GEOMETRY AND DISTRIBUTIONS OF SHAPES Rabi Bhattacharya, Univ. of Arizona, USA (With V. Patrangenaru & A. Bhattacharya)

Size: px
Start display at page:

Download "GEOMETRY AND DISTRIBUTIONS OF SHAPES Rabi Bhattacharya, Univ. of Arizona, USA (With V. Patrangenaru & A. Bhattacharya)"

Transcription

1 GEOMETRY AND DISTRIBUTIONS OF SHAPES Rabi Bhattacharya, Univ. of Arizona, USA (With V. Patrangenaru & A. Bhattacharya)

2 CONTENTS 1. PROBAB. MEASURES ON MANIFOLDS (a) FRÉCHET MEAN (b) EXTRINSIC MEAN (c) INTRINSIC MEAN (d) ASYMP. DISTR. OF SAMPLE MEANS 2. SHAPES OF k-ads (a) KENDALL S SPACES: Σ k m (b) REFLECTION SHAPE SPACES: RΣ k m (c) AFFINE SHAPE SPACES: AΣ(m, k) (d) PROJECTIVE SHAPE SPACES: PΣ(m, k) 3. NONPARAMETRIC TESTS

3 1(a) ASSUMPTION: CLOSED BOUNDED SUBSETS OF (M, ρ) ARE COMPACT. FRÉCHET FUNCTION OF A PROBAB. Q IS F (p) = ρ 2 (p, x)q(dx) p M. FRÉCHET MEAN SET IS THE SET OF MINIMIZERS OF F. A UNIQUE MINIMIZER IS CALLED THE FRÉCHET MEAN OF Q, SAY µ F. SAMPLE FRÉCHET MEAN µ n, F IS A MEASURABLE SELECTION FROM THE MEAN SET OF THE EMPIRICAL Q n BASED ON I.I.D. X 1,..., X n Q. PROPOSITION 1. LET F BE FINITE. (i) THEN THE FRÉCHET MEAN SET IS NONEMPTY COMPACT. (ii) IN CASE OF A UNIQUE MINIM. µ F, µ n,f µ F (WITH PROBAB. ONE). (ZIEZOLD,1977; BP,2003).

4 1(b). EXTRINSIC MEAN µ E OF Q M: COMPLETE (d-dim.) DIFF. MANIFOLD. THE METRIC ρ = ρ E IS INDUCED BY AN EMBEDDING J : M R N. µ J = MEAN OF IMAGE Q J OF Q in R N. µ E = PROJECTION OF µ J ON J(M) (IF UNIQUE) IS EXTRINSIC MEAN OF Q. EXAMPLE. M = S d = {p R d+1 : p = 1}. J = INCLUSION MAP, ρ E = CHORD DISTANCE, µ E = UNIQUE IFF µ J 0 ( R d+1 ). PROPOSITION 2. SUPPOSE Q J HAS FINITE SECOND MOMENTS, AND µ E IS UNIQUE. THEN THE PROJECTION OF µ n,e ON THE TANGENT SPACE T µe M AT µ E IS ASYMP. GAUSSIAN N(0, Γ/n).

5 1(c). INTRINSIC MEAN µ I OF Q M: COMPLETE RIEMANNIAN MANIFOLD, METRIC TENSOR g, ρ = ρ g GEODESIC DIST. INTRINSIC MEAN OF Q IS µ I = MINIMIZER OF F, IF UNIQUE. TERMS: (i) γ(t) IS A GEODESIC IF (D/dt)γ(t) = 0 (ZERO ACCELERATION). (ii) CUT LOCUS OF p (CUT(p)). (iii) INJECTIVITY RADIUS (INJ(M)). (iv) Exp p (T p M M): Exp p (v) = γ(1), γ GEODESIC, γ(0) = p, γ(0) = v. (v) Log p = Exp 1 p : M \ CUT(p) T p M. (vi) SECTIONAL CURVATURE AT p. EXAMPLE. M = S d. GEODESICS ARE GREAT CIRCLES, ρ g IS ARC DISTANCE. CUT(p) = { p}. INJ(M) = π.

6 Exp p (v) = cos( v )p + sin( v ) v, (v 0). v Log p (x) = (1 (p x) 2 ) 1/2 arccos(p x)(x (p x)p), x p. SECTIONAL CURVATURE = 1 (CONSTANT) LET C DENOTE THE L.U.B. OF SECTIONAL CURVATURES ON M IF L.U.B > 0, AND C = 0 IF L.U.B. 0. r := min{inj(m), π/ C}. PROPOSITION 3. IF SUPP(Q) B(p, r /2), THERE EXISTS A UNIQUE INTRINSIC MEAN µ I OF Q ON THE METRIC SPACE B(p, r /2). IF SUPP(Q) B(p, r /4), THEN µ I IS THE INTRINSIC MEAN OF Q ON M. (KARCHER,1977;KENDALL,1990)

7 PROPOSITION 4. (a) ASSUME SUPP(Q) B(p, r /2), Q(CUT (p)) = 0. THEN Log µi (µ n,i ) IS ASYMP. GAUSSIAN N(0, Γ/n). (b) SUPPOSE (i) Q IS ABS. CONT., (ii) THE INTRINSIC MEAN µ I EXISTS, (iii) F is TWICE CONT. DIFF. IN A NBD. OF µ I. THEN Log µi (µ n,i ) IS ASYMP. GAUSSIAN N(0, Γ/n). IN NORMAL COORDINATES (UNDER Log µi ), WITH THE IMAGE Q L OF Q, ONE HAS vq L (dv) = 0, Γ = Λ 1 ΣΛ 1, T µi M [Σ = COV (Q L ), Λ = (HESSIAN OF F AT µ I ) K ] (*) ( ) 1 f v K ij = [2( v 2 v i v j + f ( v )δ ij )]Q L (dv);

8 1 if C = 0 f (r) = Cr cos( Cr) sin( if C > 0 Cr) Cr cosh( Cr) sinh( if C < 0 Cr) THERE IS EQUALITY IN (*) IF M HAS CONSTANT SECTIONAL CURVATURE.

9 2. SHAPE SPACES M OF k-ads EACH OBSERVATION x = (x 1,..., x k ) OF k > m POINTS IN m-dimension (NOT ALL THE SAME) -k LOCATIONS ON AN m-dim. OBJECT. k-ads ARE EQUIVALENT MOD G: A GROUP G OF TRANSFORMATIONS. (a). Σ(m, k). [KENDALL, 1984, KENT, LE] G IS GENERATED BY TRANSLATIONS, SCALING (TO UNIT SIZE), ROTATONS. PRESHAPE u = (x 1 x,..., x k x )/ x x SHAPE OF k-ad σ(x) S m(k 1) 1 /SO(m) = Σ(m, k).

10 CASE m = 2. PLANAR SHAPES. M = Σ(2, k). M S 2k 3 /S 1 CP k 2 (COMPLEX PROJ. SPACE) EXTRINSIC MEAN µ E : EMBEDDING: [EQUIVARIANT] J : σ(x) uu S 0 (k, C) PROPOSITION 5. µ E EXISTS IFF THE LARGEST EIGENVALUE OF E(UU ) IS SIMPLE. [J(µ E ) = mm, m UNIT EIGENVEC.] INTRINSIC MEAN µ I. CASE m > 2. Σ(m, k) HAS SINGULARITIES. ACTION OF SO(m) IS NOT FREE ON M.

11 (b) REFLECTION-SHAPE SPACE RΣ(m, k). ASSUME AFFINE SPAN OF EACH k-ad x IS R m, WITH PRESHAPE u = (u 1,, u k ) S m(k 1) 1. SHAPE σ(x) S m(k 1) 1 /O(m) = M. EMBEDDING J : σ(x) ((u i u j )) (M S 0+ (k, R)) PROPOSITION 6. LET λ 1... λ k BE EIGENVALUES OF E((U i U j )), WITH EIGEN- VECTORS v 1,..., v k, WHERE v j 2 = λ j /(λ 1 + +λ m ) (j = 1,..., m). (i) µ E EXISTS IFF λ m > λ m+1, AND THEN (ii) J(µ E ) = (v 1,..., v m )(v 1,..., v m ) t.

12 (c) AFFINE SHAPE SPACE AΣ(m, k), k > m + 1. C(k,m) = k-ads u = x x WITH SPAN R m SHAPE σ(x) = {Au = (Au 1,..., Au k ) : A GL(m, R)}. AΣ(m, k) = C(k, m)/gl(m, R). THE m ROWS OF u LIE IN A HYPERPLANE H OF R k, H = 1 R k 1, AND SPAN A SUBSPACE L OF DIM. m OF H. NOW Au = v FOR SOME A IFF THE ROWS OF v SPAN L. HENCE σ(x) L. THUS AΣ(m, k) GRASSSMANNIAN G m (k 1). EMBEDDING J : AΣ(m, k) S + (k 1, R).

13 σ(x) MATRIX OF PROJ. P L : H L = B t B. HERE L IS SPANNED BY ORTHONORMAL w 1,..., w m ; w i = b ij f j ({f 1,..., f k 1 } ORTH. BASIS OF H); B = ((b ij )) 1 i m, 1 j k 1. PROPOSITION 7. (i) µ E EXISTS IFF AMONG EIGENVALUES λ 1... λ k 1 OF THE MEAN OF B t B, λ m > λ m+1, AND (ii) THEN µ E IS THE SUBSPACE OF H SPANNED BY THE FIRST m EIGENVECTORS. [CHIKUSE, BP]

14 (d) PROJECTIVE SHAPE SPACES PΣ(m, k), k > m + 1. k-ad x = (x 1,..., x k ) (R m+1 ) k ; FOR x R m+1, x 0, DEFINE [x] = {λx : λ 0} (THE LINE THROUGH 0 & y). RP m = {[x] : x R m+1 \ {0}}. FOR A GL(m + 1, R), A PROJ. LINEAR TRANSFORMATION α ON RP m IS α[x] = [Ax]; α PGL(m) [GROUP].

15 PROJ. SHAPE OF A k-ad x IS σ(x) = {(α[x 1 ],..., α[x k ]) : α PGL(m)}. A k-ad {y 1,..., y k } OF POINTS IN RP m IS IN GENERAL POSITION IF THE LINEAR SPAN OF {y 1,..., y k } IS RP m. THE SPACE OF PROJ. SHAPES OF k-ads IN GENERAL POSITION IS PΣ(m, k). A PROJ. FRAME IN RP m IS AN ORDERED SYSTEM OF m + 2 POINTS IN GENERAL POSITION. LET I BE AN ORDERED SET OF INDICES i 1 < i 2 <... < i m+2 k. LET P I Σ(m, k) BE THE SET OF PROJ. SHAPES OF k-ads x FOR WHICH {[x i1 ], [x i2 ],..., [x im+2 ]} IS A PROJ. FRAME. GIVEN TWO PROJ. FRAMES (p 1,..., p m+2 ), (q 1,..., q m+2 ), THERE EXISTS A UNIQUE α PGL(m) SUCH THAT α(p j ) = q j FOR ALL j.

16 BY ORDERING THE POINTS IN A k-ad SUCH THAT THE FIRST m + 2 POINTS ARE IN GENERAL POSITION, ONE MAY BRING THIS ORDERED SET, SAY, (p 1,..., p m+2 ) TO THE STANDARD FORM {[e 1 ],..., [e m+1 ], [e e m+1 ]} BY A UNIQUE α IN PGL(m). THUS MODULO PGL(m), PROJECTIVE SHAPES IN P I Σ(m.k) ARE DISTINGUISHED ONLY BY THE REMAINING k m 2 RP m -VALUED COORDINATES. THUS P I Σ(m, k) (RP m ) k m 2. ONE MAY NOW USE THE V-W EMBEDDING FOR EXTRINSIC ANALYSIS.

17 REFERENCES 1. Bhattacharya,A & Bhattacharya,R. (2007). Proc. Amer. Math. Soc. In Press. 2. B & B (2007). IMS Lecture Ser. In Honor of J.K.Ghosh. In Press. 3. Bandulasiri, A., Bhattacharya, R. & Patrangenaru, V. (2007). JMVA, To Appear. 4. B & P.(2005). Ann. Statist. 5. B & P. (2003). Ann. Statist. 6. Mardia, K. & Patrangenaru, V. (2005). Ann. Statist. 7. Kendall,D.G. (1984). Bull. Lond. Math. Soc. 8. Kendall, D.G., Barden,D., Carne, T.K. & Le,H.(1999). Shape and Shape Theory. Wiley. 9. Kent, J. (1994). Proc. Royal. Stat. Soc. B. 10. Dryden, I. & Mardia,K. (1998). Wiley.

STATISTICS ON SHAPE MANIFOLDS: THEORY AND APPLICATIONS Rabi Bhattacharya, Univ. of Arizona, Tucson (With V. Patrangenaru & A.

STATISTICS ON SHAPE MANIFOLDS: THEORY AND APPLICATIONS Rabi Bhattacharya, Univ. of Arizona, Tucson (With V. Patrangenaru & A. STATISTICS ON SHAPE MANIFOLDS: THEORY AND APPLICATIONS Rabi Bhattacharya, Univ. of Arizona, Tucson (With V. Patrangenaru & A. Bhattacharya) CONTENTS 1. INTRODUCTION - EXAMPLES 2. PROBAB. MEASURES ON MANIFOLDS

More information

INTRINSIC MEAN ON MANIFOLDS. Abhishek Bhattacharya Project Advisor: Dr.Rabi Bhattacharya

INTRINSIC MEAN ON MANIFOLDS. Abhishek Bhattacharya Project Advisor: Dr.Rabi Bhattacharya INTRINSIC MEAN ON MANIFOLDS Abhishek Bhattacharya Project Advisor: Dr.Rabi Bhattacharya 1 Overview Properties of Intrinsic mean on Riemannian manifolds have been presented. The results have been applied

More information

Analysis of Non-Euclidean Data: Use of Differential Geometry in Statistics

Analysis of Non-Euclidean Data: Use of Differential Geometry in Statistics Analysis of Non-Euclidean Data: Use of Differential Geometry in Statistics [Research supported by NSF grant DMS1406872] June, 2016 Based on joint work with A. Bhattacharya (BB), Lizhen Lin and V. Patrangenaru

More information

Extrinsic Antimean and Bootstrap

Extrinsic Antimean and Bootstrap Extrinsic Antimean and Bootstrap Yunfan Wang Department of Statistics Florida State University April 12, 2018 Yunfan Wang (Florida State University) Extrinsic Antimean and Bootstrap April 12, 2018 1 /

More information

Statistics on Placenta Shapes

Statistics on Placenta Shapes IMS Lecture Notes Monograph Series c Institute of Mathematical Statistics, Statistics on Placenta Shapes Abhishek Bhattacharya University of Arizona Abstract: This report presents certain recent methodologies

More information

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES

NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES NONPARAMETRIC BAYESIAN INFERENCE ON PLANAR SHAPES Author: Abhishek Bhattacharya Coauthor: David Dunson Department of Statistical Science, Duke University 7 th Workshop on Bayesian Nonparametrics Collegio

More information

Statistics on Manifolds with Applications to Shape Spaces

Statistics on Manifolds with Applications to Shape Spaces Statistics on Manifolds with Applications to Shape Spaces Rabi Bhattacharya and Abhishek Bhattacharya Abstract. This article provides an exposition of recent developments on the analysis of landmark based

More information

Statistics on Manifolds and Landmarks Based Image Analysis: A Nonparametric Theory with Applications

Statistics on Manifolds and Landmarks Based Image Analysis: A Nonparametric Theory with Applications Statistics on Manifolds and Landmarks Based Image Analysis: A Nonparametric Theory with Applications Rabi Bhattacharya, Department of Mathematics, The University of Arizona, Tucson, AZ, 85721, USA and

More information

Statistical Analysis on Manifolds: A Nonparametric Approach for Inference on Shape Spaces

Statistical Analysis on Manifolds: A Nonparametric Approach for Inference on Shape Spaces Statistical Analysis on Manifolds: A Nonparametric Approach for Inference on Shape Spaces Abhishek Bhattacharya Department of Statistical Science, Duke University Abstract. This article concerns nonparametric

More information

Nonparametric Inference on Manifolds

Nonparametric Inference on Manifolds Nonparametric Inference on Manifolds This book introduces in a systematic manner a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important

More information

LECTURE 16: CONJUGATE AND CUT POINTS

LECTURE 16: CONJUGATE AND CUT POINTS LECTURE 16: CONJUGATE AND CUT POINTS 1. Conjugate Points Let (M, g) be Riemannian and γ : [a, b] M a geodesic. Then by definition, exp p ((t a) γ(a)) = γ(t). We know that exp p is a diffeomorphism near

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

Einstein H-umbilical submanifolds with parallel mean curvatures in complex space forms

Einstein H-umbilical submanifolds with parallel mean curvatures in complex space forms Proceedings of The Eighth International Workshop on Diff. Geom. 8(2004) 73-79 Einstein H-umbilical submanifolds with parallel mean curvatures in complex space forms Setsuo Nagai Department of Mathematics,

More information

Euler Characteristic of Two-Dimensional Manifolds

Euler Characteristic of Two-Dimensional Manifolds Euler Characteristic of Two-Dimensional Manifolds M. Hafiz Khusyairi August 2008 In this work we will discuss an important notion from topology, namely Euler Characteristic and we will discuss several

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Nonparametric Bayes Inference on Manifolds with Applications

Nonparametric Bayes Inference on Manifolds with Applications Nonparametric Bayes Inference on Manifolds with Applications Abhishek Bhattacharya Indian Statistical Institute Based on the book Nonparametric Statistics On Manifolds With Applications To Shape Spaces

More information

LECTURE 24: THE BISHOP-GROMOV VOLUME COMPARISON THEOREM AND ITS APPLICATIONS

LECTURE 24: THE BISHOP-GROMOV VOLUME COMPARISON THEOREM AND ITS APPLICATIONS LECTURE 24: THE BISHOP-GROMOV VOLUME COMPARISON THEOREM AND ITS APPLICATIONS 1. The Bishop-Gromov Volume Comparison Theorem Recall that the Riemannian volume density is defined, in an open chart, to be

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

L 2 Geometry of the Symplectomorphism Group

L 2 Geometry of the Symplectomorphism Group University of Notre Dame Workshop on Innite Dimensional Geometry, Vienna 2015 Outline 1 The Exponential Map on D s ω(m) 2 Existence of Multiplicity of Outline 1 The Exponential Map on D s ω(m) 2 Existence

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

Hessian of the Riemannian Squared Distance

Hessian of the Riemannian Squared Distance Hessian of the Riemannian Squared Distance Xavier Pennec Université Côte d Azur and Inria Sophia-Antipolis Méditerranée Asclepios team, Inria Sophia Antipolis 2004 Route des Lucioles, BP93 F-06902 Sophia-Antipolis

More information

Distances, volumes, and integration

Distances, volumes, and integration Distances, volumes, and integration Scribe: Aric Bartle 1 Local Shape of a Surface A question that we may ask ourselves is what significance does the second fundamental form play in the geometric characteristics

More information

Extrinsic Means and Antimeans

Extrinsic Means and Antimeans Extrinsic Means and Antimeans Vic Patrangenaru 1, K. David Yao 2, Ruite Guo 1 Florida State University 1 Department of Statistics, 2 Department of Mathematics December 28, 2015 1 Introduction Fréchet (1948)

More information

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES ASIAN J. MATH. c 2008 International Press Vol. 12, No. 3, pp. 289 298, September 2008 002 ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES RAUL QUIROGA-BARRANCO Abstract.

More information

MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS

MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS OLGA GIL-MEDRANO Universidad de Valencia, Spain Santiago de Compostela, 15th December, 2010 Conference Celebrating P. Gilkey's 65th Birthday V: M TM = T p

More information

Synthetic Geometry. 1.4 Quotient Geometries

Synthetic Geometry. 1.4 Quotient Geometries Synthetic Geometry 1.4 Quotient Geometries Quotient Geometries Def: Let Q be a point of P. The rank 2 geometry P/Q whose "points" are the lines of P through Q and whose "lines" are the hyperplanes of of

More information

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page.

Chapter 14. Basics of The Differential Geometry of Surfaces. Introduction. Parameterized Surfaces. The First... Home Page. Title Page. Chapter 14 Basics of The Differential Geometry of Surfaces Page 649 of 681 14.1. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate

More information

1 The Differential Geometry of Surfaces

1 The Differential Geometry of Surfaces 1 The Differential Geometry of Surfaces Three-dimensional objects are bounded by surfaces. This section reviews some of the basic definitions and concepts relating to the geometry of smooth surfaces. 1.1

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

ON SOME GEOMETRIC PROPERTIES OF QUASI-SUM PRODUCTION MODELS. 1. Introduction

ON SOME GEOMETRIC PROPERTIES OF QUASI-SUM PRODUCTION MODELS. 1. Introduction ON SOME GEOMETRIC PROPERTIES OF QUASI-SUM PRODUCTION MODELS BANG-YEN CHEN Abstract. A production function f is called quasi-sum if there are continuous strict monotone functions F, h 1,..., h n with F

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Geometric Modelling Summer 2016

Geometric Modelling Summer 2016 Geometric Modelling Summer 2016 Exercises Benjamin Karer M.Sc. http://gfx.uni-kl.de/~gm Benjamin Karer M.Sc. Geometric Modelling Summer 2016 1 Dierential Geometry Benjamin Karer M.Sc. Geometric Modelling

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) Each of the six questions is worth 10 points. 1) Let H be a (real or complex) Hilbert space. We say

More information

New Fréchet features for random distributions and associated sensitivity indices

New Fréchet features for random distributions and associated sensitivity indices New Fréchet features for random distributions and associated sensitivity indices Jean-Claude Fort a and Thierry Klein b March 3, 215 Abstract In this article we define new Fréchet features for random cumulative

More information

Schur s Triangularization Theorem. Math 422

Schur s Triangularization Theorem. Math 422 Schur s Triangularization Theorem Math 4 The characteristic polynomial p (t) of a square complex matrix A splits as a product of linear factors of the form (t λ) m Of course, finding these factors is a

More information

ANALYTIC DEFINITIONS FOR HYPERBOLIC OBJECTS. 0. Introduction

ANALYTIC DEFINITIONS FOR HYPERBOLIC OBJECTS. 0. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 5, Number 1,June 00, Pages 11 15 ANALYTIC DEFINITIONS FOR HYPERBOLIC OBJECTS YUNHI CHO AND HYUK KIM Abstract We can extend the

More information

LECTURE 10: THE PARALLEL TRANSPORT

LECTURE 10: THE PARALLEL TRANSPORT LECTURE 10: THE PARALLEL TRANSPORT 1. The parallel transport We shall start with the geometric meaning of linear connections. Suppose M is a smooth manifold with a linear connection. Let γ : [a, b] M be

More information

COHOMOGENEITY ONE HYPERSURFACES OF EUCLIDEAN SPACES

COHOMOGENEITY ONE HYPERSURFACES OF EUCLIDEAN SPACES COHOMOGENEITY ONE HYPERSURFACES OF EUCLIDEAN SPACES FRANCESCO MERCURI, FABIO PODESTÀ, JOSÉ A. P. SEIXAS AND RUY TOJEIRO Abstract. We study isometric immersions f : M n R n+1 into Euclidean space of dimension

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

GEOMETRY OF GEODESIC SPHERES IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS

GEOMETRY OF GEODESIC SPHERES IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics 51 (2018), pp. 1 5 GEOMETRY OF GEODESIC SPHERES IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS SADAHIRO MAEDA Communicated by Toshihiro

More information

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015

DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES. September 25, 2015 DIFFERENTIAL GEOMETRY CLASS NOTES INSTRUCTOR: F. MARQUES MAGGIE MILLER September 25, 2015 1. 09/16/2015 1.1. Textbooks. Textbooks relevant to this class are Riemannian Geometry by do Carmo Riemannian Geometry

More information

Jeong-Sik Kim, Yeong-Moo Song and Mukut Mani Tripathi

Jeong-Sik Kim, Yeong-Moo Song and Mukut Mani Tripathi Bull. Korean Math. Soc. 40 (003), No. 3, pp. 411 43 B.-Y. CHEN INEQUALITIES FOR SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS Jeong-Sik Kim, Yeong-Moo Song and Mukut Mani Tripathi Abstract. Some B.-Y.

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Draft version September 15, 2015

Draft version September 15, 2015 Novi Sad J. Math. Vol. XX, No. Y, 0ZZ,??-?? ON NEARLY QUASI-EINSTEIN WARPED PRODUCTS 1 Buddhadev Pal and Arindam Bhattacharyya 3 Abstract. We study nearly quasi-einstein warped product manifolds for arbitrary

More information

H-projective structures and their applications

H-projective structures and their applications 1 H-projective structures and their applications David M. J. Calderbank University of Bath Based largely on: Marburg, July 2012 hamiltonian 2-forms papers with Vestislav Apostolov (UQAM), Paul Gauduchon

More information

The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians

The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians Proceedings of The Fifteenth International Workshop on Diff. Geom. 15(2011) 183-196 The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex

More information

A CHARACTERIZATION OF GENERALIZED QUASI-EINSTEIN MANIFOLDS

A CHARACTERIZATION OF GENERALIZED QUASI-EINSTEIN MANIFOLDS Novi Sad J. Math. Vol. 4, No. 1, 01, 89-94 A CHARACTERIZATION OF GENERALIZED QUASI-EINSTEIN MANIFOLDS Dan Dumitru 1 Abstract. The aim of this paper is to give a characterisation of generalized quasi-einstein

More information

Notes on Cartan s Method of Moving Frames

Notes on Cartan s Method of Moving Frames Math 553 σιι June 4, 996 Notes on Cartan s Method of Moving Frames Andrejs Treibergs The method of moving frames is a very efficient way to carry out computations on surfaces Chern s Notes give an elementary

More information

Measures on spaces of Riemannian metrics CMS meeting December 6, 2015

Measures on spaces of Riemannian metrics CMS meeting December 6, 2015 Measures on spaces of Riemannian metrics CMS meeting December 6, 2015 D. Jakobson (McGill), jakobson@math.mcgill.ca [CJW]: Y. Canzani, I. Wigman, DJ: arxiv:1002.0030, Jour. of Geometric Analysis, 2013

More information

LECTURE 21: THE HESSIAN, LAPLACE AND TOPOROGOV COMPARISON THEOREMS. 1. The Hessian Comparison Theorem. We recall from last lecture that

LECTURE 21: THE HESSIAN, LAPLACE AND TOPOROGOV COMPARISON THEOREMS. 1. The Hessian Comparison Theorem. We recall from last lecture that LECTURE 21: THE HESSIAN, LAPLACE AND TOPOROGOV COMPARISON THEOREMS We recall from last lecture that 1. The Hessian Comparison Theorem K t) = min{kπ γt) ) γt) Π γt) }, K + t) = max{k Π γt) ) γt) Π γt) }.

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

1 Introduction and preliminaries notions

1 Introduction and preliminaries notions Bulletin of the Transilvania University of Braşov Vol 2(51) - 2009 Series III: Mathematics, Informatics, Physics, 193-198 A NOTE ON LOCALLY CONFORMAL COMPLEX LAGRANGE SPACES Cristian IDA 1 Abstract In

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Local strong convexity and local Lipschitz continuity of the gradient of convex functions

Local strong convexity and local Lipschitz continuity of the gradient of convex functions Local strong convexity and local Lipschitz continuity of the gradient of convex functions R. Goebel and R.T. Rockafellar May 23, 2007 Abstract. Given a pair of convex conjugate functions f and f, we investigate

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Adapted complex structures and Riemannian homogeneous spaces

Adapted complex structures and Riemannian homogeneous spaces ANNALES POLONICI MATHEMATICI LXX (1998) Adapted complex structures and Riemannian homogeneous spaces by Róbert Szőke (Budapest) Abstract. We prove that every compact, normal Riemannian homogeneous manifold

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

DIFFERENTIAL GEOMETRY HW 12

DIFFERENTIAL GEOMETRY HW 12 DIFFERENTIAL GEOMETRY HW 1 CLAY SHONKWILER 3 Find the Lie algebra so(n) of the special orthogonal group SO(n), and the explicit formula for the Lie bracket there. Proof. Since SO(n) is a subgroup of GL(n),

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

zi z i, zi+1 z i,, zn z i. z j, zj+1 z j,, zj 1 z j,, zn

zi z i, zi+1 z i,, zn z i. z j, zj+1 z j,, zj 1 z j,, zn The Complex Projective Space Definition. Complex projective n-space, denoted by CP n, is defined to be the set of 1-dimensional complex-linear subspaces of C n+1, with the quotient topology inherited from

More information

arxiv:math/ v1 [math.dg] 24 Mar 2005

arxiv:math/ v1 [math.dg] 24 Mar 2005 arxiv:math/0503565v [math.dg] 4 Mar 005 On the intrinsic geometry of a unit vector field Yampolsky A. Abstract We study the geometrical properties of a unit vector field on a Riemannian -manifold, considering

More information

Changing sign solutions for the CR-Yamabe equation

Changing sign solutions for the CR-Yamabe equation Changing sign solutions for the CR-Yamabe equation Ali Maalaoui (1) & Vittorio Martino (2) Abstract In this paper we prove that the CR-Yamabe equation on the Heisenberg group has infinitely many changing

More information

arxiv: v1 [math.dg] 2 Oct 2015

arxiv: v1 [math.dg] 2 Oct 2015 An estimate for the Singer invariant via the Jet Isomorphism Theorem Tillmann Jentsch October 5, 015 arxiv:1510.00631v1 [math.dg] Oct 015 Abstract Recently examples of Riemannian homogeneous spaces with

More information

LECTURE 22: THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS

LECTURE 22: THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS LECTURE : THE CRITICAL POINT THEORY OF DISTANCE FUNCTIONS 1. Critical Point Theory of Distance Functions Morse theory is a basic tool in differential topology which also has many applications in Riemannian

More information

Geometry on Probability Spaces

Geometry on Probability Spaces Geometry on Probability Spaces Steve Smale Toyota Technological Institute at Chicago 427 East 60th Street, Chicago, IL 60637, USA E-mail: smale@math.berkeley.edu Ding-Xuan Zhou Department of Mathematics,

More information

The volume growth of complete gradient shrinking Ricci solitons

The volume growth of complete gradient shrinking Ricci solitons arxiv:0904.0798v [math.dg] Apr 009 The volume growth of complete gradient shrinking Ricci solitons Ovidiu Munteanu Abstract We prove that any gradient shrinking Ricci soliton has at most Euclidean volume

More information

The Karcher Mean of Points on SO n

The Karcher Mean of Points on SO n The Karcher Mean of Points on SO n Knut Hüper joint work with Jonathan Manton (Univ. Melbourne) Knut.Hueper@nicta.com.au National ICT Australia Ltd. CESAME LLN, 15/7/04 p.1/25 Contents Introduction CESAME

More information

Distance to curves and surfaces in the Heisenberg group

Distance to curves and surfaces in the Heisenberg group Distance to curves and surfaces in the Heisenberg group Università di Bologna 3 giugno 2012 Survey based on... Fausto Ferrari, N.A. Metric normal and distance function in the Heisenberg group, Math.Z.

More information

Stratification of 3 3 Matrices

Stratification of 3 3 Matrices Stratification of 3 3 Matrices Meesue Yoo & Clay Shonkwiler March 2, 2006 1 Warmup with 2 2 Matrices { Best matrices of rank 2} = O(2) S 3 ( 2) { Best matrices of rank 1} S 3 (1) 1.1 Viewing O(2) S 3 (

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Means and Antimeans. Vic Patrangenaru 1,K. David Yao 2, Ruite Guo 1 Florida State University 1 Department of Statistics, 2 Department of Mathematics

Means and Antimeans. Vic Patrangenaru 1,K. David Yao 2, Ruite Guo 1 Florida State University 1 Department of Statistics, 2 Department of Mathematics Means and Antimeans Vic Patrangenaru 1,K. David Yao 2, Ruite Guo 1 Florida State University 1 Department of Statistics, 2 Department of Mathematics May 10, 2015 1 Introduction Fréchet (1948) noticed that

More information

Transport Continuity Property

Transport Continuity Property On Riemannian manifolds satisfying the Transport Continuity Property Université de Nice - Sophia Antipolis (Joint work with A. Figalli and C. Villani) I. Statement of the problem Optimal transport on Riemannian

More information

WARPED PRODUCTS PETER PETERSEN

WARPED PRODUCTS PETER PETERSEN WARPED PRODUCTS PETER PETERSEN. Definitions We shall define as few concepts as possible. A tangent vector always has the local coordinate expansion v dx i (v) and a function the differential df f dxi We

More information

Holonomy groups. Thomas Leistner. Mathematics Colloquium School of Mathematics and Physics The University of Queensland. October 31, 2011 May 28, 2012

Holonomy groups. Thomas Leistner. Mathematics Colloquium School of Mathematics and Physics The University of Queensland. October 31, 2011 May 28, 2012 Holonomy groups Thomas Leistner Mathematics Colloquium School of Mathematics and Physics The University of Queensland October 31, 2011 May 28, 2012 1/17 The notion of holonomy groups is based on Parallel

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Stable minimal cones in R 8 and R 9 with constant scalar curvature

Stable minimal cones in R 8 and R 9 with constant scalar curvature Revista Colombiana de Matemáticas Volumen 6 (2002), páginas 97 106 Stable minimal cones in R 8 and R 9 with constant scalar curvature Oscar Perdomo* Universidad del Valle, Cali, COLOMBIA Abstract. In this

More information

Math 341: Convex Geometry. Xi Chen

Math 341: Convex Geometry. Xi Chen Math 341: Convex Geometry Xi Chen 479 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA E-mail address: xichen@math.ualberta.ca CHAPTER 1 Basics 1. Euclidean Geometry

More information

Isometric Embedding of Negatively Curved Disks in the Minkowski Space

Isometric Embedding of Negatively Curved Disks in the Minkowski Space Pure and Applied Mathematics Quarterly Volume 3, Number 3 (Special Issue: In honor of Leon Simon, Part 2 of 2 ) 827 840, 2007 Isometric Embedding of Negatively Curved Diss in the Minowsi Space Bo Guan

More information

arxiv: v1 [math.dg] 19 Nov 2009

arxiv: v1 [math.dg] 19 Nov 2009 GLOBAL BEHAVIOR OF THE RICCI FLOW ON HOMOGENEOUS MANIFOLDS WITH TWO ISOTROPY SUMMANDS. arxiv:09.378v [math.dg] 9 Nov 009 LINO GRAMA AND RICARDO MIRANDA MARTINS Abstract. In this paper we study the global

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

A Convexity Theorem For Isoparametric Submanifolds

A Convexity Theorem For Isoparametric Submanifolds A Convexity Theorem For Isoparametric Submanifolds Marco Zambon January 18, 2001 1 Introduction. The main objective of this paper is to discuss a convexity theorem for a certain class of Riemannian manifolds,

More information

Classical differential geometry of two-dimensional surfaces

Classical differential geometry of two-dimensional surfaces Classical differential geometry of two-dimensional surfaces 1 Basic definitions This section gives an overview of the basic notions of differential geometry for twodimensional surfaces. It follows mainly

More information

Variational inequalities for set-valued vector fields on Riemannian manifolds

Variational inequalities for set-valued vector fields on Riemannian manifolds Variational inequalities for set-valued vector fields on Riemannian manifolds Chong LI Department of Mathematics Zhejiang University Joint with Jen-Chih YAO Chong LI (Zhejiang University) VI on RM 1 /

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

Chapter 4 Euclid Space

Chapter 4 Euclid Space Chapter 4 Euclid Space Inner Product Spaces Definition.. Let V be a real vector space over IR. A real inner product on V is a real valued function on V V, denoted by (, ), which satisfies () (x, y) = (y,

More information

Nonparametric Bayesian Density Estimation on Manifolds with Applications to Planar Shapes

Nonparametric Bayesian Density Estimation on Manifolds with Applications to Planar Shapes 1 2 4 5 6 7 8 9 1 11 12 1 14 15 16 17 18 19 2 21 22 2 24 25 26 27 28 29 1 2 4 5 6 7 8 9 4 41 42 4 44 45 46 47 48 Biometrika (21), xx, x, pp. 1 22 C 27 Biometrika Trust Printed in Great Britain Nonparametric

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

Minimal surfaces in quaternionic symmetric spaces

Minimal surfaces in quaternionic symmetric spaces From: "Geometry of low-dimensional manifolds: 1", C.U.P. (1990), pp. 231--235 Minimal surfaces in quaternionic symmetric spaces F.E. BURSTALL University of Bath We describe some birational correspondences

More information

Coordinate Finite Type Rotational Surfaces in Euclidean Spaces

Coordinate Finite Type Rotational Surfaces in Euclidean Spaces Filomat 28:10 (2014), 2131 2140 DOI 10.2298/FIL1410131B Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Coordinate Finite Type

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

Optimisation on Manifolds

Optimisation on Manifolds Optimisation on Manifolds K. Hüper MPI Tübingen & Univ. Würzburg K. Hüper (MPI Tübingen & Univ. Würzburg) Applications in Computer Vision Grenoble 18/9/08 1 / 29 Contents 2 Examples Essential matrix estimation

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

Seyed Mohammad Bagher Kashani. Abstract. We say that an isometric immersed hypersurface x : M n R n+1 is of L k -finite type (L k -f.t.

Seyed Mohammad Bagher Kashani. Abstract. We say that an isometric immersed hypersurface x : M n R n+1 is of L k -finite type (L k -f.t. Bull. Korean Math. Soc. 46 (2009), No. 1, pp. 35 43 ON SOME L 1 -FINITE TYPE (HYPER)SURFACES IN R n+1 Seyed Mohammad Bagher Kashani Abstract. We say that an isometric immersed hypersurface x : M n R n+1

More information

H-convex Riemannian submanifolds

H-convex Riemannian submanifolds H-convex Riemannian submanifolds Constantin Udrişte and Teodor Oprea Abstract. Having in mind the well known model of Euclidean convex hypersurfaces [4], [5] and the ideas in [1], many authors defined

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

Lecture Notes a posteriori for Math 201

Lecture Notes a posteriori for Math 201 Lecture Notes a posteriori for Math 201 Jeremy Kahn September 22, 2011 1 Tuesday, September 13 We defined the tangent space T p M of a manifold at a point p, and the tangent bundle T M. Zev Choroles gave

More information

Convexity of the Joint Numerical Range

Convexity of the Joint Numerical Range Convexity of the Joint Numerical Range Chi-Kwong Li and Yiu-Tung Poon October 26, 2004 Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement. Abstract Let A = (A 1,..., A m ) be an

More information