. Tajima 1 and H. Ejiri 2 Draft Photonuclear Reactions and Nuclear Transmutation T. Tajima 1 and H. Ejiri 2 1) Kansai JAERI 2) JASRI/SPring-8, Mikazuki-cho, Sayou-gun, Hyougo, 679-5198 JAPAN Abstract Photonuclear reactions are

More information

The low Q 2 chicane and Compton polarimeter at the JLab EIC

The low Q 2 chicane and Compton polarimeter at the JLab EIC EPJ Web of Conferences 112, 01007 (2016) DOI: 10.1051/ epjconf/ 201611201007 C Owned by the authors, published by EDP Sciences, 2016 The low Q 2 chicane and Compton polarimeter at the JLab EIC, Alexandre

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy. A Forward Photon Tagging Facility for CLAS12 A Forward Photon Tagging Facility for CLAS12 M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy 1) From CEBAF at 6 GeV 2) From CEBAF at 6 GeV to CEBAF at 12 GeV add Hall D (and beam line)

More information

Extreme Light Infrastructure - Nuclear Physics ELI - NP

Extreme Light Infrastructure - Nuclear Physics ELI - NP Extreme Light Infrastructure - Nuclear Physics ELI - NP Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering (IFIN-HH) Bucharest-Magurele, Romania www.eli-np.ro Bucharest-Magurele

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

!"#"$%&!"'()%'&*$&+,-*%./0*1),2$3& 4)"#%-1$&5#,6"-*$3&,%&7"8"-'1$&9,:;& A"$%&+,'#BC"

!#$%&!'()%'&*$&+,-*%./0*1),2$3& 4)#%-1$&5#,6-*$3&,%&78-'1$&9,:;& A$%&+,'#BC !"#"$%&!"'()%'&*$&+,-*%./0*1),2$3& 4)"#%-1$&5#,6"-*$3&,%&7"8"-'1$&9,:;& +!4?++4?++4

More information

PHYSICAL REVIEW C 70, (2004)

PHYSICAL REVIEW C 70, (2004) PHYSICAL REVIEW C 70, 014307 (2004) Giant resonances in 112 Sn and 124 Sn: Isotopic dependence of monopole resonance energies Y.-W. Lui, D. H. Youngblood, Y. Tokimoto, H. L. Clark, and B. John* Cyclotron

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Recoil Polarisation Measurements in Meson Photoproduction

Recoil Polarisation Measurements in Meson Photoproduction Recoil Polarisation Measurements in Meson Photoproduction Polarisation Observables and Partial Wave Analysis Bad Honnef 2009 Derek Glazier, D.P. Watts University of Edinburgh Helpful for PWA At least 8

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Jorge Piekarewicz Florida State University The Neutron Star Crust and Surface (INT - June, 2007) My Collaborators: C.J. Horowitz,

More information

Coherent and incoherent π 0 photoproduction from nuclei

Coherent and incoherent π 0 photoproduction from nuclei Coherent and incoherent π 0 photoproduction from nuclei Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball@MAMI Collaboration EINN07, Milos Island, Greece, 2007 Talk Outline Neutral pion photoproduction

More information

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics 1. Incompressibility and Giant Resonances (ISGMR, ISGDR) 2. Charge exchange reactions 3. Photon Beams for (g,g

More information

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Radiation Physics PHYS /251. Prof. Gocha Khelashvili Radiation Physics PHYS 571-051/251 Prof. Gocha Khelashvili Interaction of Radiation with Matter: Heavy Charged Particles Directly and Indirectly Ionizing Radiation Classification of Indirectly Ionizing

More information

arxiv: v1 [nucl-th] 26 Jun 2011

arxiv: v1 [nucl-th] 26 Jun 2011 Study of the neutron skin thickness of 208 Pb in mean field models X. Roca-Maza 1,2, M. Centelles 1, X. Viñas 1 and M. Warda 1, 1 Departament d Estructura i Constituents de la Matèria and Institut de Ciències

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Effect of Λ(1405) on structure of multi-antikaonic nuclei 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, (May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia) Session 2B Effect of Λ(1405) on structure

More information

PoS(Bormio 2013)024. P2 - The weak charge of the proton. D. Becker, K. Gerz. S. Baunack, K. Kumar, F. E. Maas

PoS(Bormio 2013)024. P2 - The weak charge of the proton. D. Becker, K. Gerz. S. Baunack, K. Kumar, F. E. Maas Institute for Nuclear Physics, University of Mainz E-mail: beckerd@kph.uni-mainz.de, gerz@kph.uni-mainz.de S. Baunack, K. Kumar, F. E. Maas In early 2012, preparations for a new high precision measurement

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy. Atsushi Tamii

Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy. Atsushi Tamii Electric Dipole Response of 208 Pb and Constraints on the Symmetry Energy Atsushi Tamii Research Center for Nuclear Physics (RCNP) Osaka University, Japan I.Poltoratska, P. von Neumann Cosel and RCNP E282

More information

Nuclear symmetry energy and neutron star cooling

Nuclear symmetry energy and neutron star cooling Nuclear symmetry energy and neutron star cooling Nguyen Van Giai(1), Hoang Sy Than(2), Dao Tien Khoa(2), Sun Bao Yuan(3) 2 1) Institut de Physique Nucléaire, Univ. Paris-Sud 2) VAEC, Hanoi 3) RCNP, Osaka

More information

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Paul Huffman! North Carolina State University Triangle Universities Nuclear Laboratory!!!! M.W. Ahmed!

More information

Beam Instrumentation Challenges for Parity-Violation Experiments

Beam Instrumentation Challenges for Parity-Violation Experiments Beam Instrumentation Challenges for Parity-Violation Experiments Manolis Kargiantoulakis Intense Electron Beams Workshop 2015 Cornell University Many thanks to Mark Pitt, Kent Paschke, Mark Dalton, for

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

Isospin symmetry structure of J π =1 + states in 58 Ni and 58 Cu studied by high-resolution 58 Ni( 3 He,t) and 58 Ni(p,p ) measurements

Isospin symmetry structure of J π =1 + states in 58 Ni and 58 Cu studied by high-resolution 58 Ni( 3 He,t) and 58 Ni(p,p ) measurements Workshop at ECT*, Torento, 27/09/09-02/10/09 Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations Isospin symmetry structure of J π =1 + states in 58 Ni and 58 Cu studied by

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints Nuclear symmetry energy deduced from dipole excitations: a comparison with other constraints G. Colò June 15th, 2010 This work is part of a longer-term research plan. The goal is: understanding which are

More information

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD γ* γ N N MERIEM BENALI November 09, 016 LPC-Clermont-Ferrand GDR-QCD Plan Generalized Polarizabilities (GPs) of the proton Extraction methods of GPs at Q²=0.45 GeV²: - Low Energy expansion approach (LEX)

More information

Discerning the symmetry energy and neutron star properties from nuclear collective excitations

Discerning the symmetry energy and neutron star properties from nuclear collective excitations International Workshop XLV on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 15-21, 2017 Discerning the symmetry energy and neutron star properties from

More information

The Neutron Structure Function from BoNuS

The Neutron Structure Function from BoNuS The Neutron Structure Function from BoNuS Stephen Bültmann 1 Physics Department, Old Dominion University, Norfolk, VA 359, USA Abstract. The BoNuS experiment at Jefferson Lab s Hall B measured the structure

More information