THE ROLE OF EPSILON FOR THE IDENTIFICATION OF GROUPS OF EARTHQUAKE INPUTS OF GIVEN HAZARD

Size: px
Start display at page:

Download "THE ROLE OF EPSILON FOR THE IDENTIFICATION OF GROUPS OF EARTHQUAKE INPUTS OF GIVEN HAZARD"

Transcription

1 THE ROLE OF EPSILON FOR THE IDENTIFICATION OF GROUPS OF EARTHQUAKE INPUTS OF GIVEN HAZARD Tomaso TROMBETTI Stefano SILVESTRI * Giada GASPARINI University of Bologna, Italy

2 THE ISSUE 2

3 THE ISSUE 3 m 3 u 2 m 2 u m k 2 k 3 In any sound seismic engineering design, it is of prime importance the correct identification of the acceleration time histories to be used as inputs for non-linear dynamic analyses. reference design earthquake bin [Giovenale, Cornell, Esteva, EESD 24] k Typically, earthquake bins are identified by means of intensity measures (IMs) Bologna (Italy), P exceedance = % in 5 years Spectral acceleration has been widely proposed as optimal IM. S A S A 25 [cm/s 2 ] T 3 This research work points out the intrinsic limitations in the use of the spectral acceleration and proposes a possible way to overcome these limitations. 3

4 CURRENT METHODS FOR THE BIN IDENTIFICATION USING THE UHS Bologna (Italy), P exceedance = % in 5 years response spectra mean mean ± dev.std S A 3 25 [cm/s 2 ] 2 5 a single spectral ordinate at a time S A [g] single period The Uniform Hazard Spectrum (UHS) represents an ensemble of percentiles. Each piece of information collected in the UHS must be used one at a time and also the UHS does not allow to take into account the autocorrelation function between spectral ordinates at different periods. The current methods based upon the UHS leads to the identification of earthquake bins characterised by 4 the ensemble of spectral ordinates depicted in the figure on the right.

5 COMMENTS / LIMITATIONS..9.8 response spectra mean mean ± dev.std.7.6 S A [g] ) Loss of information (both in terms of spectral ordinates and autocorrelation function if synthetic records are used to create the bin) 2) Expected meaningfulness of the bin only for structures characterised by the selected period (with expected non-significance as soon as the non-linear behaviour is involved) 3) The earthquake bin is strongly structure-dependent instead of being only site-dependent. 5

6 RECENT PROPOSALS TO OVERCOME THESE LIMITATIONS 5 Bologna (Italy), P exceedance = % in 5 years S A 3 25 [cm/s 2 ] average of spectral ordinates at selected periods range of periods Recent research works [Baker & Cornell 25-27, Baker & Bianchini 28, Stanford University] proposed a new intensity measure based on an average of spectral accelerations (for the sake of precision, with the aim of identifying an optimal statistical predictor of the inelastic response of the structure). However, these proposals: still use single pieces of information (single values at different periods) still work with percentiles instead of the full distribution of the spectral ordinates of given hazard for a selected period (which, if coupled with the autocorrelation function, allows to treat the response spectra associated to a given hazard to a stochastic process) 6

7 THE SPECTRUM AS A STOCHASTIC PROCESS SA, SA,2 T T PDF S ( T ) PDF S ( T ) of A of A 2 T T SAn, T T T 2 T The autocorrelation function of the spectral ordinates is known [Baker and Cornell, BSSA 26] [Abrahamson and Silva s NGA report]. In this research work, we provide the probabilistic distribution functions of the spectral ordinates of given hazard which depend on the period. so that the statistical description of the process is complete and ready for: ) generating sample functions of the process to be used as spectra from which design seismic records can be obtained or, vice-versa: 2) verifying that groups of response spectra of historical records of earthquake ground motions (to be used as seismic input) satisfy, one the whole, the requirements of the process 7

8 THIS RESEARCH WORK 8

9 THE GROUND MOTION PREDICTION MODEL A central role in the PSHA procedure, is played by the ground motion prediction model. log GMP linear regression prediction actual observed values residuals.5 With reference to the spectral acceleration law by.5 Berge-Thierry et al. [23]: log R [km], M = ( = ) = R log S T.5s.4323 M log R residual A If we neglect the residual, we have a deterministic function: ( =.5 ) = ( = s) = g (, ) log SA T s.4323 M log R R log S T.5 M R A prediction log S ' T.5s A ( = ) i.e. we assimilate, for the moment, the ground motion parameter to its prediction: log SA ( T =. 5 s) = log SA '( T =.5s) 9

10 THE PSHA PROCEDURE: OVERVIEW Assimilates the occurrence of seismic events to Poisson Processes Adopts the Gutenberg-Richter recurrence law Divides each r Seismo-Genetic Zone min in J sub-areas of circular shape, annular shape, or sectors r max PDF of the magnitude M: qˆi mi t pˆi exp qˆi mi ˆ ˆ M i = i i f m p q t e i f PDF of the distance R: R ( r) = 2 2 r max 2r r min Attenuation law: ( = ) = log S ' T.5 s g M, R given g = g(m,r) with M,R = random variables, it is possible to obtain PDF of g A PDF of SA ' T =.5s due to the contribution of all J sub-areas of the i-th seismic source zone: J ( K i + ) K S, ', ', 2,, ' exp 2,, ' Ai a i = α ij i ij a i ij a i j= f s K K s K s,, i

11 THE PSHA PROCEDURE: STEPS Step : choice of earthquake catalogue and seismic source zones Step 2: the recurrence law: Gutenberg-Richter relationship Step 3: the occurrence law: Poisson arrival process Step 4: the CDF and the PDF of the magnitude for each seismic source zone Step 5: choice of the ground motion prediction model Step 6: the CDF and the PDF of the prediction S A (T j ) of the spectral acceleration due to the seismic action of a single seismic source zone Step 7: the CDF and the PDF of the prediction S A (T j ) of the spectral acceleration due to the seismic action of more than one seismic source zone log λ M = p q M [ ] x ( λ ( mi ) t) λ P X = x = e x! FM m i i = e f ˆ ˆ M m i i = pi qi t e ( qˆ m) tpˆi exp i i m t i qˆi mi t pˆi exp qˆi mi log S ' = b T + b T M + b T log D+ b T D+ b T, s b A 2 3 b 4 5 F s ' = α exp K s ', i SAi, ' a, i ij 2, ij a, i j= J j= J ( K, i + ) K, i fs, ' s, ', 2,, ' exp 2,, ' Ai a i = αijk ik ijs a i K ijs a i I F s F s FSA ' a fs ' ( s ') A a = sa ' ( ') = ( ') A, i SA' a S ' a, i i= ( s ') K

12 RESULTS OF THE PSHA IN TERMS OF MEDIAN Up to here, the PSHA allows to associate: a given hazard level (specific probability of occurrence, for a given site, over a given observation time, T ) P with the median (5-percentile, or also prediction) of the spectral acceleration 5 Bologna (Italy), P exceedance = % in 5 years P = % in 5 years If we do this, for all periods, we obtain the median response spectrum of given hazard: S A [cm/s 2 ]

13 AND THE DISPERSION? The attenuation law estimates the dispersion of the S A (T j ) around its 5 percentile by means of the standard error (of the natural logarithm of the observed values with respect to the natural logarithm of the prediction in the case of spectral acceleration at a specified period T j ): SEln S A ( T j ) Epsilon is defined by engineering seismologists studying ground motion [Abrahamson, BSSA 988] as the number of standard deviations by which an observed logarithmic spectral acceleration differs from the mean logarithmic spectral acceleration of a ground-motion prediction (attenuation) equation [Baker & Cornell, EESD 25]. ε i ( Tj) ln s T ln s ' T = SEln SA( Tj) ai, j a j The statistical distribution of epsilon is generally considered to be well represented by the standard normal distribution. Ε = N (,) For many attenuation laws, Ε SE + log s log a ' T ',, S j A Tj = ',, = ( λζ, ) S T s T m r A j a j S T s T m r LN A j a j λ = ln sa' ζ = SE ln SA ( Tj) ( Tj ) SE is independent from both M and R ln SA( Tj) f s f s ' a = ',, a S T s T S T s T m r A j a j A j a j ' S T s T A j a j has a lognormal distribution 3

14 THE LOGNORMAL DISTRIBUTION From the numerical value of the standard error associated to the attenuation law, it is possible after few mathematical passages, to obtain the numerical values of the mean, standard deviation and cov of the lognormal distribution: ' = ( λ, ζ ) = ln s '( T ) S T s T LN λ A j a j j j j a j ζ = SE ( j) j ln SA T j j sa Tj SE SE 2 2 SA Tj 2 SA Tj λ + ζ ln ' + ln μ = e = e = s ' SA( Tj) sa '( Tj ) a Tj e σ ln 2 2 SE SE = = ' 2 ζ j 2 ln S ( T ) ln S ( T ) μ e ' ' s A j A j a Tj e e SA Tj sa Tj SA Tj sa Tj ζ 2 SE j ln S T cov ' A j = e = e SA Tj sa Tj 2 5 Bologna (Italy), P exceedance = % in 5 years 45 4 To sum up, for each value of T j, it is possible to characterise the conditioned distribution of S A (T j ) given the prediction associated to a given hazard as: S A [cm/s 2 ] 2 f s ' a( Tj) = e SA Tj sa Tj SE s T 2π ln S A ( T ) a( j) j 5 2 s a Tj sa ( T j) ln ln ' 2 SE ln S ( T ) 5 A j

15 IF WE WANT TO GO ON (THE STANDARD APPROACH) f S s ' ' ' ' A a = fsa s s a a fs s A a dsa and, making reference to a selected probability of occurrence, the uniform hazard spectrum can be obtained (which roughly corresponds to the 7-percentile of the lognormal distribution): 5 Bologna (Italy), P exceedance = % in 5 years S A 3 25 [cm/s 2 ] BUT IT IS NOT NECESSARY. 5

16 NUMERICAL EXAMPLE: UNIFORM HAZARD SPECTRUM AND UNIFORM HAZARD SPECTRAL CLOUD spectral cloud S A [g]

17 NUMERICAL EXAMPLE 7

18 for the city of Bologna (ITALY), over an observation time of t = 5 years, for a rare seismic hazard level. P = % in 5 years %.9 in 5 years CDF NUMERICAL EXAMPLE: PSHA RESULTS Bologna (Italy), t =5 years, bedrock, ZS9 subdivision, Berge-Thierry et al. 23 attenuation law P exceedance = Bologna (Italy), t =5 years, bedrock, ZS9 subdivision, Berge-Thierry et al. 23 attenuation law P exceedance = %.9 in 5 years.8.7 prediction of the spectral acceleration: s '.6 a Tj spectral acceleration: s a ( T j ) CDF CPTI2 earthquake catalogue of the Italian territory and ZS9 seismic subdivision for the Italian territory (4 area source zones) spectral attenuation law specifically developed for moderate European earthquakes by Berge-Therry et al. [23].2. F PRED (pred) F GMP (gmp) Spectral Acceleration S A (T=.2s) [cm/s 2 ].2. F PRED (pred) F 3 8 GMP (gmp) Spectral Acceleration S A (T=.4s) [cm/s 2 ] Bologna (Italy), t =5 years, bedrock, ZS9 subdivision, Berge-Thierry et al. 23 attenuation law P exceedance = %.9 in 5 years CDF F PRED (pred) F 69.6 GMP (gmp) Spectral Acceleration S A (T=.6s) [cm/s 2 ] Bologna (Italy), t =5 years, bedrock, ZS9 subdivision, Berge-Thierry et al. 23 attenuation law P exceedance = %.9 in 5 years CDF F PRED (pred) F GMP (gmp) Spectral Acceleration S A (T=.8s) [cm/s 2 ] 8

19 NUMERICAL EXAMPLE: UNIFORM HAZARD SPECTRUM AND UNIFORM HAZARD SPECTRAL CLOUD spectral cloud S A [g]

20 FULL CONDITION ON THE SAMPLE OF SPECTRAL ORDINATES { s } ' (, ) a, Tj sa,2 Tj sa, i Tj sa, n Tj sa Tj = LN λ j ζ j response spectra mean mean ± dev.std.9 spectral cloud S [g] A S A [g]

21 SIMPLIFIED CONDITIONS ON THE MEAN AND THE STD OF THE SAMPLE T j mean s, ai T j std s, ai T j cov s ai, ( T j ) [s] [cm/s 2 ] [cm/s 2 ] cov The spectral ordinates used for the identification of the seismic inputs for design purposes are largely affected by the epistemic error of the ground motion prediction model. 2

22 NUMERICAL EXAMPLE: RESPONSE SPECTRA OF EARTHQUAKE BINS EARTHQUAKE BIN FROM UNIFORM HAZARD SPECTRUM seismic records all scaled to the same S A (T =.5s) value EARTHQUAKE BIN FROM UNIFORM HAZARD SPECTRAL CLOUD seismic records which roughly satisfy, on the whole, the lognormal distribution at each T j..9.8 response spectra mean mean ± dev.std..9.8 response spectra mean mean ± dev.std S A [g].5 S A [g]

23 CONCLUSIONS The research work (through the development of a peculiar PSHA procedure) identifies the statistical characteristics of the ensemble of the spectral ordinates, as computed at multiple periods, for groups of earthquake inputs characterized by given hazard. The statistical characterisation of the spectral cloud as here proposed allows to: overcome the problems deriving from the use of the uniform hazard spectrum; identify earthquake inputs which retain their significance independently from the period range considered; obtain groups of design earthquake inputs which can be used for different structures and for structures with substantial variations in vibration periods; link the identification of the seismic hazard strictly to the site, without involving the structure. A numerical application allows also to recognise that the spectral ordinates used for the identification of the seismic inputs for design purposes are largely affected by the epistemic error/uncertainties of the ground motion prediction model (cov = ). 23

24 THANK YOU!!! 24

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code

Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Development of U. S. National Seismic Hazard Maps and Implementation in the International Building Code Mark D. Petersen (U.S. Geological Survey) http://earthquake.usgs.gov/hazmaps/ Seismic hazard analysis

More information

I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S

I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S J A C K W. B A K E R Copyright 2013 Jack W. Baker Preferred citation for this document: Baker, Jack W. (2013)

More information

An Introduction to Probabilistic Seismic Hazard Analysis (PSHA) Jack W. Baker

An Introduction to Probabilistic Seismic Hazard Analysis (PSHA) Jack W. Baker An Introduction to Probabilistic Seismic Hazard Analysis (PSHA) Jack W. Baker Version 1.3 October 1 st, 2008 Acknowledgements This document is based in part on an excerpt from a report originally written

More information

I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S

I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S I N T R O D U C T I O N T O P R O B A B I L I S T I C S E I S M I C H A Z A R D A N A LY S I S J A C K W. B A K E R Copyright 2015 Jack W. Baker Preferred citation for this document: Baker, Jack W. (2015)

More information

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation

Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Occurrence of negative epsilon in seismic hazard analysis deaggregation, and its impact on target spectra computation Lynne S. Burks 1 and Jack W. Baker Department of Civil and Environmental Engineering,

More information

Hazard, Ground Motions, and Code-Based Structural Assessment: A few Proposals and yet Unfulfilled Needs.

Hazard, Ground Motions, and Code-Based Structural Assessment: A few Proposals and yet Unfulfilled Needs. Hazard, Ground Motions, and Code-Based Structural Assessment: A few Proposals and yet Unfulfilled Needs. I. Iervolino Dipartimento di Ingegneria Strutturale, Università degli Studi di Napoli Federico II,

More information

Italian Map of Design Earthquakes from Multimodal Disaggregation Distributions: Preliminary Results.

Italian Map of Design Earthquakes from Multimodal Disaggregation Distributions: Preliminary Results. Italian Map of Design Earthquakes from Multimodal Disaggregation Distributions: Preliminary Results. Eugenio Chioccarelli Dipartimento di Ingegneria Strutturale, Università degli Studi di Napoli, Federico

More information

Codal provisions of seismic hazard in Northeast India

Codal provisions of seismic hazard in Northeast India Codal provisions of seismic hazard in Northeast India Sandip Das 1, Vinay K. Gupta 1, * and Ishwer D. Gupta 2 1 Department of Civil Engineering, Indian Institute of Technology, Kanpur 208 016, India 2

More information

PROBABILITY-BASED DESIGN EARTHQUAKE LOAD CONSIDERING ACTIVE FAULT

PROBABILITY-BASED DESIGN EARTHQUAKE LOAD CONSIDERING ACTIVE FAULT PROBABILITY-BASED DESIGN EARTHUAKE LOAD CONSIDERING ACTIVE FAULT Jun KANDA And Ichiro SATOH SUMMARY The probability-based structural design can provide a specific safety performance demand for the earthquake

More information

Definitions. Seismic Risk, R (Σεισμική διακινδύνευση) = risk of damage of a structure

Definitions. Seismic Risk, R (Σεισμική διακινδύνευση) = risk of damage of a structure SEISMIC HAZARD Definitions Seismic Risk, R (Σεισμική διακινδύνευση) = risk of damage of a structure Seismic Hazard, Η (Σεισμικός κίνδυνος) = expected intensity of ground motion at a site Vulnerability,

More information

Comment on Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? by Julian J. Bommer and Norman A.

Comment on Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? by Julian J. Bommer and Norman A. Comment on Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? by Julian J. Bommer and Norman A. Abrahamson Zhenming Wang Kentucky Geological Survey 8 Mining and

More information

Italian design earthquakes: how and why

Italian design earthquakes: how and why Italian design earthquakes: how and why Iunio Iervolino, Eugenio Chioccarelli Dipartimento DIST Università degli Studi di Napoli Federico II. Via Claudio 21, 8125 Napoli. Vincenzo Convertito Istituto Nazionale

More information

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA ABSTRACT Y. Bozorgnia, M. Hachem, and K.W. Campbell Associate Director, PEER, University of California, Berkeley, California, USA Senior Associate,

More information

Overview of Seismic PHSA Approaches with Emphasis on the Management of Uncertainties

Overview of Seismic PHSA Approaches with Emphasis on the Management of Uncertainties H4.SMR/1645-29 "2nd Workshop on Earthquake Engineering for Nuclear Facilities: Uncertainties in Seismic Hazard" 14-25 February 2005 Overview of Seismic PHSA Approaches with Emphasis on the Management of

More information

Prediction of inelastic structural response using an average of spectral accelerations

Prediction of inelastic structural response using an average of spectral accelerations Prediction of inelastic structural response using an average of spectral accelerations M. Bianchini & P.P. Diotallevi Dept. of Structural, Transport, Hydraulic, Survey & Territory Engrg., University of

More information

CALIBRATED RESPONSE SPECTRA FOR COLLAPSE ASSESSMENT UNDER MULTIVARIATE HAZARD AND STRUCTURAL RESPONSE UNCERTAINTIES

CALIBRATED RESPONSE SPECTRA FOR COLLAPSE ASSESSMENT UNDER MULTIVARIATE HAZARD AND STRUCTURAL RESPONSE UNCERTAINTIES 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska CALIBRATED RESPONSE SPECTRA FOR COLLAPSE ASSESSMENT UNDER MULTIVARIATE

More information

INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS

INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS INFLUENCE OF EARTHQUAKE INTENSITY MEASURE ON THE PROBABILISTIC EVALUATION OF RC BUILDINGS ABSTRACT: M. Bianchini, P.P. Diotallevi and L. Landi 3 Assistant Lecturer, DISTART, Dept. of Civil Engineering,

More information

Disaggregation of seismic drift hazard

Disaggregation of seismic drift hazard Disaggregation of seismic drift hazard J.W. Baker, C.A. Cornell & P. Tothong Dept. of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA Keywords: Seismic Demand, Probabilistic

More information

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 Seismic Hazard Analysis Deterministic procedures Probabilistic procedures USGS hazard

More information

Near-source seismic hazard and design scenarios

Near-source seismic hazard and design scenarios EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS Earthquake Engng Struct. Dyn. 2013; 42:603 622 Published online 17 July 2012 in Wiley Online Library (wileyonlinelibrary.com)..2232 Near-source seismic hazard

More information

5. Probabilistic Seismic Hazard Analysis

5. Probabilistic Seismic Hazard Analysis Probabilistic Seismic Hazard Analysis (PSHA) proposed by C.A. Cornell (1968) used to determine the design earthquake for all locations in USA. PSHA gives a relative quantification i of the design earthquake,

More information

Development of Ground Motion Time Histories for Seismic Design

Development of Ground Motion Time Histories for Seismic Design Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Development of Ground Motion Time Histories for Seismic

More information

Environmental Contours for Determination of Seismic Design Response Spectra

Environmental Contours for Determination of Seismic Design Response Spectra Environmental Contours for Determination of Seismic Design Response Spectra Christophe Loth Modeler, Risk Management Solutions, Newark, USA Jack W. Baker Associate Professor, Dept. of Civil and Env. Eng.,

More information

Probabilistic Performance-Based Optimum Seismic Design of (Bridge) Structures

Probabilistic Performance-Based Optimum Seismic Design of (Bridge) Structures P E E R U C S D Probabilistic Performance-Based Optimum Seismic Design of (Bridge) Structures PI: Joel. P. Conte Graduate Student: Yong Li Sponsored by the Pacific Earthquake Engineering Research Center

More information

OPTIMIZATION OF RESPONSE SIMULATION FOR LOSS ESTIMATION USING PEER S METHODOLOGY

OPTIMIZATION OF RESPONSE SIMULATION FOR LOSS ESTIMATION USING PEER S METHODOLOGY 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1066 OPTIMIZATION OF RESPONSE SIMULATION FOR LOSS ESTIMATION USING PEER S METHODOLOGY Hesameddin ASLANI

More information

International Journal of Advance Engineering and Research Development. Development of Site Specific Seismic Inputs for Structures

International Journal of Advance Engineering and Research Development. Development of Site Specific Seismic Inputs for Structures cientific Journal of Impact Factor (JIF: 4.7 International Journal of Advance Engineering and Research Development Volume 4, Issue, December -07 e-i (O: 348-4470 p-i (P: 348-6406 Development of ite pecific

More information

Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and New Zealand

Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and New Zealand 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and

More information

Seismic hazard modeling for Bulgaria D. Solakov, S. Simeonova

Seismic hazard modeling for Bulgaria D. Solakov, S. Simeonova Seismic hazard modeling for Bulgaria D. Solakov, S. Simeonova Bulgarian seismic network and foreign stations used in epicenter location Sismicity in Bulgaria and surroundings (M 4.) Epicentral map for

More information

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN

EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN EARTHQUAKE HAZARD ASSESSMENT IN KAZAKHSTAN Dr Ilaria Mosca 1 and Dr Natalya Silacheva 2 1 British Geological Survey, Edinburgh (UK) imosca@nerc.ac.uk 2 Institute of Seismology, Almaty (Kazakhstan) silacheva_nat@mail.ru

More information

GROUND-MOTION SELECTION FOR PEER TRANSPORTATION RESEARCH PROGRAM

GROUND-MOTION SELECTION FOR PEER TRANSPORTATION RESEARCH PROGRAM JOINT CONFERENCE PROCEEDINGS 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE) March 3-5, 2010, Tokyo Institute of Technology,

More information

Characterization and modelling of seismic action

Characterization and modelling of seismic action COST C26: Urban Habitat Constructions under Catastrophic Events Final Conference, 16-18 September 2010, Naples, Italy Characterization and modelling of seismic action Report of WG2: Earthquake resistance

More information

SEISMIC INPUT FOR CHENNAI USING ADAPTIVE KERNEL DENSITY ESTIMATION TECHNIQUE

SEISMIC INPUT FOR CHENNAI USING ADAPTIVE KERNEL DENSITY ESTIMATION TECHNIQUE SEISMIC INPUT FOR CHENNAI USING ADAPTIVE KERNEL DENSITY ESTIMATION TECHNIQUE G. R. Dodagoudar Associate Professor, Indian Institute of Technology Madras, Chennai - 600036, goudar@iitm.ac.in P. Ragunathan

More information

Validating IM-based methods for probabilistic seismic performance assessment with higher-level non-conditional simulation

Validating IM-based methods for probabilistic seismic performance assessment with higher-level non-conditional simulation Validating IM-based methods for probabilistic seismic performance assessment with higher-level non-conditional simulation P. Franchin, F. Cavalieri & P.E. Pinto Department of Structural Engineering & Geotechnics,

More information

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT Edward H FIELD 1 And SCEC PHASE III WORKING GROUP 2 SUMMARY Probabilistic seismic hazard analysis

More information

PSHA results for the BSHAP region

PSHA results for the BSHAP region NATO Science for Peace and Security Programme CLOSING CONFERENCE OF THE NATO SfP 983054 (BSHAP) PROJECT Harmonization of Seismic Hazard Maps for the Western Balkan Countries October 23, 2011 Ankara, Turkey

More information

Seismic Hazard Epistemic Uncertainty in the San Francisco Bay Area and its Role in Performance-Based Assessment

Seismic Hazard Epistemic Uncertainty in the San Francisco Bay Area and its Role in Performance-Based Assessment Seismic Hazard Epistemic Uncertainty in the San Francisco Bay Area and its Role in Performance-Based Assessment Brendon A Bradley a) This paper investigates epistemic uncertainty in the results of seismic

More information

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3488 PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM

More information

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36)

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) Lecture 35 Topics Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) 7.4.4 Predictive Relationships 7.4.5 Temporal Uncertainty 7.4.6 Poisson Model 7.4.7 Other Models 7.4.8 Model Applicability 7.4.9 Probability

More information

A Computationally Efficient Ground-Motion Selection Algorithm for Matching a Target Response Spectrum Mean and Variance

A Computationally Efficient Ground-Motion Selection Algorithm for Matching a Target Response Spectrum Mean and Variance Marquette University e-publications@marquette Civil and Environmental Engineering Faculty Research and Publications Civil and Environmental Engineering, Department of 8-1-2011 A Computationally Efficient

More information

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL CONSIDERING SINGLE SEISMOGENIC ZONING

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL CONSIDERING SINGLE SEISMOGENIC ZONING 50 th IGC 50 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 2015, Pune, Maharashtra, India Venue: College of Engineering (Estd. 1854), Pune, India PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR WARANGAL

More information

EPPO-ITSAK : Institute of Engineering Seismology & Earthquake Engineering, Thessaloniki, GREECE

EPPO-ITSAK : Institute of Engineering Seismology & Earthquake Engineering, Thessaloniki, GREECE Seismic Hazard Assessment Methodologies : Partner s Presentation Greek P2: Selected Seismic Hazard Assessment Methodologies Applied to Specific National Case Studies Basil N. Margaris Dr. Geophysicist-Seismologist

More information

ROSE SCHOOL AN INVESTIGATIVE STUDY ON THE MODELLING OF EARTHQUAKE HAZARD FOR LOSS ASSESSMENT

ROSE SCHOOL AN INVESTIGATIVE STUDY ON THE MODELLING OF EARTHQUAKE HAZARD FOR LOSS ASSESSMENT I.U.S.S. Istituto Universitario di Studi Superiori Università degli Studi di Pavia EUROPEAN SCHOOL FOR ADVANCED STUDIES IN REDUCTION OF SEISMIC RISK ROSE SCHOOL AN INVESTIGATIVE STUDY ON THE MODELLING

More information

CHOICE OF A VECTOR OF GROUND MOTION INTENSITY MEASURES FOR SEISMIC DEMAND HAZARD ANALYSIS

CHOICE OF A VECTOR OF GROUND MOTION INTENSITY MEASURES FOR SEISMIC DEMAND HAZARD ANALYSIS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 3384 CHOICE OF A VECTOR OF GROUND MOTION INTENSITY MEASURES FOR SEISMIC DEMAND HAZARD ANALYSIS Jack W. BAKER,

More information

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd.

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd. Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Lecture 03 Seismology (Contd.) In the previous lecture, we discussed about the earth

More information

Incorporating simulated Hikurangi subduction interface spectra into probabilistic hazard calculations for Wellington

Incorporating simulated Hikurangi subduction interface spectra into probabilistic hazard calculations for Wellington Incorporating simulated Hikurangi subduction interface spectra into probabilistic hazard calculations for Wellington G.H. McVerry & C. Holden GNS Science, Lower Hutt, New Zealand. 2014 NZSEE Conference

More information

2 Approaches To Developing Design Ground Motions

2 Approaches To Developing Design Ground Motions 2 Approaches To Developing Design Ground Motions There are two basic approaches to developing design ground motions that are commonly used in practice: deterministic and probabilistic. While both approaches

More information

CHARACTERIZING SPATIAL CROSS-CORRELATION BETWEEN GROUND- MOTION SPECTRAL ACCELERATIONS AT MULTIPLE PERIODS. Nirmal Jayaram 1 and Jack W.

CHARACTERIZING SPATIAL CROSS-CORRELATION BETWEEN GROUND- MOTION SPECTRAL ACCELERATIONS AT MULTIPLE PERIODS. Nirmal Jayaram 1 and Jack W. Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 10ième Conférence Canadienne de Génie Parasismique

More information

Epistemic Uncertainty in Seismic Hazard Analysis for Australia

Epistemic Uncertainty in Seismic Hazard Analysis for Australia Australian Earthquake Engineering Society 2011 Conference, 18-20 November, Barossa Valley, South Australia Epistemic Uncertainty in Seismic Hazard Analysis for Australia Paul Somerville 1,2 and Hong Kie

More information

The effect of bounds on magnitude, source-to-site distance and site condition in PSHA-based ground motion selection

The effect of bounds on magnitude, source-to-site distance and site condition in PSHA-based ground motion selection The effect of bounds on magnitude, source-to-site distance and site condition in PSHA-based ground motion selection K. Tarbali & B.A. Bradley Department of Civil and Natural Resources Engineering, University

More information

An evaluation of epistemic and random uncertainties included in attenuation relationship parameters

An evaluation of epistemic and random uncertainties included in attenuation relationship parameters ABSTRACT : An evaluation of epistemic and random uncertainties included in attenuation relationship parameters N. Humbert and E. Viallet Engineer, EDF SEPTEN, Dept. of Dynamics & Earthquake Engineering,

More information

Understanding Seismic Hazard Needs for Infrastructure Risk Analysis: Lessons from SYNER-G

Understanding Seismic Hazard Needs for Infrastructure Risk Analysis: Lessons from SYNER-G Systemic Seismic Vulnerability and Risk Analysis for Buildings, Lifeline Networks and Infrastructures Safety Gain Understanding Seismic Hazard Needs for Infrastructure Risk Analysis: Lessons from SYNER-G

More information

AN OVERVIEW AND GUIDELINES FOR PROBABILISTIC SEISMIC HAZARD MAPPING

AN OVERVIEW AND GUIDELINES FOR PROBABILISTIC SEISMIC HAZARD MAPPING CO 2 TRACCS INTERNATIONAL WORKSHOP Bucharest, 2 September, 2012 AN OVERVIEW AND GUIDELINES FOR PROBABILISTIC SEISMIC HAZARD MAPPING M. Semih YÜCEMEN Department of Civil Engineering and Earthquake Studies

More information

WP2: Framework for Seismic Hazard Analysis of Spatially Distributed Systems

WP2: Framework for Seismic Hazard Analysis of Spatially Distributed Systems Systemic Seismic Vulnerability and Risk Analysis for Buildings, Lifeline Networks and Infrastructures Safety Gain WP2: Framework for Seismic Hazard Analysis of Spatially Distributed Systems Graeme Weatherill,

More information

Uniform Hazard Spectrum(UHS) for performance based seismic design

Uniform Hazard Spectrum(UHS) for performance based seismic design Uniform Hazard Spectrum(UHS) for performance based seismic design *Jun-Kyoung Kim 1), Soung-Hoon Wee 2) and Seong-Hwa Yoo 2) 1) Department of Fire Protection and Disaster Prevention, Semyoung University,

More information

Conditional Spectrum Computation Incorporating Multiple Causal Earthquakes and Ground-Motion Prediction Models

Conditional Spectrum Computation Incorporating Multiple Causal Earthquakes and Ground-Motion Prediction Models Bulletin of the Seismological Society of America, Vol. 13, No. 2A, pp. 113 1116, April 213, doi: 1.1785/1211293 Conditional Spectrum Computation Incorporating Multiple Causal Earthquakes and Ground-Motion

More information

Seismic Vulnerability Assessment of Wood-frame Buildings in Southwestern British Columbia

Seismic Vulnerability Assessment of Wood-frame Buildings in Southwestern British Columbia Seismic Vulnerability Assessment of Wood-frame Buildings in Southwestern British Columbia K. Goda University of Bristol, United Kingdom G.M. Atkinson University of Western Ontario, Canada ABSTRACT: The

More information

STOCHASTIC MODEL FOR EARTHQUAKE GROUND MOTION USING WAVELET PACKETS

STOCHASTIC MODEL FOR EARTHQUAKE GROUND MOTION USING WAVELET PACKETS STOCHASTIC MODEL FOR EARTHQUAKE GROUND MOTION USING WAVELET PACKETS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY

More information

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36)

Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) Lecture 34 Topics Module 7 SEISMIC HAZARD ANALYSIS (Lectures 33 to 36) 7.3 DETERMINISTIC SEISMIC HAZARD ANALYSIS 7.4 PROBABILISTIC SEISMIC HAZARD ANALYSIS 7.4.1 Earthquake Source Characterization 7.4.2

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Identification of Site Parameters that Improve Predictions of Site Amplification Ellen M. Rathje Sara Navidi Department of Civil, Architectural, and Environmental

More information

Reliability-based calibration of design seismic response spectra and structural acceptance criteria

Reliability-based calibration of design seismic response spectra and structural acceptance criteria Reliability-based calibration of design seismic response spectra and structural acceptance criteria C. Loth & J. W. Baker Department of Civil and Environmental Engineering Stanford University ABSTRACT:

More information

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems :

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems : Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module Seismology Exercise Problems :.4. Estimate the probabilities of surface rupture length, rupture area and maximum

More information

VALIDATION AGAINST NGA EMPIRICAL MODEL OF SIMULATED MOTIONS FOR M7.8 RUPTURE OF SAN ANDREAS FAULT

VALIDATION AGAINST NGA EMPIRICAL MODEL OF SIMULATED MOTIONS FOR M7.8 RUPTURE OF SAN ANDREAS FAULT VALIDATION AGAINST NGA EMPIRICAL MODEL OF SIMULATED MOTIONS FOR M7.8 RUPTURE OF SAN ANDREAS FAULT L.M. Star 1, J. P. Stewart 1, R.W. Graves 2 and K.W. Hudnut 3 1 Department of Civil and Environmental Engineering,

More information

SIGNAL PROCESSING AND PROBABILISTIC SEISMIC HAZARD ANALYSIS TOOLS FOR CHARACTERIZING THE IMPACT OF NEAR-FAULT DIRECTIVITY

SIGNAL PROCESSING AND PROBABILISTIC SEISMIC HAZARD ANALYSIS TOOLS FOR CHARACTERIZING THE IMPACT OF NEAR-FAULT DIRECTIVITY JOINT CONFERENCE PROCEEDINGS 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE) March 3-5, 2010, Tokyo Institute of Technology,

More information

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for?

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for? GM1) What magnitude earthquake is DCPP designed for? The new design ground motions for DCPP were developed after the discovery of the Hosgri fault. In 1977, the largest magnitude of the Hosgri fault was

More information

SCENARIO EARTHQUAKE FOR SPATIALLY DISTRIBUTED STRUCTURES

SCENARIO EARTHQUAKE FOR SPATIALLY DISTRIBUTED STRUCTURES ABSTRACT : SCENARIO EARTHQUAKE FOR SPATIALLY DISTRIBUTED STRUCTURES K. Goda 1 and H.P. Hong 2 1 Postdoctoral Fellow, Dept. of Earth Sciences, Univ. of Western Ontario, London, Canada 2 Professor, Dept.

More information

Accelerograms for building design for hard soil in Mexico City

Accelerograms for building design for hard soil in Mexico City Earthquake Resistant Engineering Structures V 23 Accelerograms for building design for hard soil in Mexico City M. A. Jaimes Téllez, E. Reinoso Angulo & M. Ordaz Schroeder Engineering Institute, UNAM,

More information

SEISMIC HAZARD ANALYSIS

SEISMIC HAZARD ANALYSIS SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 This topic addresses deterministic and probabilistic seismic hazard analysis, ground

More information

Optimal ground motion intensity measures for assessment of seismic slope displacements

Optimal ground motion intensity measures for assessment of seismic slope displacements Optimal ground motion intensity measures for assessment of seismic slope displacements Th. Travasarou & J.D. Bray University of California, Berkeley, USA. ABSTRACT: Correlating seismically induced permanent

More information

Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard.

Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard. Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard. T. Dhu, D. Robinson, C. Sinadinovski, T. Jones, A. Jones & J. Schneider Geoscience Australia, Canberra, Australia.

More information

DEVELOPMENT OF A JOINT SEISMIC HAZARD CURVE FOR MULTIPLE SITE SEISMIC HAZARD

DEVELOPMENT OF A JOINT SEISMIC HAZARD CURVE FOR MULTIPLE SITE SEISMIC HAZARD DEVELOPMENT OF A JOINT SEISMIC HAZARD CURVE FOR MULTIPLE SITE SEISMIC HAZARD by DARYN R HOBBS B.S., University of Colorado Boulder, 2013 M.S., University of Colorado Boulder, 2013 A Master s Report submitted

More information

Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India)

Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India) Evaluation of Acceleration Time-Histories for Design of Nuclear Facilities at Kalpakkam (India) L. Kanagarathinam, G. R. Dodagoudar & A. Boominathan Indian Institute of Technology Madras, Chennai SUMMARY:

More information

Seismic site response analysis for Australia

Seismic site response analysis for Australia Seismic site response analysis for Australia Anita Amirsardari 1, Elisa Lumantarna 2, Helen M. Goldsworthy 3 1. Corresponding Author. PhD Candidate, Department of Infrastructure Engineering, University

More information

Representative ground-motion ensembles for several major earthquake scenarios in New Zealand

Representative ground-motion ensembles for several major earthquake scenarios in New Zealand Representative ground-motion ensembles for several major earthquake scenarios in New Zealand K. Tarbali & B.A. Bradley Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch.

More information

CONDITIONAL PULSE PROBABILITY FOR NEAR-SOURCE HAZARD ANALYSIS

CONDITIONAL PULSE PROBABILITY FOR NEAR-SOURCE HAZARD ANALYSIS CONDITIONAL PULSE PROBABILITY FOR NEAR-SOURCE HAZARD ANALYSIS I. Iervolino 1 and C.A. Cornell 2 1 Assistant Professor, Dipartimento di Ingegneria Strutturale, Università di Napoli Federico II, Naples,

More information

Effects of earthquake source geometry and site conditions on spatial correlation of earthquake ground motion hazard

Effects of earthquake source geometry and site conditions on spatial correlation of earthquake ground motion hazard 1 Effects of earthquake source geometry and site conditions on spatial correlation of earthquake ground motion hazard Jack W. Baker Mahalia K. Miller Civil & Environmental Engineering Stanford University

More information

Naturgefahren Erdbebenrisiko. Seismische Gefährdungsanalyse. Evaluation of earthquake hazard

Naturgefahren Erdbebenrisiko. Seismische Gefährdungsanalyse. Evaluation of earthquake hazard Naturgefahren Erdbebenrisiko Nachdiplomkurs in angewandten Erdwissenschaft 15-19 Mai 2000 Seismische Gefährdungsanalyse ------------------------------------------- Evaluation of earthquake hazard Souad

More information

Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model

Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model Proceedings of IOE Graduate Conference, 2016 pp. 115 122 Probabilistic Seismic Hazard Analysis of Nepal considering Uniform Density Model Sunita Ghimire 1, Hari Ram Parajuli 2 1 Department of Civil Engineering,

More information

Non-Ergodic Probabilistic Seismic Hazard Analyses

Non-Ergodic Probabilistic Seismic Hazard Analyses Non-Ergodic Probabilistic Seismic Hazard Analyses M.A. Walling Lettis Consultants International, INC N.A. Abrahamson University of California, Berkeley SUMMARY A method is developed that relaxes the ergodic

More information

PROBABILISTIC PERFORMANCE-BASED SEISMIC DEMAND MODEL FOR R/C FRAME BUILDINGS

PROBABILISTIC PERFORMANCE-BASED SEISMIC DEMAND MODEL FOR R/C FRAME BUILDINGS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1547 PROBABILISTIC PERFORMANCE-BASED SEISMIC DEMAND MODEL FOR R/C FRAME BUILDINGS Srdjan JANKOVIC 1 and

More information

PREDICTION RELATIONSHIPS FOR A VECTOR-VALUED GROUND MOTION INTENSITY MEASURE ACCOUNTING FOR CUMULATIVE DAMAGE POTENTIAL

PREDICTION RELATIONSHIPS FOR A VECTOR-VALUED GROUND MOTION INTENSITY MEASURE ACCOUNTING FOR CUMULATIVE DAMAGE POTENTIAL October -7, 008, Beijing, China PREDICTION RELATIONSHIPS FOR A VECTOR-VALUED GROUND MOTION INTENSITY MEASURE ACCOUNTING FOR CUMULATIVE DAMAGE POTENTIAL I. Iervolino, M. Giorgio, C. Galasso 3 and G. Manfredi

More information

Department of Civil Engineering, Serbia

Department of Civil Engineering, Serbia FACTA UNIVERSITATIS Series: Architecture and Civil Engineering Vol. 10, N o 3, 2012, pp. 259-274 DOI: 10.2298/FUACE1203259B TOWARDS PREPARATION OF DESIGN SPECTRA FOR SERBIAN NATIONAL ANNEX TO EUROCODE

More information

Treatment of Epistemic Uncertainty in PSHA Results

Treatment of Epistemic Uncertainty in PSHA Results Treatment of Epistemic Uncertainty in PSHA Results Norm Abrahamson University of California, Berkeley Pacific Gas & Electric PSHA Workshop, Lenzburg, Switzerland, Sep 7, 2017 Haz(GM > z)= Nscenarios i=1

More information

A Statistical Analysis of the Response of Tall Buildings to Recorded and Simulated Ground Motions

A Statistical Analysis of the Response of Tall Buildings to Recorded and Simulated Ground Motions A Statistical Analysis of the Response of Tall Buildings to Recorded and Simulated Ground Motions N. Jayaram & N. Shome Risk Management Solutions Inc., Newark, CA, USA SUMMARY: Performance based earthquake

More information

Vector-valued intensity measures for pulse-like near-fault ground motions

Vector-valued intensity measures for pulse-like near-fault ground motions Engineering Structures 30 (2008) 1048 1057 www.elsevier.com/locate/engstruct Vector-valued intensity measures for pulse-like near-fault ground motions Jack W. Baker, C. Allin Cornell Department of Civil

More information

Scenario Earthquakes for Korean Nuclear Power Plant Site Considering Active Faults

Scenario Earthquakes for Korean Nuclear Power Plant Site Considering Active Faults Transactions of the 7 th International Conference on Structural Mechanics in Reactor Technology (SMiRT 7) Prague, Czech Republic, August 7 22, 2003 Paper # K03-2 Scenario Earthquakes for Korean Nuclear

More information

Ground motion selection for performance-based engineering, and the Conditional Mean Spectrum as a selection tool

Ground motion selection for performance-based engineering, and the Conditional Mean Spectrum as a selection tool Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Ground motion selection for performance-based engineering,

More information

Usability of the Next Generation Attenuation Equations for Seismic Hazard Assessment in Malaysia

Usability of the Next Generation Attenuation Equations for Seismic Hazard Assessment in Malaysia Azlan Adnan, Patrick Liq Yee Tiong, Yue Eng Chow/ International Journal of Engineering Vol. 2 Issue 1, Jan-Feb 212, pp.639-644 Usability of the Next Generation Attenuation Equations for Seismic Hazard

More information

A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND

A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND Mark W STIRLING 1 SUMMARY The Institute of Geological and Nuclear Sciences (GNS) has developed a new seismic hazard model for New Zealand that incorporates

More information

Spatial Cross-correlation Models for Vector Intensity Measures (PGA, Ia, PGV and Sa s) Considering Regional Site Conditions

Spatial Cross-correlation Models for Vector Intensity Measures (PGA, Ia, PGV and Sa s) Considering Regional Site Conditions Spatial Cross-correlation Models for Vector Intensity Measures (PGA, Ia, PGV and Sa s) Considering Regional Site Conditions Gang Wang and Wenqi Du Department of Civil and Environmental Engineering Hong

More information

Damping Scaling of Response Spectra for Shallow CCCCCCCCCrustalstallPaper Crustal Earthquakes in Active Tectonic Title Line Regions 1 e 2

Damping Scaling of Response Spectra for Shallow CCCCCCCCCrustalstallPaper Crustal Earthquakes in Active Tectonic Title Line Regions 1 e 2 Damping Scaling of Response Spectra for Shallow CCCCCCCCCrustalstallPaper Crustal Earthquakes in Active Tectonic Title Line Regions 1 e 2 S. Rezaeian U.S. Geological Survey, Golden, CO, USA Y. Bozorgnia

More information

IMPLICATIONS OF THE INTER-PERIOD CORRELATION OF STRONG GROUND MOTIONS ON STRUCTURAL RISK

IMPLICATIONS OF THE INTER-PERIOD CORRELATION OF STRONG GROUND MOTIONS ON STRUCTURAL RISK Eleventh U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy June 25-29, 2018 Los Angeles, California IMPLICATIONS OF THE INTER-PERIOD CORRELATION OF STRONG GROUND

More information

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2898 SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3)

More information

Modifications to Risk-Targeted Seismic Design Maps for Subduction and Near-Fault Hazards

Modifications to Risk-Targeted Seismic Design Maps for Subduction and Near-Fault Hazards Modifications to Risk-Targeted Seismic Design Maps for Subduction and Near-Fault Hazards Abbie B. Liel Assistant Prof., Dept. of Civil, Environ. and Arch. Eng., University of Colorado, Boulder, CO, USA

More information

The Ranges of Uncertainty among the Use of NGA-West1 and NGA-West 2 Ground Motion Prediction Equations

The Ranges of Uncertainty among the Use of NGA-West1 and NGA-West 2 Ground Motion Prediction Equations The Ranges of Uncertainty among the Use of NGA-West1 and NGA-West 2 Ground otion Prediction Equations T. Ornthammarath Assistant Professor, Department of Civil and Environmental Engineering, Faculty of

More information

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Supervisor : Dr. Chyi-Tyi Lee and Dr. Kuo-Fong Ma Speaker : Jia-Cian Gao 2018/04/26 1 1. A

More information

Deaggregation of the Regional Seismic Hazard: City of Patras, Greece.

Deaggregation of the Regional Seismic Hazard: City of Patras, Greece. Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'07), Portoroz, Slovenia, May 15-17, 2007 57 Deaggregation of the Regional Seismic Hazard: City of Patras, Greece.

More information

Regional Workshop on Essential Knowledge of Site Evaluation Report for Nuclear Power Plants.

Regional Workshop on Essential Knowledge of Site Evaluation Report for Nuclear Power Plants. Regional Workshop on Essential Knowledge of Site Evaluation Report for Nuclear Power Plants. Development of seismotectonic models Ramon Secanell Kuala Lumpur, 26-30 August 2013 Overview of Presentation

More information

RECORD OF REVISIONS. Page 2 of 17 GEO. DCPP.TR.14.06, Rev. 0

RECORD OF REVISIONS. Page 2 of 17 GEO. DCPP.TR.14.06, Rev. 0 Page 2 of 17 RECORD OF REVISIONS Rev. No. Reason for Revision Revision Date 0 Initial Report - this work is being tracked under Notification SAPN 50638425-1 8/6/2014 Page 3 of 17 TABLE OF CONTENTS Page

More information

CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS

CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS 1. Introduction CHARACTERIZATION OF EARTHQUAKE SHAKING EFFECTS This section presents information on engineering seismology and engineering characterization of earthquakes. The key references for this module

More information

Estimating Earthquake-induced Slope Displacements Using Vector Ground Motion Intensity Measures

Estimating Earthquake-induced Slope Displacements Using Vector Ground Motion Intensity Measures Estimating Earthquake-induced Slope Displacements Using Vector Ground Motion Intensity Measures Gang Wang & Wenqi Du Hong Kong University of Science and Technology, Hong Kong SAR, China SUMMARY: Realistic

More information