arxiv: v1 [physics.comp-ph] 2 Jan 2018

Size: px
Start display at page:

Download "arxiv: v1 [physics.comp-ph] 2 Jan 2018"

Transcription

1 arxiv: v1 [physics.comp-ph] 2 Jan 2018 Solution of the Nonlinear Schrödinger Equation with Defocusing Strength Nonlinearities Through the Laplace-Adomian Decomposition Method O. González-Gaxiola 1, Pedro Franco, R. Bernal-Jaquez Departamento de Matemticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, Santa Fe, Cuajimalpa, Mexico City, Mexico 1 ogonzalez@correo.cua.uam.mx August 12, 2018 Abstract In this work we apply the Adomian decomposition method combined with the Laplace transform (LADM) in order to solve the 1-dimensional nonlinear Schrödinger equation whose nonlinear term presents a nonlinear defocusing strength that varies in the spatial direction. The suggested iterative scheme (LADM) finds the solution without any discretization, linearization or restrictive assumptions. Finally, three numerical examples are presented to demonstrate the reliability and accuracy of the method. 1 Introduction Obtaining the solutions of nonlinear partial differential equations that emerge from scientific and engineering problems constitutes one of the most important, challenging and essential tasks of mathematics that become crucial for the understanding of innumerable phenomena. Under this circumstances, great efforts have been done in order to develop different mathematical approaches that allow the solution of nonlinear equations in an analytical, semi-analytical or numerical way. Among these semi-analytical methods, the one developed by the mathematician George Adomian ( ), has proved to be very useful in many different contexts [4], [5] and [41]. The Adomian decomposition method (ADM) has the advantage that it converges to the exact solution in many important cases and applications. Besides, this method can be handled easily for a wide class of differential equations (ordinary and partial) both linear and nonlinear. In the other hand, the nonlinear Schrödinger equation (NLSE) is one of the most important models of mathematical-physics that describes non only the quantum world 1

2 but also describes many different phenomena in fields as diverse as nonlinear optics, plasma physics, wave propagation in oceans, protein dynamics, laser light propagation in materials with a refractive index sensitive to the incident wave amplitude among many others [23] and [36]. In the last decades, this equation has become fundamental to describe many aspects of the dynamics of the Bose-Einstein condensates such as vortices formation [33], interaction among condensates [24] as well as in the description of the interaction of atom with lasers [17], inusual behavior of solitons in non-homogeneous media and nonlinear excitations in material science [28]. In this paper we will use ADM combined with the Laplace transform in order to find approximate solutions to the nonlinear Schrödinger equation when we consider a function that acts as a defocusing strength of the nonlinear potential that varies in the spatial direction [22, 27, 11, 16]. We will see that the nonlinear term can be easily handled with the help of the so called, Adomian s polynomials. The ADM method combined with use of the Laplace transform, proposed originally in [29], plays an important role among semi-analytic methods and has been used to solve many different nonlinear problems as in [34] in which the method was used to solve a bio-mathematical problem, in [42] was employed to solve a problem from the mechanics of vibrations, in [30] was used to solve a nonlinear problem relevant in chemical engineering and in [38] was used to solve nonlinear integro-differential equations of the Volterra type. Our work is divided in several sections. In The Laplace Adomian Decomposition Method (LADM) section, we present, in a briefly and self-contained way, the LADM method and some references are presented to delve deeper into the subject and to study their mathematical foundations that are not part of the issues of this work. In Solution of the General Nonlinear Schrödinger Equation for Bright and Dark Solitons Through LADM section, we give a brief introduction to the model described by the nonlinear Schrödinger equation, whose nonlinearity term presents a defocusing strength function that varies in the spatial direction, and we will establish that LADM can be used to solve it. In Numerical Examples we will show by means of three examples, the quality and accuracy of our method, comparing the obtained results with the exact solutions that appear in the literature often without giving an explicit method to find them [12] and [25]. Finally, in the Conclusion and Discussion section, we summarize our findings and present our final conclusions. 2 Conclusion and Discussion In the present work we have shown that it is possible to obtain accurate approximate solutions of the nonlinear Schrödinger equation with a defocusing strength function in the nonlinear potential by means of the Laplace Adomian decomposition method (LADM). Our work has a twofold intension, in one hand we want to show that the LADM is a reliable method to solve hard nonlinear problems such as the ones treated here and we illustrate how to use the method through the solution of different examples and on the other hand we have chosen the nonlinear Schrödinger equation equation due to its importance in modeling a wide range of physical phenomena. The method presented in this work is quite competitive with other decomposition meth- 2

3 ods due to the application of the Laplace transform that avoids the integration of polynomials that in every step become of higher order, providing an elegant and easy to apply method that decreases considerably the amount of calculations. Nevertheless, we have to mention, as a part of the conclusions of this work, that the present method has some deficiencies, for instance, the method provides a series solution that has to be truncated in most of the cases (if we can not identify an analytic solution expressed as a series) and besides, the region in which the ADM solution converges to the exact solution (and hence the LADM converges as well) is limited (region in which, usually, convergence is very fast). If one needs the solution to be convergent in an ample region we need to include more terms in the ADM series solution. To show the accuracy and efficiency of this method, we have solved three examples, comparing our results with the exact solution of the equation that was obtained in [25] and [12]. Our results show that LADM produces highly accurate solutions for small values of time, for complicated nonlinear problems. In this manner we can conclude that the LADM is a notable non-sophisticated powerful tool that produces high quality approximate solutions for nonlinear partial differential equations using simple calculations and that attains convergence with only few terms. All the numerical work was accomplished with the Mathematica software package. References [1] Abbaoui, K., Cherruault, Y.: Convergence of Adomian s method applied to differential equations. Comput. Math. Appl. 28(5), (1994). doi: / (94) [2] Abbaoui, K., Cherruault, Y.: New ideas for proving convergence of decomposition methods. Comput. Math. Appl. 29(7), (1995). doi: / (95)00022-q [3] Abushammala, M., Khuri, S. A., Sayfy A.: A novel fixed point iteration method for the solution of third order boundary value problems. Applied Math. and Computation 271, (2015). doi: /j.amc [4] Adomian, G.: Nonlinear Stochastic Operator Equations. Academic Press, Orlando (1986) [5] Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston, MA (1994) [6] Adomian, G., Rach, R.: Linear and nonlinear Schrödinger equations. Foundations of physics 21(8), (1991). doi: /BF [7] Ahmed, I., Chunlai, M., Zheng P.: Exact solution of the (2 + 1) dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method. Malaya J. Mat. 2(2), (2014) [8] Alomari, A. K., Noorani, M.S.M., Nazar, R.: Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis 3

4 method. Commun. Nonlinear Sci. Numer. Simul. 14(4), (2009). doi: /j.cnsns [9] Babolian, E., Javadi, Sh.: New method for calculating Adomian polynomials. Applied Math. and Computation 153, (2004). doi: /S (03) [10] Biazar, J., Ghazvini, H.: Exact solutions for non-linear Schrödinger equations by He s homotopy perturbation method. Phys. Lett. A. 366(1-2), (2007). doi: /j.physleta [11] Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80(3), (2008). doi: /RevModPhys [12] Borovkova, O.V., Kartashov, Y. V., Torner, L., Malomed, B. A.: Bright solitons from defocusing nonlinearities. Phys. Rev. E 84, (R) (2011). doi: /PhysRevE [13] Bratsos, A., Ehrhardt, M., Famelis, I. Th.: A discrete Adomian decomposition method for discrete nonlinear Schrödinger equations. Appl. Math. Comput. 197(1), (2008). doi: /j.amc [14] Cherruault, Y.: Convergence of Adomian s method. Kybernetes 18(2), (1989) [15] Cherruault, Y., Adomian, G.: Decomposition methods: a new proof of convergence. Math. Comput. Modelling 18(12), (1993). doi: / (93)90233-O [16] Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82(2), (2010). doi: /RevMod- Phys [17] Drummond P.D., Kheruntsyan, K. V.: Asymptotic solutions to the Gross- Pitaevskii gain equation: Growth of a Bose-Einstein condensate. Phys. Rev. A 63(1), (2000). doi: /PhysRevA [18] Duan, J. S.: Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput. 217, (2011). doi: /j.amc [19] Duan, J. S.: New recurrence algorithms for the nonclassic Adomian polynomials. Appl. Math. Comput. 62, (2011). doi: /j.camwa [20] Edeki, S. O., Akinlabi, G. O., Adeosun, S. A.: Analytic and numerical solutions of time-fractional linear Schrödinger equation. Comm. in Math. and Appl. 7(1), 1-10 (2016) [21] Fariborzi, M. A., Naghshband, S.: On convergence of homotopy analysis method to solve the Schrödinger equation with a power law nonlinearity. Int. J. Industrial Math. 5(4), (2013) 4

5 [22] Fedichev, P.O., Kagan, Y., Shlyapnikov, G.V., Walraven, J. T. M.: Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77(14), (1996). doi: /PhysRevLett [23] Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press, Manchester (1990) [24] Hoston, W., You, L.: Interference of two condensates. Phys. Rev. A 53(6), 4254 (1996). doi: /PhysRevA [25] Hou Tsang, C., Malomed, B. A., Wing Chow, K.: Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete and continuous dynamical systems-series S 4(5), (2011). doi: /dcdss [26] Hukriede, J., Runde, D., Kip, D.: Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides. J. Phys. D. 36, 1-16 (2003). [27] Inouye, S., Andrews, M.R., Stenger, Miesner, H. J., Stamper-Kurn, D. M., Ketterle, W: Observation of Feshbach resonances in a Bose-Einstein condensate. Nature 392, (1998) [28] Kartashov, Y. V., Malomed, B.A.,Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83(1), (2011). doi: /RevModPhys [29] Khuri, S. A.: A Laplace decomposition algorithm applied to a class of nonlinear differential equations. J. of Applied Mathematics 1(4), (2001). doi: /S X [30] Khuri, S. A.: A new approach to Bratu s problem. Appl. Math. Comput. 147, (2004). doi: /S (02) [31] Khuri, S. A., Sayfy A.: A Laplace variational iteration strategy for the solution of differential equations. Appl. Math. Letters 25(12), (2012). doi: /j.aml [32] Khuri, S. A.: A new approach to the cubic Schrödinger equation: An application of the decomposition technique. Appl. Math. Comput. 97, (1998) [33] Martikainen, J. P., Suominen, K. A., Santos, L., Schulte, T., Sanpera A.: Generation and evolution of vortex-antivortex pairs in Bose-Einstein condensates. Phys. Rev. A 64(6), (2001). doi: /PhysRevA [34] Ongun, M. Y.: The Laplace Adomian decomposition method for solving a model for HIV infection of CD4 + T cells. Mathematical and Computer Modelling 53, (2011). doi: /j.mcm [35] Sadighi, A., Ganji D. D.: Analytic treatment of linear and nonlinear Schrödinger equations: A study with homotopy-perturbation and Adomian decomposition methods. Phys. Letters A 372(4), (2008). doi: /j.physleta

6 [36] Vázquez, L., Streit, L., Pérez-García, V.M. (Eds.): Nonlinear Schrödinger and Klein-Gordon systems: Theory and Applications. World Scientific, Singapore (1996) [37] Wazwaz, A. M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. and Computation 111(1), (2000). doi: /s (99) [38] Wazwaz, A. M.: The combined Laplace transform-adomian decomposition method for handling nonlinear Volterra integro-differential equations. Appl. Math. Comput. 216(4), (2010). doi: /j.amc [39] Wazwaz, A. M., El-Sayed, S. M.: A new modification of the Adomian decomposition method for linear and nonlinear operators. Appl. Math. Comput. 122(3), (2001). doi: /S (00) [40] Wazwaz, A. M.: A reliable technique for solving linear and nonlinear Schrödinger equations by Adomian decomposition method. Bull. of the Intitute. of Math. Acad. Sinica 29(2), (2011) [41] Wazwaz, A.M.: Partial Differential Equations: Methods and Applications. Balkema Publishers, Lisse (2002) [42] Yusufoǧlu, E.: Numerical solution of Duffing equation by the Laplace decomposition algorithm. Appl. Math. Comput. 177, (2006). doi: /j.amc

Solution for the nonlinear relativistic harmonic oscillator via Laplace-Adomian decomposition method

Solution for the nonlinear relativistic harmonic oscillator via Laplace-Adomian decomposition method arxiv:1606.03336v1 [math.ca] 27 May 2016 Solution for the nonlinear relativistic harmonic oscillator via Laplace-Adomian decomposition method O. González-Gaxiola a, J. A. Santiago a, J. Ruiz de Chávez

More information

The Laplace-Adomian Decomposition Method Applied to the Kundu-Eckhaus Equation

The Laplace-Adomian Decomposition Method Applied to the Kundu-Eckhaus Equation International Journal of Mathematics And its Applications Volume 5, Issue 1 A (2017), 1 12 ISSN: 2347-1557 Available Online: http://ijmaain/ International Journal 2347-1557 of Mathematics Applications

More information

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 6, 2012, no. 10, 487-497 Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations A. R. Vahidi a and B. Jalalvand b (a) Department

More information

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.227-234 Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition

More information

Research Article Approximation Algorithm for a System of Pantograph Equations

Research Article Approximation Algorithm for a System of Pantograph Equations Applied Mathematics Volume 01 Article ID 714681 9 pages doi:101155/01/714681 Research Article Approximation Algorithm for a System of Pantograph Equations Sabir Widatalla 1 and Mohammed Abdulai Koroma

More information

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition Applied Mathematical Sciences, Vol 6, 202, no 59, 2935-2944 Solving Fuzzy Duffing s Equation by the Laplace Transform Decomposition, Mustafa, J and Nor,3,4 Department of Science and Mathematics, Faculty

More information

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method Australian Journal of Basic and Applied Sciences, 3(3): 2249-2254, 2009 ISSN 1991-8178 Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method A.R. Vahidi Department

More information

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method International Journal of Advances in Applied Mathematics and Mechanics Volume 1, Issue 2 : (2013) pp. 133-145 IJAAMM Available online at www.ijaamm.com ISSN: 2347-2529 Solutions of the coupled system of

More information

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation J. Basic. Appl. Sci. Res., 2(12)12236-12241, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Adomian Decomposition Method with Laguerre

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method International Mathematical Forum, Vol. 7, 2012, no. 17, 799 814 A New Technique of Initial Boundary Value Problems Using Adomian Decomposition Method Elaf Jaafar Ali Department of Mathematics, College

More information

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems Weonbae Kim a and Changbum Chun b a Department of Mathematics, Daejin University, Pocheon, Gyeonggi-do

More information

Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient

Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient Applied Mathematical Sciences, Vol. 4, 1, no. 49, 431-444 Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient Mohammad Ghoreishi School of Mathematical Sciences,

More information

A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations

A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations Applied Mathematical Sciences, Vol. 4, 21, no. 39, 1931-194 A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations M. Hussain and Majid Khan Department of Sciences and

More information

A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method

A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method Malaya J. Mat. 4(1)(2016) 59-64 A Study On Linear and Non linear Schrodinger Equations by Reduced Differential Transform Method T.R. Ramesh Rao a, a Department of Mathematics and Actuarial Science, B.S.

More information

A Maple program for computing Adomian polynomials

A Maple program for computing Adomian polynomials International Mathematical Forum, 1, 2006, no. 39, 1919-1924 A Maple program for computing Adomian polynomials Jafar Biazar 1 and Masumeh Pourabd Department of Mathematics, Faculty of Science Guilan University

More information

Solution of Quadratic Integral Equations by the Adomian Decomposition Method

Solution of Quadratic Integral Equations by the Adomian Decomposition Method Copyright 213 Tech Science Press CMES, vol.92, no.4, pp.369-385, 213 Solution of Quadratic Integral Equations by the Adomian Decomposition Method Shou-Zhong Fu 1, Zhong Wang 1 and Jun-Sheng Duan 1,2,3

More information

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc 153 Kragujevac J. Math. 26 (2004) 153 164. ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD Mustafa Inc Department of Mathematics, Firat University, 23119 Elazig Turkiye

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems Proceedings of the World Congress on Engineering 7 Vol I WCE 7, July 5-7, 7, London, U.K. Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value

More information

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation

The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation Ahmet Yildirim Department of Mathematics, Science Faculty, Ege University, 351 Bornova-İzmir, Turkey Reprint requests

More information

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Australian Journal of Basic Applied Sciences, 3(4): 4397-4407, 2009 ISSN 1991-8178 A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Dr. Abbas Y. AL_ Bayati Dr. Ann

More information

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 6, 212, no. 3, 1463-1469 Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations P. Pue-on 1 and N. Viriyapong 2 Department

More information

Matter and rogue waves of some generalized Gross-Pitaevskii equations with varying potentials and nonlinearities

Matter and rogue waves of some generalized Gross-Pitaevskii equations with varying potentials and nonlinearities Matter and rogue waves of some generalized Gross-Pitaevskii equations with varying potentials and nonlinearities Zhenya Yan Key Lab of Mathematics Mechanization, AMSS, Chinese Academy of Sciences (joint

More information

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations Int. J. Adv. Appl. Math. and Mech. 3( (05 50 58 (ISSN: 347-59 IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Application of Laplace Adomian

More information

On the coupling of Homotopy perturbation method and Laplace transformation

On the coupling of Homotopy perturbation method and Laplace transformation Shiraz University of Technology From the SelectedWorks of Habibolla Latifizadeh 011 On the coupling of Homotopy perturbation method and Laplace transformation Habibolla Latifizadeh, Shiraz University of

More information

A Numerical Method to Compute the Complex Solution of Nonlinear Equations

A Numerical Method to Compute the Complex Solution of Nonlinear Equations Journal of Mathematical Extension Vol. 11, No. 2, (2017), 1-17 ISSN: 1735-8299 Journal of Mathematical Extension URL: http://www.ijmex.com Vol. 11, No. 2, (2017), 1-17 ISSN: 1735-8299 URL: http://www.ijmex.com

More information

Applying Adomian Decomposition Method to Solve Burgess Equation with a Non-linear Source

Applying Adomian Decomposition Method to Solve Burgess Equation with a Non-linear Source arxiv:1606.00259v1 [q-bio.to] 14 Jan 2016 Applying Adomian Decomposition Method to Solve Burgess Equation with a Non-linear Source O. González-Gaxiola, R. Bernal-Jaquez Departamento de Matemáticas Aplicadas

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

Quantum lattice representation of dark solitons ABSTRACT

Quantum lattice representation of dark solitons ABSTRACT Quantum lattice representation of solitons George Vahala a, Linda Vahala b, Jeffrey Yepez c a Dept. of Physics, William & Mary, Williamsburg, VA 23187 b Dept. of Electrical & Computer Engineering, Old

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

Application of the Decomposition Method of Adomian for Solving

Application of the Decomposition Method of Adomian for Solving Application of the Decomposition Method of Adomian for Solving the Pantograph Equation of Order m Fatemeh Shakeri and Mehdi Dehghan Department of Applied Mathematics, Faculty of Mathematics and Computer

More information

Application of Adomian Decomposition Method in Solving Second Order Nonlinear Ordinary Differential Equations

Application of Adomian Decomposition Method in Solving Second Order Nonlinear Ordinary Differential Equations International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 4 Issue 11 November 2015 PP.60-65 Application of Adomian Decomposition Method in Solving

More information

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation M. M. KHADER Faculty of Science, Benha University Department of Mathematics Benha EGYPT mohamedmbd@yahoo.com N. H. SWETLAM

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

A New Numerical Scheme for Solving Systems of Integro-Differential Equations

A New Numerical Scheme for Solving Systems of Integro-Differential Equations Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 1, No. 2, 213, pp. 18-119 A New Numerical Scheme for Solving Systems of Integro-Differential Equations Esmail Hesameddini

More information

On Solution of Nonlinear Cubic Non-Homogeneous Schrodinger Equation with Limited Time Interval

On Solution of Nonlinear Cubic Non-Homogeneous Schrodinger Equation with Limited Time Interval International Journal of Mathematical Analysis and Applications 205; 2(): 9-6 Published online April 20 205 (http://www.aascit.org/journal/ijmaa) ISSN: 2375-3927 On Solution of Nonlinear Cubic Non-Homogeneous

More information

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method Nonlinear Analysis: Real World Applications, Vol. 10, Nº 1, 416-427 (2009) Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method A. Beléndez, C. Pascual,

More information

Series Solution of Weakly-Singular Kernel Volterra Integro-Differential Equations by the Combined Laplace-Adomian Method

Series Solution of Weakly-Singular Kernel Volterra Integro-Differential Equations by the Combined Laplace-Adomian Method Series Solution of Weakly-Singular Kernel Volterra Integro-Differential Equations by the Combined Laplace-Adomian Method By: Mohsen Soori University: Amirkabir University of Technology (Tehran Polytechnic),

More information

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae)

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae) Benha University Faculty of Science Department of Mathematics (Curriculum Vitae) (1) General *Name : Mohamed Meabed Bayuomi Khader *Date of Birth : 24 May 1973 *Marital Status: Married *Nationality : Egyptian

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations Computers and Mathematics with Applications 6 (21) 1868 1872 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A modified

More information

A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels

A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels Applied Mathematical Sciences, Vol. 8, 2014, no. 7, 321-336 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39495 A Comparison of Adomian and Generalized Adomian Methods in Solving the

More information

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Applied Mathematics Volume 22, Article ID 39876, 9 pages doi:.55/22/39876 Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Xiuming Li

More information

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.488-497 On a New Aftertreatment Technique for Differential Transformation Method and its Application

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 4 (2009), No. 2, pp. 219-234 EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS BY SYED TAUSEEF MOHYUD-DIN,

More information

The variational homotopy perturbation method for solving the K(2,2)equations

The variational homotopy perturbation method for solving the K(2,2)equations International Journal of Applied Mathematical Research, 2 2) 213) 338-344 c Science Publishing Corporation wwwsciencepubcocom/indexphp/ijamr The variational homotopy perturbation method for solving the

More information

SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD

SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD Journal of Science and Arts Year 15, No. 1(30), pp. 33-38, 2015 ORIGINAL PAPER SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD JAMSHAD AHMAD 1, SANA BAJWA 2, IFFAT SIDDIQUE 3 Manuscript

More information

THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION

THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION International Journal of Computer Mathematics Vol. 00, No. 0, Month 004, pp. 1 6 THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION D. J. EVANS a and K. R. RASLAN b, a Faculty of

More information

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind Applied Mathematical Sciences, Vol. 5, 211, no. 16, 799-84 On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind A. R. Vahidi Department

More information

Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable

Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable Physica Scripta, Vol. 77, Nº 6, art. 065004 (008) Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable A. Beléndez 1,

More information

The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method

The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method Mathematics and Statistics 1(3): 113-118, 213 DOI: 1.13189/ms.213.133 hp://www.hrpub.org The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method Parivash

More information

THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS

THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS MEHDI DEHGHAN AND MEHDI TATARI Received 16 March 25; Revised 9 August 25; Accepted 12 September 25 Dedication to Professor

More information

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method

Exact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method Applied Mathematical Sciences, Vol. 2, 28, no. 54, 2691-2697 Eact Solutions for Systems of Volterra Integral Equations of the First Kind by Homotopy Perturbation Method J. Biazar 1, M. Eslami and H. Ghazvini

More information

Dynamics of Bosons in Two Wells of an External Trap

Dynamics of Bosons in Two Wells of an External Trap Proceedings of the Pakistan Academy of Sciences 52 (3): 247 254 (2015) Copyright Pakistan Academy of Sciences ISSN: 0377-2969 (print), 2306-1448 (online) Pakistan Academy of Sciences Research Article Dynamics

More information

Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method

Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method Copyright 214 Tech Science Press CMES, vol.1, no.6, pp.463-475, 214 Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method Lei Lu 1,2,3, Jun-Sheng Duan 2

More information

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Adv. Studies Theor. Phys., Vol. 3, 29, no. 11, 429-437 Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Gh. Asadi Cordshooli Department of Physics, Shahr-e-Rey Branch,

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics International Journal of Modern Theoretical Physics, 2012, 1(1): 13-22 International Journal of Modern Theoretical Physics Journal homepage:www.modernscientificpress.com/journals/ijmtp.aspx ISSN: 2169-7426

More information

Applications Of Differential Transform Method To Integral Equations

Applications Of Differential Transform Method To Integral Equations American Journal of Engineering Research (AJER) 28 American Journal of Engineering Research (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7, Issue-, pp-27-276 www.ajer.org Research Paper Open Access Applications

More information

Application of the Differential Transform Method for the Nonlinear Differential Equations

Application of the Differential Transform Method for the Nonlinear Differential Equations American Journal of Applied Mathematics 27; 5(): 4- http://www.sciencepublishinggroup.com//aam doi:.64/.aam.275.2 ISSN: 233-43 (Print); ISSN: 233-6X (Online) Application of the Differential Transform Method

More information

Variational iteration method for solving multispecies Lotka Volterra equations

Variational iteration method for solving multispecies Lotka Volterra equations Computers and Mathematics with Applications 54 27 93 99 www.elsevier.com/locate/camwa Variational iteration method for solving multispecies Lotka Volterra equations B. Batiha, M.S.M. Noorani, I. Hashim

More information

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction

Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction 0 The Open Mechanics Journal, 007,, 0-5 Application of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction Equations N. Tolou, D.D. Ganji*, M.J. Hosseini and Z.Z. Ganji Department

More information

Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term

Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term From the SelectedWorks of Hassan Askari 2013 Rational Energy Balance Method to Nonlinear Oscillators with Cubic Term Hassan Askari Available at: https://works.bepress.com/hassan_askari/4/ Asian-European

More information

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method

Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(2), 2012, Pages 200 210 ISSN: 1223-6934 Solving nonlinear fractional differential equation using a multi-step Laplace

More information

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. I1 (Sep. - Oct. 2017), PP 90-97 www.iosrjournals.org Approximate Solution of an Integro-Differential

More information

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 6, Issue (June 0) pp. 3 3 (Previously, Vol. 6, Issue, pp. 964 97) Applications and Applied Mathematics: An International Journal (AAM)

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations

The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations Australian Journal of Basic and Applied Sciences, 5(10): 406-416, 2011 ISSN 1991-8178 The Modified Variational Iteration Method for Solving Linear and Nonlinear Ordinary Differential Equations 1 M.A. Fariborzi

More information

New Class of Boundary Value Problems

New Class of Boundary Value Problems Inf. Sci. Lett. 1 No. 2, 67-76 (2012) Information Science Letters An International Journal 67 @ 2012 NSP Natural Sciences Publishing Cor. New Class of Boundary Value Problems Abdon Atangana Institute for

More information

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4

Abdolamir Karbalaie 1, Hamed Hamid Muhammed 2, Maryam Shabani 3 Mohammad Mehdi Montazeri 4 ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.172014 No.1,pp.84-90 Exact Solution of Partial Differential Equation Using Homo-Separation of Variables Abdolamir Karbalaie

More information

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method

Numerical Solution of Two-Point Boundary Value Problems via Differential Transform Method Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 2 (2015), pp. 801-806 Research India Publications http://www.ripublication.com Numerical Solution of Two-Point Boundary

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

Traveling wave solutions of new coupled Konno-Oono equation

Traveling wave solutions of new coupled Konno-Oono equation NTMSCI 4, No. 2, 296-303 (2016) 296 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016218536 Traveling wave solutions of new coupled Konno-Oono equation Md. Abul Bashar, Gobinda

More information

Conformable variational iteration method

Conformable variational iteration method NTMSCI 5, No. 1, 172-178 (217) 172 New Trends in Mathematical Sciences http://dx.doi.org/1.2852/ntmsci.217.135 Conformable variational iteration method Omer Acan 1,2 Omer Firat 3 Yildiray Keskin 1 Galip

More information

On the Numerical Solutions of Heston Partial Differential Equation

On the Numerical Solutions of Heston Partial Differential Equation Math Sci Lett 4, No 1, 63-68 (215) 63 Mathematical Sciences Letters An International Journal http://dxdoiorg/112785/msl/4113 On the Numerical Solutions of Heston Partial Differential Equation Jafar Biazar,

More information

Topological and Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger and the Coupled Quadratic Nonlinear Equations

Topological and Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger and the Coupled Quadratic Nonlinear Equations Quant. Phys. Lett. 3, No., -5 (0) Quantum Physics Letters An International Journal http://dx.doi.org/0.785/qpl/0300 Topological Non-Topological Soliton Solutions of the Coupled Klein-Gordon-Schrodinger

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

A new modification to homotopy perturbation method for solving Schlömilch s integral equation

A new modification to homotopy perturbation method for solving Schlömilch s integral equation Int J Adv Appl Math and Mech 5(1) (217) 4 48 (ISSN: 2347-2529) IJAAMM Journal homepage: wwwijaammcom International Journal of Advances in Applied Mathematics and Mechanics A new modification to homotopy

More information

The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation

The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation Computational Methods for Differential Equations http://cmdetabrizuacir Vol 4, No, 206, pp 43-53 The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation

More information

An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation

An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation Adv. Theor. Appl. Mech., Vol. 3, 21, no. 11, 513-52 An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation B. Batiha and K. Batiha Department of Mathematics, Faculty of

More information

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics Vol.3, Issue., Jan-Feb. 3 pp-369-376 ISSN: 49-6645 The ('/) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics J.F.Alzaidy Mathematics Department, Faculty

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 1, 2014 2 Synopsis. This course reviews recent progress in

More information

Approximate Analytical Solution for Quadratic Riccati Differential Equation

Approximate Analytical Solution for Quadratic Riccati Differential Equation Iranian J. of Numerical Analyi and Optimization Vol 3, No. 2, 2013), pp 21-31 Approximate Analytical Solution for Quadratic Riccati Differential Equation H. Aminikhah Abtract In thi paper, we introduce

More information

2 One-dimensional differential transform

2 One-dimensional differential transform International Mathematical Forum, Vol. 7, 2012, no. 42, 2061-2069 On Solving Differential Equations with Discontinuities Using the Differential Transformation Method: Short Note Abdelhalim Ebaid and Mona

More information

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method International Differential Equations Volume 2012, Article ID 975829, 12 pages doi:10.1155/2012/975829 Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method Sachin Bhalekar

More information

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Journal of mathematics and computer Science 7 (23) 38-43 Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Article history: Received March 23 Accepted Apri

More information

Soliton trains in photonic lattices

Soliton trains in photonic lattices Soliton trains in photonic lattices Yaroslav V. Kartashov, Victor A. Vysloukh, Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica

More information

Numerical solution for chemical kinetics system by using efficient iterative method

Numerical solution for chemical kinetics system by using efficient iterative method International Journal of Advanced Scientific and Technical Research Issue 6 volume 1, Jan Feb 2016 Available online on http://wwwrspublicationcom/ijst/indexhtml ISSN 2249-9954 Numerical solution for chemical

More information

Reduced Differential Transform Method for Solving Foam Drainage Equation(FDE)

Reduced Differential Transform Method for Solving Foam Drainage Equation(FDE) Reduced Differential Transform Method for Solving Foam Drainage Equation(FDE) Murat Gubes Department of Mathematics, Karamanoğlu Mehmetbey University, Karaman/TURKEY Abstract: Reduced Differental Transform

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

Abstract We paid attention to the methodology of two integral

Abstract We paid attention to the methodology of two integral Comparison of Homotopy Perturbation Sumudu Transform method and Homotopy Decomposition method for solving nonlinear Fractional Partial Differential Equations 1 Rodrigue Batogna Gnitchogna 2 Abdon Atangana

More information

Existence of Dark Soliton Solutions of the Cubic Nonlinear Schrödinger Equation with Periodic Inhomogeneous Nonlinearity

Existence of Dark Soliton Solutions of the Cubic Nonlinear Schrödinger Equation with Periodic Inhomogeneous Nonlinearity Journal of Nonlinear Mathematical Physics Volume 15, Supplement 3 (2008), 65 72 ARTICLE Existence of Dark Soliton Solutions of the Cubic Nonlinear Schrödinger Equation with Periodic Inhomogeneous Nonlinearity

More information

6P 3/2 6S 1/2. optical pumping. degenerate Raman transition. ıν=2> ıν=1> ıν=0> ıν=2> ıν=1> ıν=0> Zeeman energy. F=3, m F =3

6P 3/2 6S 1/2. optical pumping. degenerate Raman transition. ıν=2> ıν=1> ıν=0> ıν=2> ıν=1> ıν=0> Zeeman energy. F=3, m F =3 RAMAN SIDEBAND COOLING IN AN OPTICAL LATTICE VLADAN VULETIĆ, ANDREW J. KERMAN, CHENG CHIN, AND STEVEN CHU Department of Physics, Stanford University, Stanford, CA 94306-4060, USA E-mail: vladan2@leland.stanford.edu

More information

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017, pp. 1072 1087 Applications and Applied Mathematics: An International Journal (AAM Analytical solution

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Exact Solutions for a Class of Singular Two-Point Boundary Value Problems Using Adomian Decomposition Method

Exact Solutions for a Class of Singular Two-Point Boundary Value Problems Using Adomian Decomposition Method Applied Mathematical Sciences, Vol 6, 212, no 122, 697-618 Exact Solutions for a Class of Singular Two-Point Boundary Value Problems Using Adomian Decomposition Method Abdelhalim Ebaid 1 and Mona D Aljoufi

More information