PHYSICS 1050 Mid-term Test 1 University of Wyoming 15 February 2005

Size: px
Start display at page:

Download "PHYSICS 1050 Mid-term Test 1 University of Wyoming 15 February 2005"

Transcription

1 Name: (4 points) PHYSICS 1050 Mid-term Test 1 University of Wyoming 15 February 2005 Tis test is open-note and open-book. Tis means tat any reference material is permitted during te test. Calculators also are permitted. However, no collaboration, consultation, or communication is allowed by any means, including but not limited to verbal, written, or electronic metods. If you ave a question about te test, please raise your and. If tat does not get te administrator s attention, trow someting at im. He may try to climb across te desks to ear your question, but e will probably resort to asking you to sout across te room, since once everyone is in teir seats, it is really ard to get in or out. Please do not open tis test booklet until everyone as received a booklet and te test administrator as indicated for you to begin. Wile you are waiting, make sure tat your name is written at te top of tis page. Not only will tat get you four easy points, it will save you te trouble of trying to convince te instructor tat some ig-scoring test wit no name on it is really yours. Conversion Factors: 12 in = 1 ft 3 ft = 1 yd 5280 ft = 1 mi Pysical Constants: 2.54 in = 1 cm in = 1 m 1 lb = 4.5 N 1 day = 24 1 = 60 min 1 min = 60 s Universal gravitational constant gravitational acceleration at eart s G = Nm 2 kg 2 surface: g = 9.8 m/s 2 = 9.8 N/kg Metric Prefixes: pico: nano: 10-9 micro; 10-6 milli: 10-3 centi: 10-2 kilo: 10 3 mega: 10 6 giga: 10 9 tera: 10 12

2 Multiple coice 20 questions, 3 points eac. Please circle te most correct answer from te coices given. 1. Before te Revolution, te Frenc used a unit of lengt called te toise. Te toise was longer tan te meter. If a mountain is exactly 2000 toises ig, its eigt in meters is a. exactly 2000 meters b. less tan 2000 meters c. more tan 2000 meters 2. Te speed limit on Willett Drive by te Arena is 20 miles per our. How can tis be converted into te SI units of meters per second? 60 min 60s 5280 ft 12 in in a. 20 mi = min mi ft m mi 5280 ft 12 in in 60 min 60s b. 20 = mi ft m min mi min 5280 ft 12 in m c. 20 = 60 min 60 s mi ft in mi 5280 ft 12 in m 3600 s d. 20 = mi ft in 3. Wic of te four vectors illustrated as te largest magnitude? r r r r 4. Te proper way to add vectors A and B to obtain te vector sum A + B is sown in wic diagram below? page 2 of 12

3 5. Te grap to te rigt sows te progress made by a beetle moving along a straigt line. If te beetle keeps moving at te same speed, at wat time will it reac te 10-cm mark? a. 4 seconds b. 10 seconds c. 20 seconds d. 25 seconds 6. Wen a car accelerates uniformly from rest, wic quantities increase wit time? a. acceleration and velocity b. velocity only c. acceleration and distance traveled d. velocity and distance traveled 7. A car driving in te fog rear-ends a stopped semi-trailer. Te car stops instantly, and te driver, not wearing is seat belt, impacts te steering weel. Te impact brings im to a stop in s. If te driver s air bag ad deployed, e would ave come to a stop in s. Wic of te following statements is true? a. Te driver s cange in speed is less wit te airbag tan witout. b. Te force on te driver wit te airbag is greater tan if te airbag were not tere. c. Te force on te driver wit te airbag is less tan if te airbag were not tere. d. Te air bag reduces te driver s kinetic energy more tan te steering weel alone does. page 3 of 12

4 8. Two balls of te same mass and moving wit te same velocity collide wit a wall. Ball A, made of soft clay, sticks to te wall. Ball B, made of rubber, bounces back from te wall. Wic ball experiences te largest cange in momentum before and after te collision? a. Ball A. b. Ball B. c. Bot ave te same cange in momentum. d. You can t tell because you don t know te time t of te collisions. 9. You are a mecanical engineer ired to design te loop-te-loop roller coaster for a new amusement park. Wat do you need to consider in your design to keep riders from falling out of te coaster at te top of te loop? a Te inward acceleration of te coaster at te top of te loop must be more tan g. b Te speed of te coaster must be greater tan terminal velocity of free fall. c Do not allow riders wo are too eavy on te coaster. d Te force olding passengers up must exceed te force pulling tem down. 10. Tere is a location between te Eart and te moon, called te Lagrange Point, were te gravitational forces from te Eart and te moon cancel. An object placed exactly at te Lagrange Point will not accelerate toward eiter te moon or te eart. Since te Eart is more massive tan te moon, te Lagrange point a. is closer to te Moon tan to te Eart. b. is exactly midway between te moon and Eart. c. is closer to te eart tan to te moon. d. is at a distance tat depends on te pase of te moon. 11. A central particle is surrounded by two circular rings of particles, as sown to te rigt. All te particles ave mass m. Wat is te direction of te net gravitational force on te central particle due to te particles in te rings? a. toward te top of te page (up) b. to te rigt c. toward te bottom of te page (down) d. to te left page 4 of 12

5 12. Te diagram to te rigt sows a person olding a ball standing at tree different places on Eart. if te person drops te ball, gravity will make it fall. Wic of te diagrams below best sows te direction te dropped ball will fall at te tree different positions? 13. My dog weigs 35 pounds. Tat means tat te Eart exerts a gravitational force of 35 pounds on my dog. Te gravitational force my dog exerts on te eart is a. 35 pounds, because of Newton s tird law. b. Less tan 35 pounds, because te dog s gravitational field is muc less tan te Eart s. c. Zero, because a dog is too small to ave gravity. d. More tan 35 pounds, but te Eart is so massive it doesn t accelerate. 14. Te mass of te planet Mars is about 1/10 te mass of Eart, and its radius is about 1/2 te radius of eart. Te weigt of te Mars probe Odyssey wen it is on te surface of Mars is a. about 1/10 its weigt on Eart. b. more tan 1/10 its weigt on Eart. c. less tan 1/10 its weigt on Eart. page 5 of 12

6 15. Te diagram above on te left sows a ball on te end of a string being wirled in a circle. te diagram on te rigt sows te wirling ball as viewed from above. After several wirls, te string is released wen te ball is at Q. Wic of tese diagrams sows te direction in wic te ball will fly, as viewed from above, te instant te string is released? 16. You are riding in te rigt side of a car wen te driver makes a ard left turn. You feel yourself pressing against te door because a. you are accelerating outward as te car turns in a curved pat. b. te car tilts to te rigt, so gravity puses you onto te door. c. te car is accelerating leftward as it turns, pusing into you. d. you are pusing outward on te door, so te door puses back wit an equal and opposite force. page 6 of 12

7 17. Alex is as a flat tire. Te guy at te garage, as usual, over-tigtened te nuts wen e mounted te tire, so Alex is aving trouble loosening tem. Wic direction sould Alex pus on te andle of te lug wrenc to get te maximum torque about te nut? a. straigt inward b. obliquely outward c. perpendicular to te andle d. obliquely inward 18. Te diagram below sows te positions at 1-second intervals of a ball tat is trown upward at an angle. 100 Heigt (m) Distance (m) Between te start of te ball s trajectory at (0, 0) and te end at (0, 240 m), a. te ball s kinetic energy is constant. b. te ball s kinetic energy initially decreases, ten passes troug zero and increases again. c. te ball s kinetic energy initially decreases, ten reaces a minimum value and increases again. d. te ball s kinetic energy initially increases, ten reaces a maximum value and decreases again. page 7 of 12

8 19. Until e was in is seventies, Henri LaMote excited circus audiences by bellyflopping from a eigt of 12 m into 30 cm of water. How can you find wat is kinetic energy KE was wen e it te water? a. Estimate is mass m, ten use KE =1 2mv 2. b. Estimate is mass m, ten use KE = work = mg wit = 12 m. c. Estimate is falling power, ten use P = w t w = P t to find te work needed. d. Solve te equation = v 0 t +1 2a t ( ) 2 for v. 20. Te SI unit for energy is te joule, but power companies usually bill by te kilowatt our (kw), wic is te energy consumed by applying te power of 1000 watts for 1 our. How can you find ow many joules are equal to one kw? a W s J/s W =L b s W 1000 W J/s =L c W s J/s W =L 3600 s d W 1 W s =L J Sort answer 5 questions, 4 points eac. 21. Te diagram below sows te positions at intervals of 0.05 s of two balls moving from left to rigt. Are eiter or bot of tese balls accelerated? Explain. page 8 of 12

9 22. A skydiver jumps out of a perfectly good airplane. For a few seconds, se accelerates toward te ground, but eventually er velocity reaces a maximum value of terminal velocity, so tat er falling speed does not cange wit time. a. Identify two forces tat are acting on er body as se falls. b. In wat directions are tese two forces acting? c. Wat are te relative magnitudes of tese two forces before and after se reaces terminal velocity? 23. A feater falls more slowly tan a paperweigt. Wy? (Don t just identify te forces tat are acting on eac object; explain wy teir effects are different for te two different objects.) page 9 of 12

10 24. Te diagram sows te locations at 1-second intervals of a ball trown at 50 m/s at an angle of ~53 form orizontal. At eac location, draw a vector sowing te magnitude and direction of te ball s acceleration. (Since tere is no scale of acceleration units on te grap, you only need to make te relative magnitudes at te different locations consistent wit eac oter.) 100 Heigt (m) Distance (m) 25. Wy is it arder to open a door wen you pus near te inge tan wen you pus on te opposite side, away from te inge? page 10 of 12

11 Calculation 4 questions, 4 points eac. Te following questions require numerical answers. Sow your work, and include te units wit your answers. 26. A single force of 40 N acts upon a 5-kg block. Wat is te magnitude of te acceleration of te block? (Don t forget te units!) 27. A rifle fires a bullet wit a mass of 5.0 g (0.005 kg). Te bullet moves wit a muzzle velocity of 1000 m/s after te rifle is fired. Wat is te momentum of te bullet after te rifle is fired? (Don t forget te units!) page 11 of 12

12 28. A 100-kg mawg weigs 3000 N on te planet Druidia. Wat is te gravitational acceleration on Druidia? (Don t forget te units!) 29. A force of 50 N is applied to te end of a wrenc andle tat is 24 cm long. Te force is applied in a direction perpendicular to te andle as in te diagram. Wat is te torque (bot direction and magnitude, including units) applied to te nut by te wrenc? page 12 of 12

PHYSICS 1050 Mid-term Test 1 University of Wyoming 15 February 2005

PHYSICS 1050 Mid-term Test 1 University of Wyoming 15 February 2005 Name: (4 points) ANSWER KEY PHYSICS 1050 Mid-term Test 1 University of Wyoming 15 February 2005 This test is open-note and open-book. This means that any reference material is permitted during the test.

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine? 1 1 Power is transferred troug a macine as sown. power input P I macine power output P O power loss P L Wat is te efficiency of te macine? P I P L P P P O + P L I O P L P O P I 2 ir in a bicycle pump is

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

E p = mgh (if h i=0) E k = ½ mv 2 Ek is measured in Joules (J); m is measured in kg; v is measured in m/s. Energy Continued (E)

E p = mgh (if h i=0) E k = ½ mv 2 Ek is measured in Joules (J); m is measured in kg; v is measured in m/s. Energy Continued (E) nergy Continued () Gravitational Potential nergy: - e energy stored in an object due to its distance above te surface of te art. - e energy stored depends on te mass of te object, te eigt above te surface,

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS INTODUCTION ND MTHEMTICL CONCEPTS PEVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips of sine,

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions University of Alabama Department of Pysics and Astronomy PH 101 LeClair Summer 2011 Exam 1 Solutions 1. A motorcycle is following a car tat is traveling at constant speed on a straigt igway. Initially,

More information

Problem Solving. Problem Solving Process

Problem Solving. Problem Solving Process Problem Solving One of te primary tasks for engineers is often solving problems. It is wat tey are, or sould be, good at. Solving engineering problems requires more tan just learning new terms, ideas and

More information

Problem Set 7: Potential Energy and Conservation of Energy AP Physics C Supplementary Problems

Problem Set 7: Potential Energy and Conservation of Energy AP Physics C Supplementary Problems Proble Set 7: Potential Energy and Conservation of Energy AP Pysics C Suppleentary Probles 1. Approxiately 5.5 x 10 6 kg of water drops 50 over Niagara Falls every second. (a) Calculate te aount of potential

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

2.3. Applying Newton s Laws of Motion. Objects in Equilibrium

2.3. Applying Newton s Laws of Motion. Objects in Equilibrium Appling Newton s Laws of Motion As ou read in Section 2.2, Newton s laws of motion describe ow objects move as a result of different forces. In tis section, ou will appl Newton s laws to objects subjected

More information

Grade: 11 International Physics Olympiad Qualifier Set: 2

Grade: 11 International Physics Olympiad Qualifier Set: 2 Grade: 11 International Pysics Olympiad Qualifier Set: 2 --------------------------------------------------------------------------------------------------------------- Max Marks: 60 Test ID: 12111 Time

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run?

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run? Outline MS11: IT Matematics Limits & Continuity & 1 Limits: Atletics Perspective Jon Carroll Scool of Matematical Sciences Dublin City University 3 Atletics Atletics Outline Is tere a limit to ow fast

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Math 34A Practice Final Solutions Fall 2007

Math 34A Practice Final Solutions Fall 2007 Mat 34A Practice Final Solutions Fall 007 Problem Find te derivatives of te following functions:. f(x) = 3x + e 3x. f(x) = x + x 3. f(x) = (x + a) 4. Is te function 3t 4t t 3 increasing or decreasing wen

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II Excursions in Computing Science: Week v Milli-micro-nano-..mat Part II T. H. Merrett McGill University, Montreal, Canada June, 5 I. Prefatory Notes. Cube root of 8. Almost every calculator as a square-root

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES M12/4/PHYSI/HPM/ENG/TZ1/XX 22126507 Pysics Higer level Paper 1 Tursday 10 May 2012 (afternoon) 1 our INSTRUCTIONS TO CANDIDATES Do not open tis examination paper until instructed to do so. Answer all te

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Pre Comp Review Questions 8 th Grade Answers

Pre Comp Review Questions 8 th Grade Answers Pre Comp Review Questions 8 th Grade Answers Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY O SASKATCHEWAN Department of Pysics and Engineering Pysics Pysics 117.3 MIDTERM EXAM Regular Sitting NAME: (Last) Please Print (Given) Time: 90 minutes STUDENT NO.: LECTURE SECTION (please ceck):

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA Te Krewe of Caesar Problem David Gurney Souteastern Louisiana University SLU 10541, 500 Western Avenue Hammond, LA 7040 June 19, 00 Krewe of Caesar 1 ABSTRACT Tis paper provides an alternative to te usual

More information

106 PHYS - CH6 - Part2

106 PHYS - CH6 - Part2 106 PHYS - CH6 - Part Conservative Forces (a) A force is conservative if work one by tat force acting on a particle moving between points is inepenent of te pat te particle takes between te two points

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart MATH 121 - Fall 08 Review Problems for te Midterm Eamination Covers [1.1, 4.3] in Stewart 1. (a) Use te definition of te derivative to find f (3) wen f() = π 1 2. (b) Find an equation of te tangent line

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): iel/uric PHYSICS DEPARTENT PHY 2053 Exam 1 October 3, 2012 Name (print, last first): Signature: On my onor, I ave neiter given nor receive unautorize ai on tis examination. YOUR TEST NUBER

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2 Pysics 121, April 1, 2008. Pysics 121. April 1, 2008. Course Information Discussion of Exam # 2 Topics to be discussed today: Requirements for Equilibrium Gravitational Equilibrium Sample problems Pysics

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pre-lab Quiz/PHYS 4 Eart s Magnetic Field Your name Lab section 1. Wat do you investigate in tis lab?. For a pair of Helmoltz coils described in tis manual and sown in Figure, r=.15 m, N=13, I =.4 A, wat

More information

Pre-Comp Review Questions- 8 th Grade

Pre-Comp Review Questions- 8 th Grade Pre-Comp Review Questions- 8 th Grade Section 1- Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s. Temperature K Fahrenheit Length

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6 A Answers Important Note about Precision of Answers: In many of te problems in tis book you are required to read information from a grap and to calculate wit tat information. You sould take reasonable

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

MATH 1020 TEST 2 VERSION A FALL 2014 ANSWER KEY. Printed Name: Section #: Instructor:

MATH 1020 TEST 2 VERSION A FALL 2014 ANSWER KEY. Printed Name: Section #: Instructor: ANSWER KEY Printed Name: Section #: Instructor: Please do not ask questions during tis eam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

PHYSICS 1050 Test 1 University of Wyoming 25 September 2008

PHYSICS 1050 Test 1 University of Wyoming 25 September 2008 Name: PHYSICS 15 Test 1 University of Wyoming 25 September 28 This test is closed-note and closed-book. No written, printed, or recorded material is permitted, with the exception of a formula sheet with

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during tis exam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide te correct

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during tis exam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide te correct

More information

Excerpt from "Calculus" 2013 AoPS Inc.

Excerpt from Calculus 2013 AoPS Inc. Excerpt from "Calculus" 03 AoPS Inc. Te term related rates refers to two quantities tat are dependent on eac oter and tat are canging over time. We can use te dependent relationsip between te quantities

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Krazy Katt, the mechanical cat

Krazy Katt, the mechanical cat Krazy Katt, te mecanical cat Te cat rigting relex is a cat's innate ability to orient itsel as it alls in order to land on its eet. Te rigting relex begins to appear at 3 4 weeks o age, and is perected

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

MATH 1020 Answer Key TEST 2 VERSION B Fall Printed Name: Section #: Instructor:

MATH 1020 Answer Key TEST 2 VERSION B Fall Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during tis exam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide te correct

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

1. AB Calculus Introduction

1. AB Calculus Introduction 1. AB Calculus Introduction Before we get into wat calculus is, ere are several eamples of wat you could do BC (before calculus) and wat you will be able to do at te end of tis course. Eample 1: On April

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

RightStart Mathematics

RightStart Mathematics Most recent update: January 7, 2019 RigtStart Matematics Corrections and Updates for Level F/Grade 5 Lessons and Workseets, second edition LESSON / WORKSHEET CHANGE DATE CORRECTION OR UPDATE Lesson 7 04/18/2018

More information

2.54 in = 1 cm in = 1 m 1 lb = 4.5 N. Boltzmann constant k B

2.54 in = 1 cm in = 1 m 1 lb = 4.5 N. Boltzmann constant k B Name: PHYSICS 1050 Final Examination University of Wyoming 3 May 2005 The exam is in two parts, each of which counts as a 100-point test. The first part concerns the material that was covered after the

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

Problem Set 4: Whither, thou turbid wave SOLUTIONS

Problem Set 4: Whither, thou turbid wave SOLUTIONS PH 253 / LeClair Spring 2013 Problem Set 4: Witer, tou turbid wave SOLUTIONS Question zero is probably were te name of te problem set came from: Witer, tou turbid wave? It is from a Longfellow poem, Te

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

Earth moves 30,000 m/s around sun

Earth moves 30,000 m/s around sun Motion in Our Daily Lives Emphasis on amusement parks, circular motion What kind of motions do we feel? Aside from vibrations, don t feel constant velocity Earth moves 30,000 m/s around sun only curves

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)

More information

Week #15 - Word Problems & Differential Equations Section 8.2

Week #15 - Word Problems & Differential Equations Section 8.2 Week #1 - Word Problems & Differential Equations Section 8. From Calculus, Single Variable by Huges-Hallett, Gleason, McCallum et. al. Copyrigt 00 by Jon Wiley & Sons, Inc. Tis material is used by permission

More information

KEY CONCEPT: THE DERIVATIVE

KEY CONCEPT: THE DERIVATIVE Capter Two KEY CONCEPT: THE DERIVATIVE We begin tis capter by investigating te problem of speed: How can we measure te speed of a moving object at a given instant in time? Or, more fundamentally, wat do

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION B Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A boy throws a rock with an initial velocity of 2.15 m/s at 30.0 above

More information