Photonic Crystals and Their Various Applications

Size: px
Start display at page:

Download "Photonic Crystals and Their Various Applications"

Transcription

1 Photonic Cystals and Thei Vaious Applications M Naci Inci Faculty of Engineeing & Natual Sciences Sabanci Univesity, Istanbul, Tukey

2 What is a Photonic Cystal? A peiodic stuctue of dielectic medium on a wavelength scale is called Photonic Cystal (PC)o Photonic Bangap Mateial (PBG) Light

3 Pefect Photonic Band Gap Mateials * Peiodic along one diection, and extends infinity along othe diections. * Peiodic along two axis, and extends infinity along the thid axis. * Peiodic along thee axes (x, y, z) and can be obtained by filling (eg. sphee, ba) a unit cell of any thee dimensional lattice and duplicating though space PERFECT INFINITY (not a slab with a finite height)

4 The idea of Photonic Cystals was fist intoduced by Yablonovitch 1 and John 2 1. E Yablonovitch, Phys Rev Lett (1987) 2. S John, Phys Rev Lett (1987)

5 The idea of a Photonic Cystal is based on dawing analogies between light and electons: Because both have a wave-like natue and can theefoe be diffacted!

6 Conside Electons and the Electonic Bandgap fist

7 The electonic bandgap of an insulato aises fom the diffactive inteaction of the electon wavefunction with the atomic lattice, esulting in destuctive intefeence at cetain wavelengths

8 What about Photons (ie, Light) and Oigin of the Photonic Bandgap?

9 Inteaction of l i g h t with m a t t e Mateial s efactive index (o dielectic constant ε) descibes the inteaction of light with matte!

10 Setting up a peiodic efactive index (like a peiodic potential of an atomic lattice) can esult in a simila `band theoy fo photons whee cetain fequencies cannot popagate In othe wods, the photonic equivalent of an insulato! Howeve,

11 Electons and photons ae not on the same wavelength scale Wavelength of Visible Light: Wavelength of Electon: 400 nm-700 nm 0.1 nm

12 To see the diffactive effects, we must make lage atificial `atoms on the same scale as the wavelength

13 Compute models fo doing the calculations fo semiconductos cannot be used fo photons! Schodinge s equation govens electons, but Maxwell s equations descibe the behavio of light. With photons, one cannot safely neglect polaization the way one can with electons

14

15 The electomagnetic popeties of the photonic cystals ae completely detemined by the solutions of the macoscopic Maxwell s equations 0 ) ( H ω (Tansvesality condition) ) ( ) ( ) ( 1 2 H c H ω ω ω ε = (Bloch-Floquet theoem) ) ( ) (, H e H k k i ω ω = Peiodicity of ε() is descibed by the Bavias lattice associated with the cystal ( ) ε is the spatially peiodic dielectic function that descibes the cystal

16 H ω ( ) = e ik H ( ), ω k k : Bloch vecto (cystal momentum) M Γ X

17 ) (, H k ω denotes the lattice peiodic pat of the Bloch function, i.e., ) ( ) (,, H R H k k ω ω = + ) ( ) (, H e H k k i ω ω = fo all lattice vectos R

18 Resticting the Bloch vecto to the fist BZ, coesponds to a back-folding of the dispesion elation in the infinitely extended k-space into the 1 st BZ by means of tanslations though ecipocal lattice vectos This intoduces a discete band index n N such that the band stuctue is descibed by the set [ ] ω k ), H n { }, k 1 st BZ, n N n ( ω, k associated with ε 1 ( ) H ω ( ) = ω c 2 H ω ( )

19 ig BZ G k G G k k e u e H st = + = 1 2 1, ) (,,, ) ( ω 1,2 0,, = = q e q ) (, k G u (tansvese unit vectos) (expansion coefficients - to be detemined...) ) ( ) (, H e H k k i ω ω = ) ( ) ( ) ( 1 2 H c H ω ω ω ε =

20 One Dimensional Photonic Cystals unit cell a z x (lattice constant) y Fo the sake of simplicity, if we assume the stuctue itself the same with its ecipocal lattice (a 2π/a), we would descibe the ieducible Billouin zone with the half of the unit cell [0, π/a] shown in the figue.

21 (ωa/2πc) fequency (wa/2πc) One Dimensional Photonic Cystal PHOTONIC BAND GAP GaAs/Ai Multilaye Film altenating layes of width 0.5a dielectic band wavevecto (ka/2π) wave (ka/2π) vecto ai band (0.5,0.25) (0.5,0.15)

22 /4n H Light /4n L

23 nh=1.52 nl=1.38

24 (squae lattice of dielectic ods, ε = 8.9 = 0.2a) a

25 Two Dimensional Photonic Cystal (ωa/2πc) (squae lattice of dielectic ods, ε = = 0.2a) TE modes TM modes TE PHOTONIC BAND GAP TM PHOTONIC BAND GAP (ka/2π) Γ X Μ Γ M Γ M X

26 2D Hexagonal lattice stuctue (ε = 13, = 0.48a )

27 2D Hexagonal (ωa/2πc) ε = 13, = 0.48a COMPLETE PHOTONIC BAND GAP 0.3 M K 0.2 TE modes TM modes Γ (ka/2π) Γ M K Γ

28 (Joannoupoulos s goup / MIT)

29 (Joannoupoulos s goup / MIT)

30 f=w/d=0.28 c/d=1.414 Face centeed tetagonal lattice symmety Complete bandgap (0.46c/a c/a) S Y Lin et al Natue (1998)

31 O Toade and S John, Science (2001)

32 What we did...

33 Woking Pinciple * A 2D PBG Stuctue fo Suface Tempeatue Mapping * Based on BB Radiation Chaacteistics of the Taget

34 Intensity I(l i,t) I(l j,t) I(l k,t) I(l,T) = [2phc 2 ]/[l 5 (e hc/lkt -1)] O(l i,t) O(l j,t) O(l k,t) I(,Τ) Ο(,Τ) = SγΙ(,Τ) l i l j l k wavelength

35 Poposed PBG Stuctue: Design Paametes * 2D Photonic Csytal Slab * Tiangula aay (ie, 2D Hexagonal)of ai holes * GaAs: Lossless aound 1.55-µm * /a = 0.3 (a = µm) * ε = 11.4 * Complete TE band-gap: (c/a) * Defect adii: 0.51a, 0.54a, 0.57a.

36 Radiation Guiding EM Modes though the waveguide Obtaining the Scaled Intensities Tapping by the coesponding point defects Obtaining tempeatue using BBRC and PC tansmission esponse

37 Relation between measued optical powe and esonant wavelengths (output adiation and BBR ae linked) d d dp d d dp T P i i i i i i v v i vi ), ( + = 2 / 2 / ), ( ), ( i i i i d T I S T P i i vi γ = γ γ d T I d T I T P T P j i j vj i vi ), ( ), ( ), ( ), ( Ratio of optical powes fo any two defects i and j [ ] [ ] j m l jl i n k ik j i m l jl jl vjl n k ik ik vik T hc T hc P P δ δ γ γ δ δ δ δ δ δ = 1) / exp( 1/ 1) / exp( / 1 Discete fomulisation fo numeical analysis } { }

38 ) ik i i / 2 + ( k 1/ 2 δi ) ( n jl j j / 2 + ( l 1/ 2 δ j 1) δ i = i } Notation { Analytical Solution n k m l δp δp vik vjl γ γ i j k l [ 1/ exp( hc / kt 1) ] [ 1/ exp( hc / T 1) ] l δ δ j i f ( T ) } lim ' f ( T) = 0 { Constant scaling factos T T Obtain tempeatue, T S = XΘ R

39 Ou Photonic Cystal Stuctue (ωa/2πc) (ε = 11.4, = 0.3a) TE Photonic Band Gap TE TE modes modes M K TM modes Γ 0 (ka/2π) Γ Μ Κ Γ

40 (A line defect is intoduced in the peiodic aay)

41 Line defect is intoduced in the peiodic aay... (ωa/2πc) (ε = 11.4, = 0.3a) TE Photonic Band Gap waveguide modes 0.10 TE modes (ka/2π)

42

43 and point defects ae intoduced (ωa/2πc) 0.25 waveguide modes TE modes (ka/2π)

44 Radiation Guiding EM Modes though the waveguide Obtaining the Scaled Intensities Tapping by the coesponding point defects Obtaining tempeatue using BBRC and PC tansmission esponse

45 Defect Size: = 0.51a waveguide egion point-defect egion localisation Suface plot fo the intensity of H y component of EM field fo the defect adius of 0.51a, coesponding to the esonant wavelength of 1.73 µm. Amplitude of the H y component of the field in a.u. fo the defect, 0.51a. The each coloed line indicates one slice passing though the isolated point defect.

46 Defect Size: = 0.54a waveguide egion point-defect egion localisation Suface plot fo the intensity of H y component of EM field fo the defect adius of 0.54a, coesponding to the esonant wavelength of µm. Amplitude of the H y component of the field in a.u. fo the defect, 0.54a. The each coloed line indicates one slice passing though the isolated point defect.

47 Defect size: = 57a waveguide egion point-defect egion localisation Suface plot fo the intensity of H y component of EM field fo the defect adius of 0.57a, coesponding to the esonant wavelength of µm. Amplitude of the H y component of the field in a.u. fo the defecct, 0.57a. The each coloed line indicates one slice passing though the isolated point defect.

48 (µm) (a) Coup. (Γ) Inp. Rad. (W/cm 2.µm) Out. Rad. (W/cm 2.µm).S Calculated input and output adiations and coupling atios, coesponding to the esonant wavelengths in the fist column, ae illustated. Second column gives the coesponding defect adii, while the thid column indicates the elative powe coupling fo these defects, which is calculated by the FDTD method, in tems of a constant Γ. In the fouth and fifth columns ae given the input adiation in BB adiation fom and output adiation, which is emitted fom the cystal stuctue, espectively. Note that the output adiation has a constant scaling facto S, which ou method fo tempeatue eading makes use of. Blue colou (last ow) indicates the fouth defect, which has a diffeent pofile than the othes.

49 SOME OTHER PC APPLICATIONS

50 Ulta-small optical integated cicuits by 3D Photonic Cystals ulta-small multiwavelength light souce ulta-small wavelength DEMUX cicuit (S Noda, Kyoto Univesity, Japan)

51 Photonic Bandgap Lases on InP Substates Ring defect PBG Lase * A small defect (ing with no holes) is intoduced in patten. * Light is tapped in the ing defect and geneates lase oscillations. * Wold s smallest lase. (Yokohama National Univesity/Baba Reseach Lab)

52 2D PBG Lase H Pak et al, APL (2001)

53 Photonic Cystal Waveguide (A Mekis,et al Phys. Rev Lett. 77 (1996)

54 High Density Multi-laye PBG Inteconnects (Univesity of Delawae)

55 Cosstalk Reduction Using Photonic Cystal Resonatos (Johnson et al, Optics Lettes, Dec 1998)

56 Tapped Delay Line Filte RF Signal Modulated on Optical Caie (MIT Lincoln Laboatoy)

57 New Ways to Guide Light J C Knight and P St Russell, Science (2002)

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Photonic Crystals: Periodic Surprises in Electromagnetism. Steven G. Johnson MIT

Photonic Crystals: Periodic Surprises in Electromagnetism. Steven G. Johnson MIT Photonic Cystals: Peiodic Supises in Electomagnetism Steven G. Johnson MIT To Begin: A Catoon in 2d k scatteing planewave E, H ~ e i( k x -wt ) k = w / c = 2p l To Begin: A Catoon in 2d k a planewave E,

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Supporting Information Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi 2 Se 3 Probed by Electron Beams

Supporting Information Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi 2 Se 3 Probed by Electron Beams Suppoting Infomation Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulato Bi 2 Se 3 Pobed by Electon Beams Nahid Talebi, Cigdem Osoy-Keskinboa, Hadj M. Benia, Klaus Ken, Chistoph T. Koch,

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Tailoring Materials and Radiation to Explore Cloaking Phenomena

Tailoring Materials and Radiation to Explore Cloaking Phenomena Tailoing Mateials and Radiation to Exploe Cloaking Phenomena Jonathan Samoajski Septembe 22, 2009 1 Intoduction Radiation-matte inteaction is vey impotant in enegy eseach, especially in the aeas of fusion

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 33: Electomagnetic Fields and Waves Fall 7 Homewok 6 Due on Oct. 5, 7 by 5: PM Reading Assignments: i) Review the lectue notes. ii) Review

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Lecture 2 Date:

Lecture 2 Date: Lectue 2 Date: 5.1.217 Definition of Some TL Paametes Examples of Tansmission Lines Tansmission Lines (contd.) Fo a lossless tansmission line the second ode diffeential equation fo phasos ae: LC 2 d I

More information

Chapter 2 Classical propagation

Chapter 2 Classical propagation Chapte Classical popagation Model: Light: electomagnetic wave Atom and molecule: classical dipole oscillato n. / / t c nz i z t z k i e e c i n k e t z Two popagation paametes: n. Popagation of light in

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

X-ray Diffraction beyond the Kinematical Approximation

X-ray Diffraction beyond the Kinematical Approximation X-ay Diffaction beyond the Kinematical Appoximation Dynamical theoy of diffaction Inteaction of wave fields X-ays neutons electons with a egula lattice atomic cystal stuctues nanomete scaled multi-layes

More information

Analysis and Optimization of a Special Type of Dielectric Loaded Resonant Cavity for Mobile Communication Filters

Analysis and Optimization of a Special Type of Dielectric Loaded Resonant Cavity for Mobile Communication Filters 328 Analysis and Optimization of a Special Type of Dielectic Loaded Resonant Cavity fo Mobile Communication Filtes Haold S. Showes, Banmali S. Rawat *, Syam S. Challa Depatment of Electical and Biomedical

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 32 Electomagnetic Waves PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified P. Lam 8_11_2008 Topics fo Chapte 32 Maxwell s equations

More information

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( ) EE-Conventional Pape-I IES-013 www.gatefoum.com Conventional Pape-I-013 1. (a) Eplain the concept of gadient. Detemine the gadient of the given field: V ρzsin φ+ z cos φ+ρ What is polaization? In a dielectic

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Analytical calculation of the power dissipated in the LHC liner. Stefano De Santis - LBNL and Andrea Mostacci - CERN

Analytical calculation of the power dissipated in the LHC liner. Stefano De Santis - LBNL and Andrea Mostacci - CERN Analytical calculation of the powe dissipated in the LHC line Stefano De Santis - LBNL and Andea Mostacci - CERN Contents What is the Modified Bethe s Diffaction Theoy? Some inteesting consequences of

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

EE-145L Properties of Materials Laboratory

EE-145L Properties of Materials Laboratory Univesity of Califonia at Santa Cuz Jack Baskin School of Engineeing EE-145L Popeties of Mateials Laboatoy Sping 2003 Holge Schmidt Developed by Ali Shakouti, based on the notes by Pof. Emily Allen, San

More information

APPLICATION OF MAC IN THE FREQUENCY DOMAIN

APPLICATION OF MAC IN THE FREQUENCY DOMAIN PPLICION OF MC IN HE FREQUENCY DOMIN D. Fotsch and D. J. Ewins Dynamics Section, Mechanical Engineeing Depatment Impeial College of Science, echnology and Medicine London SW7 2B, United Kingdom BSRC he

More information

Molecular dynamics simulation of ultrafast laser ablation of fused silica

Molecular dynamics simulation of ultrafast laser ablation of fused silica IOP Publishing Jounal of Physics: Confeence Seies 59 (27) 1 14 doi:1.188/1742-6596/59/1/22 Eighth Intenational Confeence on Lase Ablation Molecula dynamics simulation of ultafast lase ablation of fused

More information

Modeling and Calculation of Optical Amplification in One Dimensional Case of Laser Medium Using Finite Difference Time Domain Method

Modeling and Calculation of Optical Amplification in One Dimensional Case of Laser Medium Using Finite Difference Time Domain Method Jounal of Physics: Confeence Seies PAPER OPEN ACCESS Modeling and Calculation of Optical Amplification in One Dimensional Case of Lase Medium Using Finite Diffeence Time Domain Method To cite this aticle:

More information

Fresnel Diffraction. monchromatic light source

Fresnel Diffraction. monchromatic light source Fesnel Diffaction Equipment Helium-Neon lase (632.8 nm) on 2 axis tanslation stage, Concave lens (focal length 3.80 cm) mounted on slide holde, iis mounted on slide holde, m optical bench, micoscope slide

More information

Mobility of atoms and diffusion. Einstein relation.

Mobility of atoms and diffusion. Einstein relation. Mobility of atoms and diffusion. Einstein elation. In M simulation we can descibe the mobility of atoms though the mean squae displacement that can be calculated as N 1 MS ( t ( i ( t i ( 0 N The MS contains

More information

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS

COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS Pogess In Electomagnetics Reseach, PIER 73, 93 105, 2007 COMPUTATIONS OF ELECTROMAGNETIC FIELDS RADIATED FROM COMPLEX LIGHTNING CHANNELS T.-X. Song, Y.-H. Liu, and J.-M. Xiong School of Mechanical Engineeing

More information

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon Annihilation of Relativistic Positons in Single Cystal with poduction of One Photon Kalashnikov N.P.,Mazu E.A.,Olczak A.S. National Reseach Nuclea Univesity MEPhI (Moscow Engineeing Physics Institute),

More information

Plasmonics and non-local interactions from TDDFT: graphene and metal surfaces

Plasmonics and non-local interactions from TDDFT: graphene and metal surfaces Plasmonics and non-local inteactions fom TDDFT: gaphene and metal sufaces Thomas Olsen Cente fo Atomic-scale Mateials Design CAMD Depatment of Physics Technical Univesity of Denmak Outline Linea esponse

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals

Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals Vol 15 No 8, August 6 c 6 Chin. Phys. Soc. 19-1963/6/15(8)/1843-6 Chinese Physics and IOP Publishing Ltd Accuate evaluation of lowest band gaps in tenay locally esonant phononic cystals Wang Gang( ) a)b),

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Waves and Polarization in General

Waves and Polarization in General Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

c 2003, Michael Marder

c 2003, Michael Marder Expeimental Detemination of Cystal Stuctues 1 8th Januay 003 c 003, Michael Made Histoy Expeiments and theoy in 191 finally evealed locations of atoms in cystalline solids. Essential ingedients: Theoy

More information

Section 11. Timescales Radiation transport in stars

Section 11. Timescales Radiation transport in stars Section 11 Timescales 11.1 Radiation tanspot in stas Deep inside stas the adiation eld is vey close to black body. Fo a black-body distibution the photon numbe density at tempeatue T is given by n = 2

More information

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden Applied Mathematical Sciences, Vol. 7, 13, no. 7, 335-348 Mathematical Model of Magnetometic Resistivity Sounding fo a Conductive Host with a Bulge Ovebuden Teeasak Chaladgan Depatment of Mathematics Faculty

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Time: Apil, 006, -3:30pm MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Electical Engineeing and Compute Science 6.097 UG Fundamentals of Photonics 6.974 G Quantum Electonics Sping 006 Qui II Poblems

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Chapter 9. Spintransport in Semiconductors. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene 1

Chapter 9. Spintransport in Semiconductors. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene 1 Chapte 9 Spintanspot in Semiconductos : Gundlagen und Anwendung spinabhängige Tanspotphänomene 1 Winte 05/06 Why ae semiconductos of inteest in spintonics? They povide a contol of the chage as in conventional

More information

Introduction to Dielectric Properties and Magnetism

Introduction to Dielectric Properties and Magnetism Intoduction to Dielectic opeties and Magnetism At the end of the last lectue we looked at some of the electical popeties of matte and intoduces the notions of electic field and electical conductivity.

More information

Phys101 Lectures 30, 31. Wave Motion

Phys101 Lectures 30, 31. Wave Motion Phys0 Lectues 30, 3 Wave Motion Key points: Types of Waves: Tansvese and Longitudinal Mathematical Repesentation of a Taveling Wave The Pinciple of Supeposition Standing Waves; Resonance Ref: -7,8,9,0,,6,,3,6.

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

This brief note explains why the Michel-Levy colour chart for birefringence looks like this...

This brief note explains why the Michel-Levy colour chart for birefringence looks like this... This bief note explains why the Michel-Levy colou chat fo biefingence looks like this... Theoy of Levy Colou Chat fo Biefingent Mateials Between Cossed Polas Biefingence = n n, the diffeence of the efactive

More information

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas C:\Dallas\0_Couses\0_OpSci_330\0 Lectue Notes\04 HfkPopagation.doc: Page of 9 Lectue 04: HFK Popagation Physical Optics II (Optical Sciences 330) (Updated: Fiday, Apil 9, 005, 8:05 PM) W.J. Dallas The

More information

Guided and Coupled waves : an overview of optical bers and derived components for optical communications

Guided and Coupled waves : an overview of optical bers and derived components for optical communications Guided and Coupled waves : an oveview of optical bes and deived components fo optical communications Jean-Michel Jonathan eviewed in Januay 5 by Sylvie Lebun ii Contents I Electomagnetism of dielectic

More information

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES EKT 345 MICROWAVE ENGINEERING CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and close

More information

High-Impedance Surfaces with Graphene Patches as Absorbing. Electromagnetic Materials in Microwaves and Optics London, United Kingdom

High-Impedance Surfaces with Graphene Patches as Absorbing. Electromagnetic Materials in Microwaves and Optics London, United Kingdom Hih-Impedance Sufaces with Gaphene Patches as Absobin Stuctues at Micowaves A. B. Yakovlev, G. W. Hanson, and A. Mafi Thid Intenational Coness on Advanced Electomanetic Mateials in Micowaves and Optics

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials Coupled Electomagnetic and Heat Tansfe Simulations fo RF Applicato Design fo Efficient Heating of Mateials Jeni Anto 1 and Raj C Thiagaajan 2 * 1 Reseache, Anna Univesity, Chennai, 2 ATOA Scientific Technologies

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Gravitational Radiation from Oscillating Gravitational Dipole

Gravitational Radiation from Oscillating Gravitational Dipole Gavitational Radiation fom Oscillating Gavitational Dipole Fan De Aquino Maanhao State Univesity, Physics Depatment, S.Luis/MA, Bazil. deaquino@uema.b Abstact. The concept of Gavitational Dipole is intoduced

More information

Simple model of skeletal matter composed of magnetized electrically conducting thin rods

Simple model of skeletal matter composed of magnetized electrically conducting thin rods Simple model of skeletal matte composed of magnetized electically conducting thin ods A.B. Kukushkin, K.V. Cheepanov NFI RRC Kuchatov Institute, Moscow, 1318, Russia A simple electodynamic model fo descibing

More information

5.111 Lecture Summary #6 Monday, September 15, 2014

5.111 Lecture Summary #6 Monday, September 15, 2014 5.111 Lectue Summay #6 Monday, Septembe 15, 014 Readings fo today: Section 1.9 Atomic Obitals. Section 1.10 Electon Spin, Section 1.11 The Electonic Stuctue of Hydogen. (Same sections in 4 th ed.) Read

More information

Introduction: Vectors and Integrals

Introduction: Vectors and Integrals Intoduction: Vectos and Integals Vectos a Vectos ae chaacteized by two paametes: length (magnitude) diection a These vectos ae the same Sum of the vectos: a b a a b b a b a b a Vectos Sum of the vectos:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Sample pepaations Fe 0.5 Co 0.5 Si single cystal was gown by the floating zone technique. The phase puity and cation concentations wee checked by powde X-ay diffaction and Enegy Dispesive X-ay spectoscopy

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70 SAMPL PAPR I Time Allowed : 3 hous Maximum Maks : 70 Note : Attempt All questions. Maks allotted to each question ae indicated against it. 1. The magnetic field lines fom closed cuves. Why? 1 2. What is

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1)

The condition for maximum intensity by the transmitted light in a plane parallel air film is. For an air film, μ = 1. (2-1) hapte Two Faby--Peot ntefeomete A Faby-Peot intefeomete consists of two plane paallel glass plates A and B, sepaated by a distance d. The inne sufaces of these plates ae optically plane and thinly silveed

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y Detemining n and μ: The Hall Effect V x, E x + + + + + + + + + + + --------- E y I, J x F = qe + qv B F y = ev D B z F y = ee y B z In steady state, E Y = v D B Z = E H, the Hall Field Since v D =-J x

More information

CHAPTER IV RADIATION BY SIMPLE ACOUSTIC SOURCE. or by vibratory forces acting directly on the fluid, or by the violent motion of the fluid itself.

CHAPTER IV RADIATION BY SIMPLE ACOUSTIC SOURCE. or by vibratory forces acting directly on the fluid, or by the violent motion of the fluid itself. CHAPTER IV RADIATION BY SIMPLE ACOUSTIC SOURCE 4.1 POINT SOURCE Sound waves ae geneated by the vibation of any solid body in contact with the fluid medium o by vibatoy foces acting diectly on the fluid,

More information

ACOUSTIC EXCITATION OF MECHATRONIC SYSTEMS

ACOUSTIC EXCITATION OF MECHATRONIC SYSTEMS Twelfth Intenational Congess on Sound and Vibation ACOUSTIC EXCITATION OF MECHATRONIC SYSTEMS N.B. Roozen, B.T. Vehaa and R.M.G. Rijs Royal Philips Electonics, Philips Applied Technologies, P.O. Box 18,

More information

Sensor and Simulation Notes. Note 525. Oct Lens Design for a Prolate-Spheroidal Impulse radiating Antenna (IRA)

Sensor and Simulation Notes. Note 525. Oct Lens Design for a Prolate-Spheroidal Impulse radiating Antenna (IRA) Senso and Simulation Notes Note 55 Oct 7 Lens Design fo a Polate-Spheoidal Impulse adiating Antenna (IRA) Sehat Altunc, Cal E. Baum, Chistos G. Chistodoulou and Edl Schamiloglu Univesity of New Mexico

More information

1.1 THE ELECTRIC CHARGE

1.1 THE ELECTRIC CHARGE 1.1 THE ELECTRIC CHARGE - In a dy day, one obseves "light spaks" when a wool pull is taken out o when the finges touch a metallic object. Aound the yea 1600, one classified these effects as electic phenomena.

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005 Fields and Waves I Sping 005 Homewok 8 Tansmission Lines Due: 3 May 005. Multiple Choice (6) a) The SWR (standing wave atio): a) is a measue of the match between the souce impedance and line impedance

More information

V 16: X-ray Diffraction

V 16: X-ray Diffraction Matin-Luthe-Univesity Halle-Wittenbeg Institute of Physics Advanced Pactical Lab Couse V 16: X-ay Diffaction 1) Recod the chaacteistic of an x-ay counte filled with agon and halogen as a function of the

More information

Mathematical Analysis and Numerical Simulation of High Frequency Electromagnetic Field in Soft Contact Continuous Casting Mold

Mathematical Analysis and Numerical Simulation of High Frequency Electromagnetic Field in Soft Contact Continuous Casting Mold , pp. 974 981 Mathematical Analysis and Numeical Simulation of High Fequency Electomagnetic Field in Soft Contact Continuous Casting Mold Xianzhao NA, Xingzhong ZHANG and Yong GAN National Engineeing &

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

Search for a Critical Electron Temperature Gradient in DIII-D L-mode Discharges

Search for a Critical Electron Temperature Gradient in DIII-D L-mode Discharges Seach fo a Citical Electon Tempeatue Gadient in DIII-D L-mode Dischages.C. Deoo, S. Ciant 1, T.C. Luce, A. Manini, C.C. Petty, F. Ryte, M.E. Austin 3, D.R. ake, K.W. Gentle 3, C.M. Geenfield,.E. Kinsey

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma Reseach & Reviews: Jounal of Pue and Applied Physics Field emission of Electons fom Negatively Chaged Cylindical Paticles with Nonlinea Sceening in a Dusty Plasma Gyan Pakash* Amity School of Engineeing

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Study Rev. Adv. on -D Mate. shock Sci. wave 33 (13) pessue 111-118 model in mico scale lase shock peening 111 STUDY ON -D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING Y.J. Fan 1, J.Z. Zhou,

More information

Precessing Ball Solitons as Self-Organizing Systems during a Phase Transition in a Ferromagnet

Precessing Ball Solitons as Self-Organizing Systems during a Phase Transition in a Ferromagnet Applied Mathematics,, 4, 78-8 http://dxdoiog/46/am4a Published Online Octobe (http://wwwscipog/jounal/am) Pecessing Ball Solitons as Self-Oganiing Systems duing a Phase Tansition in a Feomagnet V V Niet

More information

The nature of electromagnetic radiation.

The nature of electromagnetic radiation. Lectue 3 The natue of electomagnetic adiation. Objectives: 1. Basic intoduction to the electomagnetic field: Definitions Dual natue of electomagnetic adiation lectomagnetic spectum. Main adiometic quantities:

More information

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis ect_patch_cavit.doc Page 1 of 1 Micostip Antennas- Rectangula Patch Chapte 14 in Antenna Theo, Analsis and Design (4th dition) b Balanis Cavit model Micostip antennas esemble dielectic-loaded cavities

More information

The second law of thermodynamics - II.

The second law of thermodynamics - II. Januay 21, 2013 The second law of themodynamics - II. Asaf Pe e 1 1. The Schottky defect At absolute zeo tempeatue, the atoms of a solid ae odeed completely egulaly on a cystal lattice. As the tempeatue

More information

Designing a Sine-Coil for Measurement of Plasma Displacements in IR-T1 Tokamak

Designing a Sine-Coil for Measurement of Plasma Displacements in IR-T1 Tokamak Designing a Sine-Coil fo Measuement of Plasma Displacements in IR-T Tokamak Pejman Khoshid, M. Razavi, M. Ghoanneviss, M. Molaii, A. TalebiTahe, R. Avin, S. Mohammadi and A. NikMohammadi Dept. of Physics,

More information

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES EKT 356 MICROWAVE COMMUNICATIONS CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and

More information

Ultrafast effects in 3D Metamaterials

Ultrafast effects in 3D Metamaterials Ultafast effects in 3D Metamateials Nkoni Katte,2 and Philip G.Evans 3 Electical Engineeing Wilbefoce Univesity, 2 Sensos Laboatoy Wight State Univesity and 3 Oak idge National Laboatoy *Coesponding autho:

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

Review Notes on Maxwell's Equations

Review Notes on Maxwell's Equations ELEC344 Micowave Engineeing, Sping 2002 Handout #1 Kevin Chen Review Notes on Maxwell's Equations Review of Vecto Poducts and the Opeato The del, gad o nabla opeato is a vecto, and can be pat of a scala

More information

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10 Class XII - Physics Wave Optics Chapte-wise Poblems Answes Chapte (c) (a) 3 (a) 4 (c) 5 (d) 6 (a), (b), (d) 7 (b), (d) 8 (a), (b) 9 (a), (b) Yes Spheical Spheical with huge adius as compaed to the eath

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

ScholarlyCommons. University of Pennsylvania. Andrea Alù University of Pennsylvania. Nader Engheta University of Pennsylvania,

ScholarlyCommons. University of Pennsylvania. Andrea Alù University of Pennsylvania. Nader Engheta University of Pennsylvania, Univesity of Pennsylvania ScholalyCommons Depatmental Papes (ESE) Depatment of Electical & Systems Engineeing May 2005 Polaizabilities and effective paametes fo collections of spheical nanopaticles fomed

More information

Inverse Square Law and Polarization

Inverse Square Law and Polarization Invese Squae Law and Polaization Objectives: To show that light intensity is invesely popotional to the squae of the distance fom a point light souce and to show that the intensity of the light tansmitted

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information