Submatrices and Partitioned Matrices

Size: px
Start display at page:

Download "Submatrices and Partitioned Matrices"

Transcription

1 2 Submatrices and Partitioned Matrices Two very important (and closely related) concepts are introduced in this chapter that of a submatrix and that of a partitioned matrix. These concepts arise very naturally in statistics (especially in multivariate analysis and linear models) and in many other disciplines that involve probabilistic ideas. And results on submatrices and partitioned matrices, which can be found in hapters 8, 9, 3, and 4 (and other of the subsequent chapters), have proved to be very useful. In particular, such results are almost indispensable in work involving the multivariate normal distribution refer, for example, to Searle (97, sec. 2.4f). 2. Some Terminology and Basic Results A submatrix of a matrix A is a matrix that can be obtained by striking out rows and/or columns of A. For example, if we strike out the second row of the matrix A ; 2 2 we obtain the 2 4 submatrix Alternatively, if we strike out the first and third columns, we obtain the 3 2 submatrix A I 2 or, if we strike out the second row and the first and third columns, we obtain the 2 2 submatrix

2 4 2 Submatrices and Partitioned Matrices Note that any matrix is a submatrix of itself; it is the submatrix obtained by striking out zero rows and zero columns. Submatrices of a row or column vector, that is, of a matrix having one row or column, are themselves row or column vectors and are customarily referred to as subvectors. Let A represent an r s submatrix of an m n matrix A obtained by striking out the i ;;i m r th rows and j ;;j n s th columns (of A), and let B represent the s r submatrix of A obtained by striking out the j ;; j n s th rows and i ;;i m r th columns (of A ). Then, B D A ; (.) as is easily verified. A submatrix of an n n matrix is called a principal submatrix if it can be obtained by striking out the same rows as columns (so that the ith row is struck out whenever the ith column is struck out, and vice versa). The r r (principal) submatrix of an n n matrix obtained by striking out its last n r rows and columns is referred to as a leading principal submatrix (r D ;;n). A principal submatrix of a symmetric matrix is symmetric, a principal submatrix of a diagonal matrix is diagonal, and a principal submatrix of an upper or lower triangular matrix is respectively upper or lower triangular, as is easily verified. A matrix can be divided or partitioned into submatrices by drawing horizontal or vertical lines between various of its rows or columns, in which case the matrix is called a partitioned matrix and the submatrices are sometimes referred to as blocks (as in blocks of elements). For example, A ; A ; are various partitionings of the same matrix. In effect, a partitioned m n matrix is an m n matrix A Dfa ij g that has been reexpressed in the general form A A 2 A c A 2 A 22 A 2c B A A r A r2 A rc Here, A ij is an m i n j matrix (i D ;;r; j D ;;c), where m, ;m r and n, ;n c are positive integers such that m m r D m and n n c D n. Or, more explicitly, A

3 2. Some Terminology and Basic Results 5 a m m i ; n n j a m m i ; n n j B A ij D A a m m i ;n n j a m m i ;n n j (When i D or j D, interpret the degenerate sum m m i or n n j as zero.) Thus, a partitioned matrix can be regarded as an array or matrix of matrices. Note that a matrix that has been divided by staggered lines, for example, A ; 2 2 does not satisfy our definition of a partitioned matrix. Thus, if a matrix, say A A 2 A c A 2 A 22 A 2c B A ; A r A r2 A rc is introduced as a partitioned matrix, there is an implicit assumption that each of the submatrices A i ; A i2 ;;A ic in the ith row of submatrices contains the same number of rows (i D ;2;;r) and similarly that each of the submatrices A j ; A 2j ;;A rj in the j th column of submatrices contains the same number of columns. It is customary to identify each of the blocks in a partitioned matrix by referring to the row of blocks and the column of blocks in which it appears. Thus, the submatrix A ij is referred to as the ij th block of the partitioned matrix A A 2 A c A 2 A 22 A 2c B A A r A r2 A rc In the case of a partitioned m n matrix A of the form A A 2 A r A 2 A 22 A 2r A A r A r2 A rr (.2) (for which the number of rows of blocks equals the number of columns of blocks), the ij th block A ij of A is called a diagonal block if j D i and an off-diagonal block if j i. If all of the off-diagonal blocks of A are null matrices, that is, if

4 6 2 Submatrices and Partitioned Matrices A A 22 A ; A rr then A is called a block-diagonal matrix, and sometimes diag.a ; A 22 ;;A rr / is written for A.IfA ij D for j<id;;r, that is, if A A 2 A r A 22 A 2r A ; A rr then A is called an upper block-triangular matrix. Similarly, if A ij D for j> i D ;;r, that is, if A A 2 A 22 A ; A r A r2 A rr then A is called a lower block-triangular matrix. To indicate that A is either upper or lower block-triangular (without being more specific), A isreferredtosimplyas block-triangular. Note that a partitioned m n matrix A of the form (.2) is block-diagonal if and only if it is both upper block-triangular and lower block-triangular. Note also that, if m D n D r (in which case each block of A consists of a single element), saying that A is block diagonal or upper or lower block triangular is equivalent to saying that A is diagonal or upper or lower triangular. Partitioned matrices having one row or one column are customarily referred to as partitioned (row or column) vectors. Thus, a partitioned m-dimensional column vector is an m vector a Dfa t g that has been reexpressed in the general form a a 2 B A a r Here, a i is an m i vector with elements a m m i ;;a m m i m i, respectively (i D ;;r), where m ;;m r are positive integers such that m m r D m. Similarly, a partitioned m-dimensional row vector is a m vector a Dfa t g that has been reexpressed in the general form.a ; a 2 ;;a r /.

5 2.2 Scalar Multiples, Transposes, Sums, and Products of Partitioned Matrices Scalar Multiples, Transposes, Sums, and Products of Partitioned Matrices Let A A 2 A c A 2 A 22 A 2c A A r A r2 A rc represent a partitioned mn matrix whose ij th block A ij is of dimensions m i n j. learly, for any scalar k, ka ka 2 ka c ka 2 ka 22 ka 2c k A (2.) ka r ka r2 ka rc In particular, A A 2 A c A 2 A 22 A 2c A (2.2) A r A r2 A rc Further, it is a simple exercise to show that A A 2 A r A A 2 A 22 A r2 D B A I (2.3) A c A 2c A rc that is, A can be expressed as a partitioned matrix, comprising c rows and r columns of blocks, the ij th of which is the transpose Aji of the jith block A ji of A. Now, let B B 2 B v B 2 B 22 B 2v B D B A B u B u2 B uv represent a partitioned p q matrix whose ij th block B ij is of dimensions p i q j. The matrices A and B are conformal (for addition) provided that p D m and q D n. Ifu D r, v D c, p i D m i (i D ;;r), and q j D n j (j D ;;c), that is, if (besides A and B being conformal for addition) the rows and columns of B are partitioned in the same way as those of A, then

6 8 2 Submatrices and Partitioned Matrices A B A 2 B 2 A c B c A 2 B 2 A 22 B 22 A 2c B 2c A B D B A ; (2.4) A r B r A r2 B r2 A rc B rc and the partitioning of A and B is said to be conformal (for addition). This result and terminology extend in an obvious way to the addition of any finite number of partitioned matrices. If A and B are conformal (for addition), then A B A 2 B 2 A c B c A 2 B 2 A 22 B 22 A 2c B 2c A B D B A ; (2.5) A r B r A r2 B r2 A rc B rc as is evident from results (2.4) and (2.2). The matrix product AB is defined provided that n D p.ifc D u and n k D p k (k D ;;c) [in which case all of the products A ik B kj (i D ;;r; j D ;;v; k D ;;c), as well as the product AB, exist], then F F 2 F v F 2 F 22 F 2v AB D B A ; (2.6) F r F r2 F rv where F ij D P c kd A ikb kj D A i B j A i2 B 2j A ic B cj, and the partitioning of A and B is said to be conformal (for the premultiplication of B by A). In the special case where r D c D u D v D 2, that is, where A A A D 2 B B and B D 2 ; A 22 B 22 A 2 result (2.6) simplifies to A B AB D A 2 B 2 A B 2 A 2 B 22 (2.7) A 2 B A 22 B 2 A 2 B 2 A 22 B 22 If A D.A ; A 2 ;;A c / is an m n matrix that has been partitioned only by columns (for emphasis, we sometimes insert commas between the submatrices of such a partitioned matrix), then A A A 2 D B A ; (2.8) A c B 2

7 and further if 2.3 Some Results on the Product of a Matrix and a olumn Vector 9 B B 2 B D B A B c is an n q partitioned matrix that has been partitioned only by rows (in a way that is conformal for its premultiplication by A), then AB D cx A k B k D A B A 2 B 2 A c B c (2.9) kd Similarly, if A A 2 A is an m n matrix that has been partitioned only by rows, then A r A D.A ; A 2 ;;A r /; (2.) and further if B D.B ; B 2 ;;B v / is an n q matrix that has been partitioned only by columns, then A B A B 2 A B v A 2 B A 2 B 2 A 2 B v AB D B A (2.) A r B A r B 2 A r B v 2.3 Some Results on the Product of a Matrix and a olumn Vector Let A represent an m n matrix and x an n vector. Writing A as A D.a ; a 2 ;;a n /, where a ; a 2 ;;a n are the columns of A, and x as x D.x ;x 2 ;;x n /, where x ;x 2 ;;x n are the elements of x, we find, as a special case of result (2.9), that Ax D nx x k a k D x a x 2 a 2 x n a n (3.) kd Thus, the effect of postmultiplying a matrix by a column vector is to form a linear combination of the columns of the matrix, where the coefficients in the linear combination are the elements of the column vector. Similarly, the effect of

8 2 2 Submatrices and Partitioned Matrices premultiplying a matrix by a row vector is to form a linear combination of the rows of the matrix, where the coefficients in the linear combination are the elements of the row vector. Representation (3.) is helpful in establishing the elementary results expressed in the following two lemmas. Lemma For any column vector y and nonnull column vector x, there exists a matrix A such that y D Ax. Proof. Since x is nonnull, one of its elements, say x j, is nonzero. Take A to be the matrix whose j th column is.=x j /y and whose other columns are null. Then, y D Ax, as is evident from result (3.). Q.E.D. Lemma For any two m n matrices A and B, if and only if Ax D Bx for every n vector x. Proof. It is obvious that, if, then Ax D Bx for every vector x. To prove the converse, suppose that Ax D Bx for every x. Taking x to be the n vector whose ith element is and whose other elements are, and letting a i and b i represent the ith columns of A and B, respectively, it is clear from result (3.) that a i D Ax D Bx D b i (i D ;;n). We conclude that. Q.E.D. Note that Lemma implies, in particular, that A D if and only if Ax D for every x. 2.4 Expansion of a Matrix in Terms of Its Rows, olumns, or Elements An m n matrix A Dfa ij g can be expanded in terms of its rows, columns, or elements by making use of formula (2.9). Denote the ith row of A by ri and the ith column of I m by e i (i D ;2;;m). Then, writing I m as I m D.e ; e 2 ;;e m / and A as r r 2 A and applying formula (2.9) to the product I m A, we obtain the expansion A D r m mx e i ri D e r e 2 r 2 e m r m (4.) id Similarly, denote the j th column of A by a j and the j th row of I n by u j (j D ;2;;n). Then, writing A as A D.a ; a 2 ;;a n / and I n as

9 u u 2 I n D B A u n Exercises 2 and applying formula (2.9) to the product AI n, we obtain the alternative expansion A D nx a j uj D a u a 2 u 2 a n u n (4.2) j D Moreover, the application of formula (3.) to the product I m a j gives the expansion mx a j D a ij e i id Upon substituting this expansion into expansion (4.2), we obtain the further expansion mx nx A D a ij U ij ; (4.3) id j D where U ij D e i uj is an m n matrix whose ij th element equals and whose remaining mn elements equal. In the special case where n D m (i.e., where A is square), u j D e j and hence U ij D e i ej, and in the further special case where A D I m, expansion (4.3) reduces to I m D mx e i e i (4.4) Note that, as a consequence of result (4.3), we have that! mx nx mx nx e i Au j D e i a ks e k u s u j D a ks e i e k u s u j ; kd sd id kd sd which (since e i e k equals,ifk D i, and equals,ifk i, and since u s u j equals, ifs D j, and equals, ifs j ) simplifies to e i Au j D a ij (4.5) Exercises Section 2.

10 22 2 Submatrices and Partitioned Matrices. Verify result (.). 2. Verify (a) that a principal submatrix of a symmetric matrix is symmetric, (b) that a principal submatrix of a diagonal matrix is diagonal, and (c) that a principal submatrix of an upper triangular matrix is upper triangular. 3. Let A A 2 A r A 22 A 2r A A rr represent an n n upper block-triangular matrix whose ij th block A ij is of dimensions n i n j (j i D ;;r). Show that A is upper triangular if and only if each of its diagonal blocks A ; A 22 ;;A rr is upper triangular. Section Verify results (2.3) and (2.6).

I = i 0,

I = i 0, Special Types of Matrices Certain matrices, such as the identity matrix 0 0 0 0 0 0 I = 0 0 0, 0 0 0 have a special shape, which endows the matrix with helpful properties The identity matrix is an example

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

ICS 6N Computational Linear Algebra Matrix Algebra

ICS 6N Computational Linear Algebra Matrix Algebra ICS 6N Computational Linear Algebra Matrix Algebra Xiaohui Xie University of California, Irvine xhx@uci.edu February 2, 2017 Xiaohui Xie (UCI) ICS 6N February 2, 2017 1 / 24 Matrix Consider an m n matrix

More information

CLASS 12 ALGEBRA OF MATRICES

CLASS 12 ALGEBRA OF MATRICES CLASS 12 ALGEBRA OF MATRICES Deepak Sir 9811291604 SHRI SAI MASTERS TUITION CENTER CLASS 12 A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Matrices and Determinants

Matrices and Determinants Chapter1 Matrices and Determinants 11 INTRODUCTION Matrix means an arrangement or array Matrices (plural of matrix) were introduced by Cayley in 1860 A matrix A is rectangular array of m n numbers (or

More information

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey Copyright 2005, W.R. Winfrey Topics Preliminaries Systems of Linear Equations Matrices Algebraic Properties of Matrix Operations Special Types of Matrices and Partitioned Matrices Matrix Transformations

More information

Chapter 2: Matrix Algebra

Chapter 2: Matrix Algebra Chapter 2: Matrix Algebra (Last Updated: October 12, 2016) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). Write A = 1. Matrix operations [a 1 a n. Then entry

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

MATH2210 Notebook 2 Spring 2018

MATH2210 Notebook 2 Spring 2018 MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................

More information

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra Massachusetts Institute of Technology Department of Economics 14.381 Statistics Guido Kuersteiner Lecture Notes on Matrix Algebra These lecture notes summarize some basic results on matrix algebra used

More information

MATH 2030: MATRICES ,, a m1 a m2 a mn If the columns of A are the vectors a 1, a 2,...,a n ; A is represented as A 1. .

MATH 2030: MATRICES ,, a m1 a m2 a mn If the columns of A are the vectors a 1, a 2,...,a n ; A is represented as A 1. . MATH 030: MATRICES Matrix Operations We have seen how matrices and the operations on them originated from our study of linear equations In this chapter we study matrices explicitely Definition 01 A matrix

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices Chapter 1 Systems of Linear Equations and Matrices System of linear algebraic equations and their solution constitute one of the major topics studied in the course known as linear algebra. In the first

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 3 Review of Matrix Algebra Vectors and matrices are essential for modern analysis of systems of equations algebrai, differential, functional, etc In this

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 50 - CHAPTER 3: MATRICES QUICK REVISION (Important Concepts & Formulae) MARKS WEIGHTAGE 03 marks Matrix A matrix is an ordered rectangular array of numbers

More information

Matrix representation of a linear map

Matrix representation of a linear map Matrix representation of a linear map As before, let e i = (0,..., 0, 1, 0,..., 0) T, with 1 in the i th place and 0 elsewhere, be standard basis vectors. Given linear map f : R n R m we get n column vectors

More information

Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices Chapter 1 Systems of Linear Equations and Matrices System of linear algebraic equations and their solution constitute one of the major topics studied in the course known as linear algebra. In the first

More information

Notes on Mathematics

Notes on Mathematics Notes on Mathematics - 12 1 Peeyush Chandra, A. K. Lal, V. Raghavendra, G. Santhanam 1 Supported by a grant from MHRD 2 Contents I Linear Algebra 7 1 Matrices 9 1.1 Definition of a Matrix......................................

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations MTHSC 3110 Section 2.1 Matrix Operations Notation Let A be an m n matrix, that is, m rows and n columns. We ll refer to the entries of A by their row and column indices. The entry in the i th row and j

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

Elementary Row Operations on Matrices

Elementary Row Operations on Matrices King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix

More information

Basic Concepts in Matrix Algebra

Basic Concepts in Matrix Algebra Basic Concepts in Matrix Algebra An column array of p elements is called a vector of dimension p and is written as x p 1 = x 1 x 2. x p. The transpose of the column vector x p 1 is row vector x = [x 1

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

Introduction. Vectors and Matrices. Vectors [1] Vectors [2] Introduction Vectors and Matrices Dr. TGI Fernando 1 2 Data is frequently arranged in arrays, that is, sets whose elements are indexed by one or more subscripts. Vector - one dimensional array Matrix -

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

Homework Set #8 Solutions

Homework Set #8 Solutions Exercises.2 (p. 19) Homework Set #8 Solutions Assignment: Do #6, 8, 12, 14, 2, 24, 26, 29, 0, 2, 4, 5, 6, 9, 40, 42 6. Reducing the matrix to echelon form: 1 5 2 1 R2 R2 R1 1 5 0 18 12 2 1 R R 2R1 1 5

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Math 313 Chapter 1 Review

Math 313 Chapter 1 Review Math 313 Chapter 1 Review Howard Anton, 9th Edition May 2010 Do NOT write on me! Contents 1 1.1 Introduction to Systems of Linear Equations 2 2 1.2 Gaussian Elimination 3 3 1.3 Matrices and Matrix Operations

More information

Lecture 1 INF-MAT : Chapter 2. Examples of Linear Systems

Lecture 1 INF-MAT : Chapter 2. Examples of Linear Systems Lecture 1 INF-MAT 4350 2010: Chapter 2. Examples of Linear Systems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo August 26, 2010 Notation The set of natural

More information

Determinants. Recall that the 2 2 matrix a b c d. is invertible if

Determinants. Recall that the 2 2 matrix a b c d. is invertible if Determinants Recall that the 2 2 matrix a b c d is invertible if and only if the quantity ad bc is nonzero. Since this quantity helps to determine the invertibility of the matrix, we call it the determinant.

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

Calculus II - Basic Matrix Operations

Calculus II - Basic Matrix Operations Calculus II - Basic Matrix Operations Ryan C Daileda Terminology A matrix is a rectangular array of numbers, for example 7,, 7 7 9, or / / /4 / / /4 / / /4 / /6 The numbers in any matrix are called its

More information

Mathematics 13: Lecture 10

Mathematics 13: Lecture 10 Mathematics 13: Lecture 10 Matrices Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 10 January 25, 2008 1 / 19 Matrices Recall: A matrix is a

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27

Chapter 2. Ma 322 Fall Ma 322. Sept 23-27 Chapter 2 Ma 322 Fall 2013 Ma 322 Sept 23-27 Summary ˆ Matrices and their Operations. ˆ Special matrices: Zero, Square, Identity. ˆ Elementary Matrices, Permutation Matrices. ˆ Voodoo Principle. What is

More information

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation.

Matrices. Math 240 Calculus III. Wednesday, July 10, Summer 2013, Session II. Matrices. Math 240. Definitions and Notation. function Matrices Calculus III Summer 2013, Session II Wednesday, July 10, 2013 Agenda function 1. 2. function function Definition An m n matrix is a rectangular array of numbers arranged in m horizontal

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Foundations of Cryptography

Foundations of Cryptography Foundations of Cryptography Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi Department of Mathematics and Statistics University of Turku 2017 Ville Junnila, Arto Lepistö viljun@utu.fi, alepisto@utu.fi

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Linear Algebra: Lecture notes from Kolman and Hill 9th edition. Linear Algebra: Lecture notes from Kolman and Hill 9th edition Taylan Şengül March 20, 2019 Please let me know of any mistakes in these notes Contents Week 1 1 11 Systems of Linear Equations 1 12 Matrices

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Matrix representation of a linear map

Matrix representation of a linear map Matrix representation of a linear map As before, let e i = (0,..., 0, 1, 0,..., 0) T, with 1 in the i th place and 0 elsewhere, be standard basis vectors. Given linear map f : R n R m we get n column vectors

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

A Review of Matrix Analysis

A Review of Matrix Analysis Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value

More information

ELE/MCE 503 Linear Algebra Facts Fall 2018

ELE/MCE 503 Linear Algebra Facts Fall 2018 ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

Matrix-Matrix Multiplication

Matrix-Matrix Multiplication Chapter Matrix-Matrix Multiplication In this chapter, we discuss matrix-matrix multiplication We start by motivating its definition Next, we discuss why its implementation inherently allows high performance

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

MATRICES The numbers or letters in any given matrix are called its entries or elements

MATRICES The numbers or letters in any given matrix are called its entries or elements MATRICES A matrix is defined as a rectangular array of numbers. Examples are: 1 2 4 a b 1 4 5 A : B : C 0 1 3 c b 1 6 2 2 5 8 The numbers or letters in any given matrix are called its entries or elements

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Review of Vectors and Matrices

Review of Vectors and Matrices A P P E N D I X D Review of Vectors and Matrices D. VECTORS D.. Definition of a Vector Let p, p, Á, p n be any n real numbers and P an ordered set of these real numbers that is, P = p, p, Á, p n Then P

More information

Matrices, vectors and scalars. Operations. Matrix multiplication. notes linear algebra 1. Consider the following examples. a 11 a 12 a 21 a 22

Matrices, vectors and scalars. Operations. Matrix multiplication. notes linear algebra 1. Consider the following examples. a 11 a 12 a 21 a 22 notes linear algebra 1 Matrices, vectors and scalars Consider the following examples 2 1 2 1 1 Example a. b. 0 3 0 3 2 c. a 11 a 12 a 21 a 22 A matrix: is rectangular array of numbers with n rows and m

More information

Analysis and Linear Algebra. Lectures 1-3 on the mathematical tools that will be used in C103

Analysis and Linear Algebra. Lectures 1-3 on the mathematical tools that will be used in C103 Analysis and Linear Algebra Lectures 1-3 on the mathematical tools that will be used in C103 Set Notation A, B sets AcB union A1B intersection A\B the set of objects in A that are not in B N. Empty set

More information

Matrix & Linear Algebra

Matrix & Linear Algebra Matrix & Linear Algebra Jamie Monogan University of Georgia For more information: http://monogan.myweb.uga.edu/teaching/mm/ Jamie Monogan (UGA) Matrix & Linear Algebra 1 / 84 Vectors Vectors Vector: A

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

3.2 Gaussian Elimination (and triangular matrices)

3.2 Gaussian Elimination (and triangular matrices) (1/19) Solving Linear Systems 3.2 Gaussian Elimination (and triangular matrices) MA385/MA530 Numerical Analysis 1 November 2018 Gaussian Elimination (2/19) Gaussian Elimination is an exact method for solving

More information

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns.

Section 9.2: Matrices. Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. Section 9.2: Matrices Definition: A matrix A consists of a rectangular array of numbers, or elements, arranged in m rows and n columns. That is, a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn A

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

Introduction to Matrices

Introduction to Matrices 214 Analysis and Design of Feedback Control Systems Introduction to Matrices Derek Rowell October 2002 Modern system dynamics is based upon a matrix representation of the dynamic equations governing the

More information

Chapter 2. Square matrices

Chapter 2. Square matrices Chapter 2. Square matrices Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/18 Invertible matrices Definition 2.1 Invertible matrices An n n matrix A is said to be invertible, if there is a

More information

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B Chapter 8 - S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number

More information

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear

More information

Chapter 1 Matrices and Systems of Equations

Chapter 1 Matrices and Systems of Equations Chapter 1 Matrices and Systems of Equations System of Linear Equations 1. A linear equation in n unknowns is an equation of the form n i=1 a i x i = b where a 1,..., a n, b R and x 1,..., x n are variables.

More information

II. Determinant Functions

II. Determinant Functions Supplemental Materials for EE203001 Students II Determinant Functions Chung-Chin Lu Department of Electrical Engineering National Tsing Hua University May 22, 2003 1 Three Axioms for a Determinant Function

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n Lectures -2: Linear Algebra Background Almost all linear and nonlinear problems in scientific computation require the use of linear algebra These lectures review basic concepts in a way that has proven

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Matrix Inversion Algorithm One payoff from this theorem: It gives us a way to invert matrices.

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

Example. We can represent the information on July sales more simply as

Example. We can represent the information on July sales more simply as CHAPTER 1 MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS 11 Matrices and Vectors In many occasions, we can arrange a number of values of interest into an rectangular array For example: Example We can

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

MATRICES AND MATRIX OPERATIONS

MATRICES AND MATRIX OPERATIONS SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

EA = I 3 = E = i=1, i k

EA = I 3 = E = i=1, i k MTH5 Spring 7 HW Assignment : Sec.., # (a) and (c), 5,, 8; Sec.., #, 5; Sec.., #7 (a), 8; Sec.., # (a), 5 The due date for this assignment is //7. Sec.., # (a) and (c). Use the proof of Theorem. to obtain

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Chapter Contents. A 1.6 Further Results on Systems of Equations and Invertibility 1.7 Diagonal, Triangular, and Symmetric Matrices

Chapter Contents. A 1.6 Further Results on Systems of Equations and Invertibility 1.7 Diagonal, Triangular, and Symmetric Matrices Chapter Contents. Introduction to System of Linear Equations. Gaussian Elimination.3 Matrices and Matri Operations.4 Inverses; Rules of Matri Arithmetic.5 Elementary Matrices and a Method for Finding A.6

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018)

MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018) MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018) COURSEWORK 3 SOLUTIONS Exercise ( ) 1. (a) Write A = (a ij ) n n and B = (b ij ) n n. Since A and B are diagonal, we have a ij = 0 and

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.3 Composition Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377

More information

Lecture 2 INF-MAT : A boundary value problem and an eigenvalue problem; Block Multiplication; Tridiagonal Systems

Lecture 2 INF-MAT : A boundary value problem and an eigenvalue problem; Block Multiplication; Tridiagonal Systems Lecture 2 INF-MAT 4350 2008: A boundary value problem and an eigenvalue problem; Block Multiplication; Tridiagonal Systems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University

More information

Notes on vectors and matrices

Notes on vectors and matrices Notes on vectors and matrices EE103 Winter Quarter 2001-02 L Vandenberghe 1 Terminology and notation Matrices, vectors, and scalars A matrix is a rectangular array of numbers (also called scalars), written

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information