Errors and Uncertainties in Chemistry Internal Assessment

Size: px
Start display at page:

Download "Errors and Uncertainties in Chemistry Internal Assessment"

Transcription

1 Errors and Uncertainties in Chemistry Internal Assessment The treatment of errors and uncertainties is relevant in the internal assessment criteria of: data collection, aspect 1 (collecting and recording raw data) data processing and presentation, aspect 2 (presenting processed data) conclusion and evaluation, aspects 1 and 2 (drawing conclusions/evaluating procedure(s) and results). When the internal assessment criteria are applied to investigations, the issues of errors and uncertainties must be interpreted according to the level of the candidate. There are different expectations of candidates for the same criteria at standard level and higher level. Expectations at Standard Level and Higher Level Standard level candidates are not expected to process uncertainties in calculations. However, they can make statements about the minimum uncertainty, based on the least significant figure in a measurement, and can also make statements about the manufacturer's claim of accuracy. They can estimate uncertainties in compound measurements, and can make educated guesses about uncertainties in the method of measurement. If uncertainties are small enough to be ignored, the candidate should note this fact. Higher level candidates should be able to express uncertainties as fractions,, and as percentages,. They should also be able to propagate uncertainties through a calculation. Note: Standard level and higher level candidates are not expected to construct uncertainty bars on their graphs. Interpreting the Relevant Assessment Criteria Data Collection (Aspect 1) 1. Volumetric analysis acid base titration Sample extracts of typical student work are shown below. a. Determination of the percentage of ethanoic acid in vinegar Volume of sodium hydroxide for titration 1: 20.0 ml Volume of sodium hydroxide for titration 2: 40.5 ml No raw data has been collected or presented (just the calculated volumes). The level of achievement for aspect 1 of data collection is not at all. b. Volume of NaOH = = 20.0 Volume of NaOH = = 40.5 Some appropriate raw data is recorded, but other information is omitted, such as colour at end point. No units or uncertainties are indicated. The level of achievement for aspect 1 of Page 1 of 7

2 data collection is partial. c. Titration of standard HCl against NaOH and NaOH against vinegar Final volume/cm Initial volume/cm Volume of base required/cm Some appropriate raw data is recorded, but other items, such as colour at end point, are missing. No uncertainties are recorded, data is recorded to different numbers of decimal places, data is not recorded accurately (readings are only to 0.1 cm 3 ), and only one set of data is collected. The level of achievement for aspect 1 of data collection is partial. d. Titration of 5.00 cm 3 vinegar against the standardized NaOH Trial 1 Trial 2 Trial 3 Final volume/cm 3 (± 0.05 cm 3 ) Initial volume/cm 3 (± 0.05 cm 3 ) Volume of base required/cm 3 (± 0.1 cm 3 )* Colours of solutions: acid, base and phenolphthalein indicator were all colourless. At end point, the rough trial was dark pink. The other two trials were only slightly pink at end point, and remained slightly pink for at least 30 seconds. The candidate records appropriate qualitative and quantitative raw data, including units and uncertainties. The level of achievement for aspect 1 of data collection is complete. *The candidate has calculated the error in the volume by adding the two errors in the initial and final volumes. Propagation of uncertainties is only required at higher level. Standard level candidates could still be awarded a "complete" if they had not done this. 2. Gas law investigation The following examples of data collection (see Tables 1 3 below) are from a gas law experiment. Table 1 DC (aspect 1) = complete Temperature T/ C ± 0.2 C Height of column h/mm ± 0.5 mm Table 2 DC (aspect 1) = partial Temperature (T) Height of column (h) Table 3 DC (aspect 1) = partial Temperature Height of column Page 2 of 7

3 In Table 1, the candidate designed the data table and correctly recorded the raw data, including units and uncertainties. The level of achievement for aspect 1 of data collection is complete. In Table 2, units and uncertainties are not included. The level of achievement for aspect 1 of data collection is partial. In Table 3, units and uncertainties are not included, and the data is recorded in an inconsistent manner. Significant digits are not appreciated. The level of achievement for aspect 1 of data collection is partial. Note: If candidates graph the raw data directly, and do not make a permanent record of it (for example, a computer program logs and graphs the data), then they fail to meet any of the requirements for aspect 1 of data collection. The level of achievement for aspect 1 of data collection would be "not at all" as candidates should produce a printout of the raw data. Uncertainties in raw data When numerical data is collected, values cannot be determined exactly, regardless of the nature of the scale or the instrument. If the mass of an object is determined with a digital balance reading to 0.1 g, the actual value lies in a range above and below the reading. This range is the uncertainty of the measurement. If the same object is measured on a balance reading to g, the uncertainty is reduced, but it can never be completely eliminated. In data collection, estimated uncertainties should be indicated for all measurements. Data Processing and Presentation (Aspect 2) Figure 1 DPP (aspect 2) = complete Figure 2 DPP (aspect 2) = complete Figure 1 is a graph of the gas law data from Table 1, where the has a significant uncertainty. The computer drew the uncertainty bars based on the candidate entering the correct information, which in this case was 0.5 mm for each value. Figure 2 does not show the uncertainty bars. In chemistry, candidates are not expected to construct uncertainty bars. In Page 3 of 7

4 both graphs the title is given (although it should be more explicit), and the candidate has labelled the axis and included units. The level of achievement for aspect 2 of data processing and presentation for both graphs is complete. Figure 3 DPP (aspect 2) = partial In Figure 3, the candidate does not include a title for the graph, and the units are missing. The level of achievement for aspect 2 of data processing and presentation is partial. Figure 4 DPP (aspect 2) = not at all In both examples shown in Figure 4, the candidates fail to draw a best straight-line graph (or draw no line). The units and the titles of the graphs are missing. In the second graph, poor use is made of the x-axis scale. The level of achievement for aspect 2 of data processing and presentation for both graphs is not at all. Conclusion and Evaluation (Aspects 1 and 2) Page 4 of 7

5 When attempting to measure an already known and accepted value of a physical quantity, such as the charge of an electron, the melting point of a substance, or the value of the ideal gas constant, candidates can make two types of comments: 1. The error in the measurement can be expressed by comparing the experimental value with the textbook or literature value. Perhaps a candidate measured the value of R, the ideal gas constant = 8.11 kpa dm 3 mol -1 K -1, and the accepted value is kpa dm 3 mol -1 K -1. The error (a measure of accuracy, not precision) is 2.45% off the accepted value. This sounds good, but if, in fact, the experimental uncertainty is only 2%, random errors alone cannot explain the difference, and some systematic error(s) must be present. 2. The experimental results fail to meet the accepted value (a more relevant comment). The experimental range does not include the accepted value. The experimental value has an uncertainty of only 2%. A critical candidate would appreciate that they must have missed something here. There must be more uncertainty and/or errors than acknowledged. In addition to the above two types of comment, candidates may also comment on errors in the assumptions of the theory being tested, and errors in the method and equipment being used. Two typical examples of student work are given below. Melting point determination Conclusion and Evaluation: Intermolecular bonds are being broken and formed which consumes energy. There is a definite correlation between the melting point and the freezing point of a substance. If good data is collected, the melting point should be the same as the freezing point. A substance should melt, go from solid to liquid, at the same temperature that it freezes, goes from liquid Page 5 of 7

6 to solid. Our experiment proved this is true because, while freezing, the freezing point was found to be 55 C, and when melting, the melting point was also found to be 55 C (see graph). The candidate states a conclusion that has some validity. No comparison is made to literature value. There is no evaluation of the procedure and results. The level of achievement for aspect 1 of conclusion and evaluation is partial. The level of achievement for aspect 2 is not at all. Melting/freezing point of para-dichlorobenzene Melting point = boiling point = 55.0 ± 0.5 C Conclusion and evaluation: Literature value of melting point of para-dichlorobenzene = 53.1 C (Handbook of Chemistry and Physics). The fact that % difference > % uncertainty means random errors alone cannot explain the difference and some systematic error(s) must be present. Melting point (or freezing point) is the temperature at which the solid and the liquid are in equilibrium with each other:. This is the temperature at which there is no change in kinetic energy (no change in temperature), but a change in potential energy. The value suggests a small degree of systematic error in comparison with the literature value as random errors alone are unable to explain the percentage difference. Evaluation of procedure and modifications: i. Duplicate readings were not taken. Other groups of students had % uncertainty > % difference, ie in their case random errors could explain the % difference, so repeating the investigation is important. Page 6 of 7

7 ii. The thermometer how accurate was it? It should have been calibration. In order to eliminate any systematic errors due to the use of a particular thermometer, calibration against the boiling point of water (at 1 atmosphere) or better still against a solid of known melting point (close to the sample) should be done. iii. The sample in the test tube was not as large as in other groups. Thus the temperature rises/falls were much faster than for other groups. A greater quantity of solid, plus use of a more accurate thermometer (not 0.5 C divisions, but the longer one used by some groups), would have provided more accurate results. The level of achievement for aspects 1 and 2 of conclusion and evaluation is complete. back to top back to contents Page 7 of 7

11.1 Uncertainty and error in measurement (1 Hour) 11.2 Uncertainties in calculated results (0.5 Hour) 11.3 Graphical techniques (0.

11.1 Uncertainty and error in measurement (1 Hour) 11.2 Uncertainties in calculated results (0.5 Hour) 11.3 Graphical techniques (0. Chapter 11 Measurement and Data Processing Page 1 Students are to read and complete any part that requires answers and will submit this assignment on the first day of class. You may use internet sources

More information

Data collection and processing (DCP)

Data collection and processing (DCP) This document is intended as a guideline for success in IB internal assessment. Three criteria are assessed based on lab work submitted in a report or other format. They are: DESIGN, DATA COLLECTION AND

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *8967183008* CHEMISTRY 5070/41 Paper 4 Alternative to Practical May/June 2015 1 hour Candidates answer on the Question Paper. No Additional

More information

STOICHIOMETRIC RELATIONSHIPS

STOICHIOMETRIC RELATIONSHIPS STOICHIOMETRIC RELATIONSHIPS Most chemical reactions involve two or more substances reacting with each other. Substances react with each other in certain ratios, and stoichiometry is the study of the ratios

More information

ANALYSIS OF CARBONATE MIXTURES

ANALYSIS OF CARBONATE MIXTURES ANALYSIS OF CARBONATE MIXTURES AIM The main objective of this experiment is to determine the constituents in a solution containing Na CO 3, NaHCO 3 and NaOH alone or in a mixture by using titrimetry. INTRODUCTION

More information

5.1.2 How Far? Equilibrium

5.1.2 How Far? Equilibrium 5.1.2 How Far? Equilibrium Equilibrium constant Kc Kc = equilibrium constant For a generalised reaction ma + nb pc + qd [ C] p [D] q m,n,p,q are the stoichiometric balancing [ A] m [B] n numbers A,B,C,D

More information

4-4 Chemical changes Chemistry

4-4 Chemical changes Chemistry 4-4 Chemical changes Chemistry.0 A student investigated the reaction of sodium carbonate with dilute hydrochloric acid. The student used the apparatus shown in Figure. Figure Sodium carbonate This is the

More information

Chemistry Assessment Unit AS 3

Chemistry Assessment Unit AS 3 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009 Chemistry Assessment Unit AS 3 assessing Module 3: Practical Examination 2 ASC32 [ASC32] FRIDAY 15 MAY,

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *8243796847* CHEMISTRY 57/41 Paper 4 Alternative to Practical May/June 211 1 hour Candidates answer on

More information

She carries out two experiments.

She carries out two experiments. 1 A student investigates the reaction of aqueous sodium hydroxide with two different aqueous solutions of hydrochloric acid, solution X and solution Y. She carries out two experiments. Experiment 1 Using

More information

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette

Titrations. Method for Titration. N Goalby chemrevise.org 1. Using the pipette Titrations Titrations are done often to find out the concentration of one substance by reacting it with another substance of known concentration. They are often done with neutralisation reactions, but

More information

IB Physics STUDENT GUIDE 13 and Processing (DCP)

IB Physics STUDENT GUIDE 13 and Processing (DCP) IB Physics STUDENT GUIDE 13 Chapter Data collection and PROCESSING (DCP) Aspect 1 Aspect Aspect 3 Levels/marks Recording raw data Processing raw data Presenting processed data Complete/ Partial/1 Not at

More information

Chapter 1 Introduction: Matter and Measurement

Chapter 1 Introduction: Matter and Measurement 23/07/2014 Chemistry Chapter 1 Introduction: and AP Chemistry 2014-15 North Nova Education Centre Mr. Gauthier In this science we study matter and the changes it undergoes. Scientific Method The scientific

More information

Student Book links Specification links Links to prior learning Suggested teaching order

Student Book links Specification links Links to prior learning Suggested teaching order Teaching plan 5.1.2 Molecular formulae Student Book links Specification links Links to prior learning Suggested teaching order 5.1.2 5.03 5.04 5.05 Core practical 1 Learning objectives Empirical formulae

More information

13. Chemical Equilibria

13. Chemical Equilibria 13. Chemical Equilibria Many reactions are reversible + 3 2 All reversible reactions reach an dynamic equilibrium state. Dynamic equilibrium occurs when forward and backward reactions are occurring at

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

All reversible reactions reach an dynamic equilibrium state.

All reversible reactions reach an dynamic equilibrium state. 11. Equilibrium II Many reactions are reversible + 3 2NH 3 All reversible reactions reach an dynamic equilibrium state. Dynamic equilibrium occurs when forward and backward reactions are occurring at equal

More information

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results Topic 11: Measurement and Data Processing and Analysis Topic 11.1- Uncertainties and Errors in Measurement and Results Key Terms Random Error- above or below true value, usually due to limitations of equipment

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 8689143754* CHEMISTRY 9701/51 Paper 5 Planning, Analysis and Evaluation May/June 2010 1 hour 15 minutes

More information

Percentage of Acetic Acid in Vinegar

Percentage of Acetic Acid in Vinegar Microscale Percentage of Acetic Acid in Vinegar When sweet apple cider is fermented in the absence of oxygen, the product is an acid, vinegar. Most commercial vinegars are made by fermentation, but some,

More information

Unit 3 Chemistry - Volumetric Analysis

Unit 3 Chemistry - Volumetric Analysis Unit 3 Chemistry Volumetric Analysis Volumetric analysis is a quantitative chemical analysis used to determine the unknown concentration of one reactant [the analyte] by measuring the volume of another

More information

13. Determining the value of K c for an equilibrium reaction Student Sheet

13. Determining the value of K c for an equilibrium reaction Student Sheet Appendix 2 13. Determining the value of K c for an equilibrium reaction Student Sheet In this experiment you have the opportunity to use the skills you have developed by doing volumetric analysis to determine

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *1331047203* CHEMISTRY 5070/42 Paper 4 Alternative to Practical October/November 2011 1 hour Candidates

More information

Chemistry. Statistics. General comments. Paper One. Part A Knowledge and simple application Senior External Examination assessment report

Chemistry. Statistics. General comments. Paper One. Part A Knowledge and simple application Senior External Examination assessment report Chemistry 2011 Senior External Examination assessment report Statistics Year Number of candidates Level of achievement VHA HA SA LA VLA 2011 33 1 2 17 10 3 2010 34 2 3 8 15 6 2009 47 1 5 4 20 17 2008 25

More information

ACIDS, BASES, PH, BUFFERS & TITRATION WEBINAR. Dr Chris Clay

ACIDS, BASES, PH, BUFFERS & TITRATION WEBINAR. Dr Chris Clay ACIDS, BASES, PH, BUFFERS & TITRATION WEBINAR Dr Chris Clay http://drclays-alevelchemistry.com/ Q1.Titration curves, labelled E, F, G and H, for combinations of different aqueous solutions of acids and

More information

EXPERIMENT 5 THE ASSAY OF ASPIRIN

EXPERIMENT 5 THE ASSAY OF ASPIRIN EXPERIMENT 5 THE ASSAY OF ASPIRIN Aspirin is made by combining two acids, salicylic acid and acetic acid. Therefore aspirin has two acid portions, each of which can be neutralized by base. One mole of

More information

Errors. Accuracy and precision

Errors. Accuracy and precision Errors Accuracy and precision The terms accuracy and precision are commonly used to mean the same thing but there is a subtle difference in their meanings. An accurate measurement or result is defined

More information

Aim, Underlying chemistry and Experimental approach. Candidate A. mark awarded Comments. Max Mark. Section. 1 Aim

Aim, Underlying chemistry and Experimental approach. Candidate A. mark awarded Comments. Max Mark. Section. 1 Aim Aim, Underlying chemistry and Experimental approach Candidate A 1 Aim An aim that describes clearly the purpose of the 2 Underlying chemistry An account of chemistry relevant to the aim of the Max Mark

More information

2014 Assessment Report. Chemistry Level 3

2014 Assessment Report. Chemistry Level 3 National Certificate of Educational Achievement 2014 Assessment Report Chemistry Level 3 91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances 91391

More information

AP Chemistry Laboratory Review

AP Chemistry Laboratory Review Part I MATCH the following procedures with the correct descriptions or pictures in Part II (not all are shown you should review these procedures from your laboratory notebook) - Gravimetric Analysis -

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *2799730286* CHEMISTRY 5070/04 Paper 4 Alternative to Practical October/November 2007 1 hour Candidates

More information

Unit 2: Practical Scientific Procedures and Techniques

Unit 2: Practical Scientific Procedures and Techniques Unit 2: Practical Scientific Procedures and Techniques Level: 3 Unit type: Internal Guided learning hours: 90 Unit in brief Learners will be introduced to quantitative laboratory techniques, calibration,

More information

IB Chemistry Solutions Gasses and Energy

IB Chemistry Solutions Gasses and Energy Solutions A solution is a homogeneous mixture it looks like one substance. An aqueous solution will be a clear mixture with only one visible phase. Be careful with the definitions of clear and colourless.

More information

HONORS CHEMISTRY Putting It All Together II

HONORS CHEMISTRY Putting It All Together II NAME: SECTION: HONORS CHEMISTRY Putting It All Together II Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *6869105042* CHEMISTRY 5070/41 Paper 4 Alternative to Practical May/June 2013 1 hour Candidates answer

More information

Chemistry Foundations of Chemistry Test. This is due:

Chemistry Foundations of Chemistry Test. This is due: Chemistry Foundations of Chemistry Test This is due: Directions: Answer the following questions on a separate sheet of paper (or on this paper if you have room), staple to this paper (if you used a separate

More information

1.6 Equilibria All reversible reactions reach an dynamic equilibrium state.

1.6 Equilibria All reversible reactions reach an dynamic equilibrium state. 1.6 Equilibria All reversible reactions reach an dynamic equilibrium state. Many reactions are reversible + 3 2NH 3 The term dynamic means both forward and backward reactions are occurring simultaneously

More information

Commentary on candidate 3 evidence (Batteries)

Commentary on candidate 3 evidence (Batteries) on candidate 3 evidence (Batteries) The evidence for this candidate has achieved the following s for each section of this course assessment component. 1 Aim An aim that describes clearly the purpose of

More information

CHEM4. (JUN15CHEM401) WMP/Jun15/CHEM4/E5. General Certificate of Education Advanced Level Examination June 2015

CHEM4. (JUN15CHEM401) WMP/Jun15/CHEM4/E5. General Certificate of Education Advanced Level Examination June 2015 Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination June 2015 Question 1 2 Mark Chemistry

More information

All reversible reactions reach an dynamic equilibrium state. H 2 O+ CO H 2 +CO 2. Rate of reverse reaction (H 2 + CO 2 )

All reversible reactions reach an dynamic equilibrium state. H 2 O+ CO H 2 +CO 2. Rate of reverse reaction (H 2 + CO 2 ) 4.2 Equilibria Many reactions are reversible + 3H 2 2NH 3 All reversible reactions reach an dynamic equilibrium state. Dynamic equilibrium occurs when forward and backward reactions are occurring at equal

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *0594498264* CHEMISTRY 5070/42 Paper 4 Alternative to Practical October/November 2016 1 hour Candidates answer on the Question Paper. No Additional

More information

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the.

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the. Atoms, Elements, Compounds and Mixtures Explain how fractional distillation can be used to separate a mixture. 1 Atoms, Elements, Compounds and Mixtures Fractional distillation is used to separate components

More information

(14) WMP/Jun10/CHEM4

(14) WMP/Jun10/CHEM4 Acids, Bases and ph 14 5 In this question, give all values of ph to two decimal places. Calculating the ph of aqueous solutions can involve the use of equilibrium constants such as K w and K a K w is the

More information

NCEA Chemistry 2.1 Quantitative Analysis AS 91161

NCEA Chemistry 2.1 Quantitative Analysis AS 91161 NCEA Chemistry 2.1 Quantitative Analysis AS 91161 What is this NCEA Achievement Standard? When a student achieves a standard, they gain a number of credits. Students must achieve a certain number of credits

More information

CHAPTER 2 Data Analysis

CHAPTER 2 Data Analysis CHAPTER 2 Data Analysis 2.1 Units of Measurement The standard of measurement used in science are those of the metric system. All the units are based on 10 or multiples of 10. SI Units: The International

More information

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter.

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. Name: Block: Date: LCPS Core Experience Heat Transfer Student Notes OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. LINK 1. Particles in

More information

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments:

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments: C4 TITRATIONS Question Practice Name: Class: Date: Time: 97 minutes Marks: 96 marks Comments: GCSE CHEMISTRY ONLY Page of 3 Sodium hydroxide neutralises sulfuric acid. The equation for the reaction is:

More information

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

P.M. MONDAY, 11 May minutes

P.M. MONDAY, 11 May minutes Candidate Name Centre Number 2 Candidate Number GCE AS/A level 333/01 CHEMISTRY CH3a P.M. MONDAY, 11 May 2009 45 minutes FOR EXAMINER S USE ONLY Question Mark ADDITIONAL MATERIALS In addition to this examination

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *8246073252* CHEMISTRY 5070/41 Paper 4 Alternative to Practical May/June 2016 1 hour Candidates answer on the Question Paper. No Additional

More information

ENERGY IN CHEMISTRY. R. Ashby Duplication by permission only.

ENERGY IN CHEMISTRY. R. Ashby Duplication by permission only. CH 11 TOPIC 28 CHANGING STATES OF MATTER 1 You have mastered this topic when you can: 1) define or describe: ENERGY, POTENTIAL ENERGY, KINETIC ENERGY & KINETIC MOLECULAR THEORY 2) define or describe HEAT

More information

Practice Packet Unit 1: Math & Measurement

Practice Packet Unit 1: Math & Measurement Regents Chemistry Practice Packet Unit 1: Math & Measurement 1 Lesson 1: Metric Conversions Objective: o Recognize and convert various metric scales of measurement Use Reference Tables C and D to help

More information

The remaining questions were developed by John Gelder.

The remaining questions were developed by John Gelder. 1.Design an experiment to collect data that supports the claim that a 1.0 M NaCl solution is a homogeneous mixture. Describe the steps, the data you would collect, and how the data support the claim. Laboratory

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *0160609008* CHEMISTRY 5070/43 Paper 4 Alternative to Practical May/June 2010 1 hour

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 608901 3879* CHEMISTRY 9701/52 Paper 5 Planning, Analysis and Evaluation May/June 2010 1 hour 15 minutes

More information

A-level CHEMISTRY 7405/1. Paper 1: Inorganic and Physical Chemistry. SPECIMEN MATERIAL v1.2

A-level CHEMISTRY 7405/1. Paper 1: Inorganic and Physical Chemistry. SPECIMEN MATERIAL v1.2 SPECIMEN MATERIAL v1.2 Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level CHEMISTRY Paper 1: Inorganic and Physical Chemistry Specimen

More information

Significant Figures. Significant Figures 18/02/2015. A significant figure is a measured or meaningful digit.

Significant Figures. Significant Figures 18/02/2015. A significant figure is a measured or meaningful digit. Significant Figures When counting objects, it is easy to determine the EXACT number of objects. Significant Figures Unit B1 But when a property such as mass, time, volume, or length is MEASURED, you can

More information

Specimen Paper. Further Additional Science Unit 2 Chemistry 3 [CODE] Time allowed 60 minutes

Specimen Paper. Further Additional Science Unit 2 Chemistry 3 [CODE] Time allowed 60 minutes Centre Number Surname Candidate Number Specimen Paper For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Foundation Tier Question 1 Mark Further

More information

Chemistry Assessment Unit AS 3

Chemistry Assessment Unit AS 3 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2011 Chemistry Assessment Unit AS 3 assessing Module 3: Practical Examination 2 AC132 [AC132] WEDNESDAY 11 MAY

More information

Student Name. Teacher

Student Name. Teacher Student Name Teacher Question: I chose this question because Research Keywords Research Topic Source: Research Summary Paragraph Hypothesis If then Variables Manipulated Variable Responding Variable Constants

More information

Part of the practical procedure is given below.

Part of the practical procedure is given below. A peptide is hydrolysed to form a solution containing a mixture of amino acids. This mixture is then analysed by silica gel thin-layer chromatography (TLC) using a toxic solvent. The individual amino acids

More information

Contents. Answers 73. F01 Target 7 Single Science Chemistry WB indd 3

Contents. Answers 73. F01 Target 7 Single Science Chemistry WB indd 3 Contents Unit 1 Moles 1 Get started 2 1 How do I describe what a mole is? 3 2 How do I calculate how many moles, or particles, there are in a substance? 4 3 How do I calculate the mass of a reactant or

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level XtremePapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 6 4 8 6 8 0 4 7 3 1 * PHYSICS 9702/51 Paper 5 Planning, Analysis and Evaluation October/November

More information

Teacher Resource and Assessment Book Exercises Unit 3 answers

Teacher Resource and Assessment Book Exercises Unit 3 answers Teacher Resource and Assessment Book Exercises Unit 3 answers 2. Exercise: Gravimetric analysis of chicken soup Part A 1. n(agcl) = 0.246 143.3 = 1.72 x 10 3 mole 2. Amount of NaCl in 20.00 ml aliquot

More information

Mole Concept 5.319% = = g sample =

Mole Concept 5.319% = = g sample = Mole - a counting system Avogadro s number = 6.0 10 3 Mole Concept Chemical calculation involving mass: Empirical formula: The simplest formula that shows the relative numbers of the different kinds of

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

The synthesis and analysis of hexaammine nickel(ii) chloride

The synthesis and analysis of hexaammine nickel(ii) chloride Candidate 1 The synthesis and analysis of hexaammine nickel(ii) chloride 1.Abstract Aim and Findings The aim is clear and the findings match the aim. The Abstract immediately follows the contents and is

More information

# 12 ph-titration of Strong Acids with Strong Bases

# 12 ph-titration of Strong Acids with Strong Bases # 12 ph-titration of Strong Acids with Strong Bases Purpose: A strong acid solution is titrated with a strong base solution. A titration curve is then used to determine the endpoint and find the concentration

More information

Acid-Base Titration Curves Using a ph Meter

Acid-Base Titration Curves Using a ph Meter Acid-Base Titration Curves Using a ph Meter Introduction: In this experiment you will use a ph sensor to collect volume and ph data as you titrate two acids with sodium hydroxide. You will obtain titration

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education. Published

Cambridge International Examinations Cambridge International General Certificate of Secondary Education. Published Cambridge International Examinations Cambridge International General Certificate of Secondary Education CHEMISTRY 060/4 Paper 4 Theory (Extended) May/June 06 MARK SCHEME Maximum Mark: 80 Published This

More information

CS C1 H Ionic, covalent and metallic bonding

CS C1 H Ionic, covalent and metallic bonding Name: CS C1 H Ionic, covalent and metallic bonding Date: Time: 39 minutes Total marks available: 39 Total marks achieved: Questions Q1. Chlorine and carbon (a) Chlorine has an atomic number of 17. Chlorine-35

More information

Appendix B: Skills Handbook

Appendix B: Skills Handbook Appendix B: Skills Handbook Effective communication is an important part of science. To avoid confusion when measuring and doing mathematical calculations, there are accepted conventions and practices

More information

Lower Sixth Chemistry. Sample Entrance Examination

Lower Sixth Chemistry. Sample Entrance Examination Lower Sixth Chemistry Sample Entrance Examination Time allowed: 60 minutes Name: Total : 60 Marks INSTRUCTIONS : Answer all questions Answers should be written in the spaces provided Dictionaries or reference

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *5222322236* CHEMISTRY 5070/41 Paper 4 Alternative to Practical May/June 2010 1 hour Candidates answer

More information

Student Name: Teacher: Date: District: NCGaston. Assessment: 9_12 Science Chemistry Exam 3. Description: Chemistry Mock Final Exam

Student Name: Teacher: Date: District: NCGaston. Assessment: 9_12 Science Chemistry Exam 3. Description: Chemistry Mock Final Exam Student Name: Teacher: Date: District: NCGaston Assessment: 9_12 Science Chemistry Exam 3 Description: Chemistry Mock Final Exam 2014-15 Form: 301 1. Shown below is a model of the structure of atom X.

More information

GCE EXAMINERS' REPORTS

GCE EXAMINERS' REPORTS GCE EXAMINERS' REPORTS WJEC EDUQAS AS CHEMISTRY SUMMER 2016 Grade boundary information for this subject is available on the WJEC public website at: https://www.wjecservices.co.uk/marktoums/default.aspx?l=en

More information

4.3 ANSWERS TO EXAM QUESTIONS

4.3 ANSWERS TO EXAM QUESTIONS 4. ANSWERS TO EXAM QUESTIONS. (a) (i) A proton donor () (ii) Fully ionised or fully dissociated () (iii) 0 0 4 () mol dm 6 () 4 (b) (i) 50 0 /5 000 () = 0 06 mol dm () () (ii) Mol OH added = 50 0 50/000

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Level *348375840* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Level CHEMISTRY 970/52 Paper 5 Planning, Analysis and Evaluation May/June 203 hour 5 minutes Candidates

More information

B410U10-1 S17-B410U10-1. CHEMISTRY AS component 1 The Language of Chemistry, Structure of Matter and Simple Reactions

B410U10-1 S17-B410U10-1. CHEMISTRY AS component 1 The Language of Chemistry, Structure of Matter and Simple Reactions Surname Centre Number Candidate Number Other Names 2 GCE AS NEW B410U10-1 S17-B410U10-1 CHEMISTRY AS component 1 The Language of Chemistry, Structure of Matter and Simple Reactions FRIDAY, 26 MAY 2017

More information

*AC112* *20AC11201* Chemistry. Assessment Unit AS 1 [AC112] FRIDAY 26 MAY, MORNING. assessing Basic Concepts in Physical and Inorganic Chemistry

*AC112* *20AC11201* Chemistry. Assessment Unit AS 1 [AC112] FRIDAY 26 MAY, MORNING. assessing Basic Concepts in Physical and Inorganic Chemistry Centre Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2017 Candidate Number Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry [AC112] FRIDAY

More information

5.1.3 Acids, Bases and Buffers

5.1.3 Acids, Bases and Buffers 5..3 Acids, Bases and Buffers BronstedLowry Definition of Acid Base behaviour A BronstedLowry acid is defined as a substance that can donate a proton. A BronstedLowry base is defined as a substance that

More information

Answer all the questions.

Answer all the questions. Answer all the questions.. A student investigates the reaction between sodium thiosulfate and hydrochloric acid. Look at the diagram below. It shows the apparatus he uses. After a time he cannot see the

More information

APC Spring Break Take-Home Exam Instructions

APC Spring Break Take-Home Exam Instructions APC Spring Break Take-Home Exam Instructions Complete all exam questions on separate paper. Show all work to receive credit. Partial credit will be awarded! Staple all papers together. Do NOT include the

More information

PHYSICAL SCIENCES/ P2 1 SEPTEMBER 2015 CAPS CAPE WINELANDS EDUCATION DISTRICT

PHYSICAL SCIENCES/ P2 1 SEPTEMBER 2015 CAPS CAPE WINELANDS EDUCATION DISTRICT PHYSICAL SCIENCES/ P2 1 SEPTEMBER 2015 CAPE WINELANDS EDUCATION DISTRICT MARKS 150 TIME 3 hours This question paper consists of 15 pages and 4 data sheets. PHYSICAL SCIENCES/ P2 2 SEPTEMBER 2015 INSTRUCTIONS

More information

Chapter 1 Introduction: Matter and Measurement

Chapter 1 Introduction: Matter and Measurement Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 1 Introduction: and John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry

More information

1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1)

1. Thermal energy is transferred through the glass windows of a house mainly by. D. radiation and convection. (1) 1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation. C. conduction and convection. D. radiation and convection. 2. The specific latent heat of vaporization

More information

EXPERIMENT. Titration for Acetic Acid in Vinegar

EXPERIMENT. Titration for Acetic Acid in Vinegar EXPERIMENT Titration for Acetic Acid in Vinegar Hands-On Labs, Inc. Version 42-0208-00-02 Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before you begin.

More information

Friday 10 June 2016 Afternoon Time allowed: 1 hour 30 minutes

Friday 10 June 2016 Afternoon Time allowed: 1 hour 30 minutes xford Cambridge and RSA AS Level Chemistry B (Salters) H033/02 Chemistry in depth Friday 10 June 2016 Afternoon Time allowed: 1 hour 30 minutes *6013537647* You must have: the Data Sheet for Chemistry

More information

Chemistry 119: Experiment 6. Sampling and Analysis of a Solid Drain Cleaner

Chemistry 119: Experiment 6. Sampling and Analysis of a Solid Drain Cleaner Chemistry 119: Experiment 6 Sampling and Analysis of a Solid Drain Cleaner An important factor in any analysis is the collection of the sample. How this is done depends upon the use to which the analytical

More information

Chemistry CP Putting It All Together II

Chemistry CP Putting It All Together II Chemistry CP Putting It All Together II Name: Date: Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when different

More information

Name Index No.. Class...Candidate s Signature Mathematical tables and silent electronic calculators may be used.

Name Index No.. Class...Candidate s Signature Mathematical tables and silent electronic calculators may be used. Name Index No.. Class...Candidate s Signature... CHEMISTRY 233/2 FORM 4 PAPER2 TIME: 2 HOURS Instructions to Candidates 1. Answer ALL the questions in the spaces provided 2. Mathematical tables and silent

More information

MARK ALL WORK AND ANSWERS IN THIS BOOKLET CLEARLY FOR FULL CREDIT

MARK ALL WORK AND ANSWERS IN THIS BOOKLET CLEARLY FOR FULL CREDIT Fishers HS (IN) - 1 Chemistry Lab - Test Exchange School: Team #: Time: 50 minutes Instructions: MARK ALL WORK AND ANSWERS IN THIS BOOKLET CLEARLY FOR FULL CREDIT Answers are to be rounded to 3 significant

More information

Name: Date: Period: Phase Diagrams

Name: Date: Period: Phase Diagrams Phase Diagrams Directions: Use the information in the box below to help you answer the information in this packet. You do NOT need to use complete sentences for this packet. A phase diagram is a graph

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *4822877046* CHEMISTRY 5070/41 Paper 4 Alternative to Practical October/November 2018 1 hour Candidates answer on the Question Paper. No Additional

More information

Chapter 1 Introduction: Matter and Measurement

Chapter 1 Introduction: Matter and Measurement Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 1 Introduction: and Chemistry: The study of matter and the changes it undergoes. Scientific

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

LEAVING CERTIFICATE EXAMINATION PHYSICS AND CHEMISTRY HIGHER AND ORDINARY LEVELS CHIEF EXAMINER S REPORT

LEAVING CERTIFICATE EXAMINATION PHYSICS AND CHEMISTRY HIGHER AND ORDINARY LEVELS CHIEF EXAMINER S REPORT LEAVING CERTIFICATE EXAMINATION 2001 PHYSICS AND CHEMISTRY HIGHER AND ORDINARY LEVELS CHIEF EXAMINER S REPORT 1. INTRODUCTION The examination in Leaving Certificate Physics and Chemistry at both Higher

More information

Volumetric Analysis Acids & Bases HL

Volumetric Analysis Acids & Bases HL Name: Volumetric Analysis 1. Concentrations of Solutions 3. Volumetric Analysis Objectives -define solution -define concentration -define molarity -express concentration of solutions in mol/l(molarity),

More information