On the Sensitivity Conjecture for Disjunctive Normal Forms. Karthik C. S. (Weizmann Institute of Science)

Size: px
Start display at page:

Download "On the Sensitivity Conjecture for Disjunctive Normal Forms. Karthik C. S. (Weizmann Institute of Science)"

Transcription

1 On the Sensitivity Conjecture for Disjunctive Normal Forms Karthik C. S. (Weizmann Institute of Science) Joint work with Sébastien Tavenas (Université de Savoie-Mont-Blanc).

2 Boolean Function f : {0, 1} n {0, 1} 1

3 Boolean Function f : {0, 1} n {0, 1} n =

4 Boolean Function f : {0, 1} n {0, 1} x = n x = n 1 x = (n/2) + 1 x = n/2 x = (n/2) 1 x = 1 x = 0 1

5 Sensitivity s(f, x) = s(f ) = n f (x) f (x e i ) i=1 max s(f, x) x {0,1} n 2

6 Sensitivity s(f, x) = s(f ) = n f (x) f (x e i ) i=1 max s(f, x) x {0,1} n x = 3 f (x) = x mod 2 x = 2 x = 1 x =

7 Sensitivity s(f, x) = s(f ) = n f (x) f (x e i ) i=1 max s(f, x) x {0,1} n x = 3 f (x) = x mod 2 s(f ) = n x = 2 x = 1 x =

8 Sensitivity s(f, x) = s(f ) = n f (x) f (x e i ) i=1 max s(f, x) x {0,1} n 2

9 Sensitivity s(f, x) = s(f ) = n f (x) f (x e i ) i=1 max s(f, x) x {0,1} n f (x) = n i=1 x i x = 3 x = 2 x = 1 x =

10 Sensitivity s(f, x) = s(f ) = n f (x) f (x e i ) i=1 max s(f, x) x {0,1} n f (x) = n i=1 s(f ) = n x i x = 3 x = 2 x = 1 x =

11 Block Sensitivity bs(f, x, B = {B 1,..., B k }) = bs(f ) = max x {0,1} n max B k f (x) f (x e Bi ) i=1 bs(f, x, B) 3

12 Block Sensitivity bs(f, x, B = {B 1,..., B k }) = bs(f ) = max x {0,1} n max B k f (x) f (x e Bi ) i=1 bs(f, x, B) x = 3 f (x) = x mod 2 x = 2 x = 1 x =

13 Block Sensitivity bs(f, x, B = {B 1,..., B k }) = bs(f ) = max x {0,1} n max B k f (x) f (x e Bi ) i=1 bs(f, x, B) x = 3 f (x) = x mod 2 bs(f ) = n x = 2 x = 1 x =

14 Block Sensitivity bs(f, x, B = {B 1,..., B k }) = bs(f ) = max x {0,1} n max B k f (x) f (x e Bi ) i=1 bs(f, x, B) 3

15 Block Sensitivity bs(f, x, B = {B 1,..., B k }) = bs(f ) = max x {0,1} n max B k f (x) f (x e Bi ) i=1 bs(f, x, B) x = 3 f (x) = n i=1 x i x = 2 x = 1 x =

16 Block Sensitivity bs(f, x, B = {B 1,..., B k }) = bs(f ) = max x {0,1} n max B k f (x) f (x e Bi ) i=1 bs(f, x, B) x = 3 f (x) = n i=1 bs(f ) = n x i x = 2 x = 1 x =

17 Block Sensitivity bs(f, x, B = {B 1,..., B k }) = bs(f ) = max x {0,1} n max B k f (x) f (x e Bi ) i=1 bs(f, x, B) bs(f ) s(f ) 3

18 Sensitivity Conjecture: Statement Conjecture (Nisan and Szegedy, 1994) There exist constants c and δ such that for all Boolean functions we have: bs c s δ. 4

19 Sensitivity Conjecture: Equivalent forms Theorem The following statements are equivalent: 1. bs poly(s). 2. deg, C, DT poly(s). 3. There exist constants c and δ such that for every induced subgraph G of Q n with V (G) 2 n 1 we have: max{ (G), (Q n G)} c n δ. 5

20 Sensitivity Conjecture: Progress Simon 83 Kenyon & Kutin 04 bs 4 s s ( ) e bs 2π e s s Ambainis et. al 14 bs 2 s 1 s (s 1) Ambainis, Prusis, & Vihrovs 16 bs 2 ( ) s 1 s 1 3 He, Li, & Sun 16 bs ( o(1)) 2 s 1 s 6

21 Sensitivity Conjecture: Known Separation Rubinstein 95 bs = 1 2 s2 Virza 11 Ambainis & Sun 11 bs = 1 2 s s bs = 2 3 s2 1 3 s 7

22 Sensitivity Conjecture: Special Cases Turán 84 Graph Property and Symmetric functions Nisan 91 Chakraborty 09 Gao, Mao, Sun, & Zuo 12 Bafna, Lokam, Tavenas, & Velingker 16 Monotone functions Min-term Transitive Bipartite Graph Property Constant depth Regular Read-k Formulas 8

23 Block Property Wlog we assume bs(f ) = bs(f, 0 n ) and f (0 n ) = 0. 9

24 Block Property Wlog we assume bs(f ) = bs(f, 0 n ) and f (0 n ) = 0. A 1 A 1 A i A i A d A d Block Property: f is said to admit block property if i, j [d ], i j, we have A i A j =. 9

25 Block Property Wlog we assume bs(f ) = bs(f, 0 n ) and f (0 n ) = 0. A 1 A 1 A i A i A d A d Block Property: f is said to admit block property if i, j [d ], i j, we have A i A j =. Motivation: Captures best known separation examples. 9

26 Our Results Theorem For every Boolean function f admitting the Block Property we have: bs(f ) 4s(f ) 2. 10

27 Our Results Theorem For every Boolean function f admitting the Block Property we have: bs(f ) = d. s(f ) d /2. s(f ) d /2d. 11

28 Block structure: bs(f ) = d A 1 A 1 A i A i A d A d Note that A i s are pairwise disjoint. This implies bs(f, 0 n, A = {A 1,..., A d, A d +1}) d. 12

29 Block structure: bs(f ) = d A 1 A 1 A i A i A d A d Note that A i s are pairwise disjoint. This implies bs(f, 0 n, A = {A 1,..., A d, A d +1}) d. bs(f ) d follows from disjointness of blocks and assumption on bs(f, 0 n ). 12

30 Local argument: s(f ) d /2 Fix i = argmax i d i. Let x = e Ai. x x = A i 13

31 Local argument: s(f ) d /2 Fix i = argmax i d i. Let x = e Ai. x x = A i x = A i 1 13

32 Local argument: s(f ) d /2 Fix i = argmax i d i. Let x = e Ai. x = A i + 1 x x = A i x = A i 1 13

33 Local argument: s(f ) d /2 Fix i = argmax i d i. Let x = e Ai. x = A i + 1 x x = A i x = A i 1 13

34 Global argument: s(f ) d /2d Consider the following graph G: V (G): AND gates. ( i, j ) E(G) iff A i A j or A i A j. 14

35 Global argument: s(f ) d /2d Consider the following graph G: V (G): AND gates. ( i, j ) E(G) iff A i A j or A i A j. Claim: G has an independent set E of size d /2d. 14

36 Global argument: s(f ) d /2d Consider the following graph G: V (G): AND gates. ( i, j ) E(G) iff A i A j or A i A j. Claim: G has an independent set E of size d /2d. Let A i A i obtained by removing one element of A i. Consider input x, x = e A i E i. 14

37 Global argument: s(f ) d /2d Consider the following graph G: V (G): AND gates. ( i, j ) E(G) iff A i A j or A i A j. Claim: G has an independent set E of size d /2d. Let A i A i obtained by removing one element of A i. Consider input x, x = e A i E i. We have, s(f, x) d /2d. 14

38 Our Results Theorem For every Boolean function f admitting the Block Property we have: bs(f ) 4s(f ) 2. 15

39 t Block Property A Boolean function is said to admit the t-block property if x X, we have: {A i x A i } t. 16

40 t Block Property A Boolean function is said to admit the t-block property if x X, we have: {A i x A i } t. Theorem Let f be a Boolean function admitting the t-block property, with t d, for some ε > 0. Then, we have the following: d 1+ε bs(f ) t (3s(f )) 1+ 1 ε. 16

41 A Computational Question Sensitivity Problem (S): Given a circuit C : {0, 1} n {0, 1}, x {0, 1} n, and blocks B 1,..., B k, the sensitivity problem is to find y {0, 1} n such that: s(c, y) bs(c, x, B 1,..., B k )/c. 17

42 A Computational Question Sensitivity Problem (S): Given a circuit C : {0, 1} n {0, 1}, x {0, 1} n, and blocks B 1,..., B k, the sensitivity problem is to find y {0, 1} n such that: s(c, y) bs(c, x, B 1,..., B k )/c. S is in Search-NP. 17

43 A Computational Question Sensitivity Problem (S): Given a circuit C : {0, 1} n {0, 1}, x {0, 1} n, and blocks B 1,..., B k, the sensitivity problem is to find y {0, 1} n such that: s(c, y) bs(c, x, B 1,..., B k )/c. S is in Search-NP. If (strong) Sensitivity conjecture is true then S is in TFNP. 17

44 A Computational Question Sensitivity Problem (S): Given a circuit C : {0, 1} n {0, 1}, x {0, 1} n, and blocks B 1,..., B k, the sensitivity problem is to find y {0, 1} n such that: s(c, y) bs(c, x, B 1,..., B k )/c. S is in Search-NP. If (strong) Sensitivity conjecture is true then S is in TFNP. Is S in P? 17

45 End of the Talk Thank you! 18

A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity

A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity Electronic Colloquium on Computational Complexity, Report No. 27 (2014) A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity Krišjānis Prūsis and Andris Ambainis

More information

Enumeration of Boolean Functions of Sensitivity Three and Inheritance of Nondegeneracy

Enumeration of Boolean Functions of Sensitivity Three and Inheritance of Nondegeneracy Enumeration of Boolean Functions of Sensitivity Three and Inheritance of Nondegeneracy Kazuyuki Amano Department of Computer Science, Gunma University 1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan October

More information

arxiv: v1 [cs.cc] 31 May 2014

arxiv: v1 [cs.cc] 31 May 2014 Size of Sets with Small Sensitivity: a Generalization of Simon s Lemma Andris Ambainis and Jevgēnijs Vihrovs arxiv:1406.0073v1 [cs.cc] 31 May 2014 Faculty of Computing, University of Latvia, Raiņa bulv.

More information

ON SENSITIVITY OF k-uniform HYPERGRAPH PROPERTIES

ON SENSITIVITY OF k-uniform HYPERGRAPH PROPERTIES ON SENSITIVITY OF k-uniform HYPERGRAPH PROPERTIES JOSHUA BIDERMAN, KEVIN CUDDY, ANG LI, MIN JAE SONG Abstract. In this paper we present a graph property with sensitivity Θ( n), where n = ( v 2) is the

More information

On the Sensitivity of Cyclically-Invariant Boolean Functions

On the Sensitivity of Cyclically-Invariant Boolean Functions On the Sensitivity of Cyclically-Invariant Boolean Functions Sourav Charaborty University of Chicago sourav@csuchicagoedu Abstract In this paper we construct a cyclically invariant Boolean function whose

More information

Sensitivity, Block Sensitivity and Certificate Complexity of Boolean Functions (Master s Thesis)

Sensitivity, Block Sensitivity and Certificate Complexity of Boolean Functions (Master s Thesis) Sensitivity, Block Sensitivity and Certificate Complexity of Boolean Functions (Master s Thesis) Sourav Chakraborty Thesis Advisor: László Babai February, 2005 Abstract We discuss several complexity measures

More information

On the Sensitivity of Cyclically-Invariant Boolean Functions

On the Sensitivity of Cyclically-Invariant Boolean Functions On the Sensitivity of Cyclically-Invariant Boolean Functions arxiv:cs/0501026v1 [cs.cc] 13 Jan 2005 Sourav Chakraborty University of Chicago sourav@cs.uchicago.edu 05-10-2004 Abstract In this paper we

More information

Nowhere zero flow. Definition: A flow on a graph G = (V, E) is a pair (D, f) such that. 1. D is an orientation of G. 2. f is a function on E.

Nowhere zero flow. Definition: A flow on a graph G = (V, E) is a pair (D, f) such that. 1. D is an orientation of G. 2. f is a function on E. Nowhere zero flow Definition: A flow on a graph G = (V, E) is a pair (D, f) such that 1. D is an orientation of G. 2. f is a function on E. 3. u N + D (v) f(uv) = w ND f(vw) for every (v) v V. Example:

More information

Approximate Counting CSPs Hunt for Galois Connection

Approximate Counting CSPs Hunt for Galois Connection Approximate Counting CSPs Hunt for Galois Connection Andrei A. Bulatov Simon Fraser University La Trobe University 203 2/36 Constraint Satisfaction Problem Decision: Given a conjunctive formula R decide

More information

Some Depth Two (and Three) Threshold Circuit Lower Bounds. Ryan Williams Stanford Joint work with Daniel Kane (UCSD)

Some Depth Two (and Three) Threshold Circuit Lower Bounds. Ryan Williams Stanford Joint work with Daniel Kane (UCSD) Some Depth Two (and Three) Threshold Circuit Lower Bounds Ryan Williams Stanford Joint wor with Daniel Kane (UCSD) Introduction Def. f n : 0,1 n 0,1 is a linear threshold function (LTF) if there are w

More information

Introduction. 1 Partially supported by a grant from The John Templeton Foundation

Introduction. 1 Partially supported by a grant from The John Templeton Foundation Nisan-Wigderson generators in proof systems with forms of interpolation Ján Pich 1 Faculty of Mathematics and Physics Charles University in Prague March, 2010 We prove that the Nisan-Wigderson generators

More information

Min-Rank Conjecture for Log-Depth Circuits

Min-Rank Conjecture for Log-Depth Circuits Min-Rank Conjecture for Log-Depth Circuits Stasys Jukna a,,1, Georg Schnitger b,1 a Institute of Mathematics and Computer Science, Akademijos 4, LT-80663 Vilnius, Lithuania b University of Frankfurt, Institut

More information

The Complexity of Approximating Small Degree Boolean #CSP

The Complexity of Approximating Small Degree Boolean #CSP The Complexity of Approximating Small Degree Boolean #CSP Pinyan Lu, ITCS@SUFE Institute for Theoretical Computer Science Shanghai University of Finance and Economics Counting CSP F (Γ) is a family of

More information

A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits

A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits Ran Raz Amir Shpilka Amir Yehudayoff Abstract We construct an explicit polynomial f(x 1,..., x n ), with coefficients in {0,

More information

Block Sensitivity of Minterm-Transitive Functions

Block Sensitivity of Minterm-Transitive Functions Block Sensitivity of Minterm-Transitive Functions Andrew Drucker Abstract Boolean functions with a high degree of symmetry are interesting from a complexity theory perspective: extensive research has shown

More information

NP and NP-Completeness

NP and NP-Completeness 0/2/206 Algorithms NP-Completeness 7- Algorithms NP-Completeness 7-2 Efficient Certification NP and NP-Completeness By a solution of a decision problem X we understand a certificate witnessing that an

More information

Boolean Algebra. Philipp Koehn. 9 September 2016

Boolean Algebra. Philipp Koehn. 9 September 2016 Boolean Algebra Philipp Koehn 9 September 2016 Core Boolean Operators 1 AND OR NOT A B A and B 0 0 0 0 1 0 1 0 0 1 1 1 A B A or B 0 0 0 0 1 1 1 0 1 1 1 1 A not A 0 1 1 0 AND OR NOT 2 Boolean algebra Boolean

More information

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings Matchings A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex. M-saturated M={ } M-unsaturated Perfect Matching 1 M-alternating path M not M M not M M

More information

Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows

Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows Uli Wagner ETH Zürich Flows Definition Let G = (V, E) be a multigraph (allow loops and parallel edges). An (integer-valued) flow on G (also called

More information

A note on balanced bipartitions

A note on balanced bipartitions A note on balanced bipartitions Baogang Xu a,, Juan Yan a,b a School of Mathematics and Computer Science Nanjing Normal University, 1 Ninghai Road, Nanjing, 10097, China b College of Mathematics and System

More information

Graph coloring, perfect graphs

Graph coloring, perfect graphs Lecture 5 (05.04.2013) Graph coloring, perfect graphs Scribe: Tomasz Kociumaka Lecturer: Marcin Pilipczuk 1 Introduction to graph coloring Definition 1. Let G be a simple undirected graph and k a positive

More information

Polynomial Identity Testing

Polynomial Identity Testing Polynomial Identity Testing Amir Shpilka Technion and MSR NE Based on joint works with: Zeev Dvir, Zohar Karnin, Partha Mukhopadhyay, Ran Raz, Ilya Volkovich and Amir Yehudayoff 1 PIT Survey Oberwolfach

More information

Closed Sets of Functions and Closed Sets of Relations. Matthew Cook

Closed Sets of Functions and Closed Sets of Relations. Matthew Cook Closed Sets of Functions and Closed Sets of Relations Matthew Cook The goal of this talk: To explain (with proof) the Galois connection between closed sets of functions and closed sets of relations. About

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Formula Size John E. Savage Brown University March 5, 2008 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity March 5, 2008 1 / 13

More information

DISPROVING THE SINGLE LEVEL CONJECTURE

DISPROVING THE SINGLE LEVEL CONJECTURE DISPROVING THE SINGLE LEVEL CONJECTURE STASYS JUKNA Abstract. We consider the size of monotone circuits for quadratic boolean functions, that is, disjunctions of length-2 monomials. Our motivation is that

More information

arxiv: v4 [cs.cc] 14 Mar 2013

arxiv: v4 [cs.cc] 14 Mar 2013 On Unique Games with Negative Weights Peng Cui 1 arxiv:1102.5605v4 [cs.cc] 14 Mar 2013 Key Laboratory of Data Engineering and Knowledge Engineering, MOE, School of Information Resource Management, Renmin

More information

Graphs and Circuits: Some Further Remarks

Graphs and Circuits: Some Further Remarks Graphs and Circuits: Some Further Remarks S. Jukna Institute of Mathematics Akademijos 4 LT-08663 Vilnius, Lithuania Abstract We consider the power of single level circuits in the context of graph complexity.

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

Good representations via complete clause-learning

Good representations via complete clause-learning Good representations via complete clause-learning Oliver Kullmann Swansea University, United Kingdom http://cs.swan.ac.uk/~csoliver Rome, September 27, 2012, Limits of Theorem Proving O Kullmann (Swansea

More information

Undecidability of Linear Inequalities Between Graph Homomorphism Densities

Undecidability of Linear Inequalities Between Graph Homomorphism Densities Undecidability of Linear Inequalities Between Graph Homomorphism Densities Hamed Hatami joint work with Sergey Norin School of Computer Science McGill University December 4, 2013 Hamed Hatami (McGill University)

More information

NP-Complete problems

NP-Complete problems NP-Complete problems NP-complete problems (NPC): A subset of NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NP-complete languages

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 20 February 23, 2018 February 23, 2018 CS21 Lecture 20 1 Outline the complexity class NP NP-complete probelems: Subset Sum NP-complete problems: NAE-3-SAT, max

More information

Majority is incompressible by AC 0 [p] circuits

Majority is incompressible by AC 0 [p] circuits Majority is incompressible by AC 0 [p] circuits Igor Carboni Oliveira Columbia University Joint work with Rahul Santhanam (Univ. Edinburgh) 1 Part 1 Background, Examples, and Motivation 2 Basic Definitions

More information

Challenge to L is not P Hypothesis by Analysing BP Lower Bounds

Challenge to L is not P Hypothesis by Analysing BP Lower Bounds Challenge to L is not P Hypothesis by Analysing BP Lower Bounds Atsuki Nagao (The University of Electro-Communications) Joint work with Kazuo Iwama (Kyoto University) Self Introduction -2010 : Under graduate

More information

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 We now embark on a study of computational classes that are more general than NP. As these classes

More information

The quantum query complexity of read-many formulas

The quantum query complexity of read-many formulas The quantum query complexity of read-many formulas Andrew Childs Waterloo Shelby Kimmel MIT Robin Kothari Waterloo Boolean formulas ^ x 1 x 2 _ x 3 ^ x 1 x 3 A formula is read-once if every input appears

More information

The Complexity of the Comparator Circuit Value Problem

The Complexity of the Comparator Circuit Value Problem The Complexity of the Comparator Circuit Value Problem Stephen Cook Joint work with Yuval Filmus and Dai Tri Man Lê Department of Computer Science University of Toronto Canada Banff 2013 1 / 28 Outline

More information

The Ising Partition Function: Zeros and Deterministic Approximation

The Ising Partition Function: Zeros and Deterministic Approximation The Ising Partition Function: Zeros and Deterministic Approximation Jingcheng Liu Alistair Sinclair Piyush Srivastava University of California, Berkeley Summer 2017 Jingcheng Liu (UC Berkeley) The Ising

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 6: Computational Complexity of Learning Proper vs Improper Learning Efficient PAC Learning Definition: A family H n of

More information

Colouring powers of graphs with one cycle length forbidden

Colouring powers of graphs with one cycle length forbidden Colouring powers of graphs with one cycle length forbidden Ross J. Kang Radboud University Nijmegen CWI Networks & Optimization seminar 1/2017 Joint work with François Pirot. Example 1: ad hoc frequency

More information

COS597D: Information Theory in Computer Science October 5, Lecture 6

COS597D: Information Theory in Computer Science October 5, Lecture 6 COS597D: Information Theory in Computer Science October 5, 2011 Lecture 6 Lecturer: Mark Braverman Scribe: Yonatan Naamad 1 A lower bound for perfect hash families. In the previous lecture, we saw that

More information

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms (a) Let G(V, E) be an undirected unweighted graph. Let C V be a vertex cover of G. Argue that V \ C is an independent set of G. (b) Minimum cardinality vertex

More information

Perfect numbers among polynomial values

Perfect numbers among polynomial values Perfect numbers among polynomial values Oleksiy Klurman Université de Montréal June 8, 2015 Outline Classical results Radical of perfect number and the ABC-conjecture Idea of the proof Let σ(n) = d n d.

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

Advanced Combinatorial Optimization September 24, Lecture 5

Advanced Combinatorial Optimization September 24, Lecture 5 18.438 Advanced Combinatorial Optimization September 24, 2009 Lecturer: Michel X. Goemans Lecture 5 Scribe: Yehua Wei In this lecture, we establish the connection between nowhere-zero (nwz) k-flow and

More information

Efficient Approximation for Restricted Biclique Cover Problems

Efficient Approximation for Restricted Biclique Cover Problems algorithms Article Efficient Approximation for Restricted Biclique Cover Problems Alessandro Epasto 1, *, and Eli Upfal 2 ID 1 Google Research, New York, NY 10011, USA 2 Department of Computer Science,

More information

Quantum Query Complexity of Boolean Functions with Small On-Sets

Quantum Query Complexity of Boolean Functions with Small On-Sets Quantum Query Complexity of Boolean Functions with Small On-Sets Seiichiro Tani TT/JST ERATO-SORST. Joint work with Andris Ambainis Univ. of Latvia Kazuo Iwama Kyoto Univ. Masaki akanishi AIST. Harumichi

More information

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM)

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM) IP = PSPACE Shamir s Theorem Johannes Mittmann Technische Universität München (TUM) 4 th Joint Advanced Student School (JASS) St. Petersburg, April 2 12, 2006 Course 1: Proofs and Computers Johannes Mittmann

More information

Non-Approximability Results (2 nd part) 1/19

Non-Approximability Results (2 nd part) 1/19 Non-Approximability Results (2 nd part) 1/19 Summary - The PCP theorem - Application: Non-approximability of MAXIMUM 3-SAT 2/19 Non deterministic TM - A TM where it is possible to associate more than one

More information

Circuits. Lecture 11 Uniform Circuit Complexity

Circuits. Lecture 11 Uniform Circuit Complexity Circuits Lecture 11 Uniform Circuit Complexity 1 Recall 2 Recall Non-uniform complexity 2 Recall Non-uniform complexity P/1 Decidable 2 Recall Non-uniform complexity P/1 Decidable NP P/log NP = P 2 Recall

More information

Packing nearly optimal Ramsey R(3, t) graphs

Packing nearly optimal Ramsey R(3, t) graphs Packing nearly optimal Ramsey R(3, t) graphs He Guo Georgia Institute of Technology Joint work with Lutz Warnke Context of this talk Ramsey number R(s, t) R(s, t) := minimum n N such that every red/blue

More information

The minimum G c cut problem

The minimum G c cut problem The minimum G c cut problem Abstract In this paper we define and study the G c -cut problem. Given a complete undirected graph G = (V ; E) with V = n, edge weighted by w(v i, v j ) 0 and an undirected

More information

arxiv: v2 [math.co] 26 Jan 2017

arxiv: v2 [math.co] 26 Jan 2017 A better bound on the largest induced forests in triangle-free planar graphs Hung Le arxiv:1611.04546v2 [math.co] 26 Jan 2017 Oregon State University Abstract It is well-known that there eists a triangle-free

More information

CS Foundations of Communication Complexity

CS Foundations of Communication Complexity CS 49 - Foundations of Communication Complexity Lecturer: Toniann Pitassi 1 The Discrepancy Method Cont d In the previous lecture we ve outlined the discrepancy method, which is a method for getting lower

More information

The Complexity and Proof Complexity of the Comparator Circuit Value Problem

The Complexity and Proof Complexity of the Comparator Circuit Value Problem The Complexity and Proof Complexity of the Comparator Circuit Value Problem Stephen Cook Joint work with Yuval Filmus, Dai Tri Man Lê, and Yuli Ye Department of Computer Science University of Toronto Canada

More information

Tiling on multipartite graphs

Tiling on multipartite graphs Tiling on multipartite graphs Ryan Martin Mathematics Department Iowa State University rymartin@iastate.edu SIAM Minisymposium on Graph Theory Joint Mathematics Meetings San Francisco, CA Ryan Martin (Iowa

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition.

Lecture #14: NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. Lecture #14: 0.0.1 NP-Completeness (Chapter 34 Old Edition Chapter 36) Discussion here is from the old edition. 0.0.2 Preliminaries: Definition 1 n abstract problem Q is a binary relations on a set I of

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Packing nearly optimal Ramsey R(3, t) graphs

Packing nearly optimal Ramsey R(3, t) graphs Packing nearly optimal Ramsey R(3, t) graphs He Guo Joint work with Lutz Warnke Context of this talk Ramsey number R(s, t) R(s, t) := minimum n N such that every red/blue edge-coloring of complete n-vertex

More information

Properties and Applications of Boolean Function Composition

Properties and Applications of Boolean Function Composition Electronic Colloquium on Computational Complexity, Report No. 163 (2012) Properties and Applications of Boolean Function Composition Avishay Tal Abstract For Boolean functions f : {0, 1} n {0, 1} and g

More information

The Quantum Query Complexity of Algebraic Properties

The Quantum Query Complexity of Algebraic Properties The Quantum Query Complexity of Algebraic Properties Sebastian Dörn Institut für Theoretische Informatik Universität Ulm 89069 Ulm, Germany Thomas Thierauf Fak. Elektronik und Informatik HTW Aalen 73430

More information

An Introduction to Proof Complexity, Part II.

An Introduction to Proof Complexity, Part II. An Introduction to Proof Complexity, Part II. Pavel Pudlák Mathematical Institute, Academy of Sciences, Prague and Charles University, Prague Computability in Europe 2009, Heidelberg 2 Overview Part I.

More information

On the Fourier spectrum of symmetric Boolean functions

On the Fourier spectrum of symmetric Boolean functions On the Fourier spectrum of symmetric Boolean functions Amir Shpilka Technion and MSR NE Based on joint work with Avishay Tal 1 Theme: Analysis of Boolean functions Pick favorite representation: Fourier

More information

Removal Lemmas with Polynomial Bounds

Removal Lemmas with Polynomial Bounds Removal Lemmas with Polynomial Bounds Lior Gishboliner Asaf Shapira Abstract A common theme in many extremal problems in graph theory is the relation between local and global properties of graphs. One

More information

On set systems with a threshold property

On set systems with a threshold property On set systems with a threshold property Zoltán Füredi 1 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, and Rényi Institute of Mathematics of the Hungarian

More information

Towards a Proof of the 2-to-1 Games Conjecture?

Towards a Proof of the 2-to-1 Games Conjecture? Electronic Colloquium on Computational Complexity, Report No. 198 (2016) Towards a Proof of the 2-to-1 Games Conjecture? Irit Dinur Subhash Khot Guy Kindler Dor Minzer Muli Safra Abstract We propose a

More information

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Lecture 10 Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Recap Sublinear time algorithms Deterministic + exact: binary search Deterministic + inexact: estimating diameter in a

More information

Infinite circuits in infinite graphs

Infinite circuits in infinite graphs Infinite circuits in infinite graphs Henning Bruhn Universität Hamburg R. Diestel, A. Georgakopoulos, D. Kühn, P. Sprüssel, M. Stein Henning Bruhn (U Hamburg) Infinite circuits Haifa 08 1 / 25 Locally

More information

Lecture 5: February 21, 2017

Lecture 5: February 21, 2017 COMS 6998: Advanced Complexity Spring 2017 Lecture 5: February 21, 2017 Lecturer: Rocco Servedio Scribe: Diana Yin 1 Introduction 1.1 Last Time 1. Established the exact correspondence between communication

More information

The Minesweeper game: Percolation and Complexity

The Minesweeper game: Percolation and Complexity The Minesweeper game: Percolation and Complexity Elchanan Mossel Hebrew University of Jerusalem and Microsoft Research March 15, 2002 Abstract We study a model motivated by the minesweeper game In this

More information

Tensor-Rank and Lower Bounds for Arithmetic Formulas

Tensor-Rank and Lower Bounds for Arithmetic Formulas Tensor-Rank and Lower Bounds for Arithmetic Formulas Ran Raz Weizmann Institute Abstract We show that any explicit example for a tensor A : [n] r F with tensor-rank n r (1 o(1)), where r = r(n) log n/

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

A lower bound on the order of the largest induced linear forest in triangle-free planar graphs

A lower bound on the order of the largest induced linear forest in triangle-free planar graphs A lower bound on the order of the largest induced linear forest in triangle-free planar graphs François Dross a, Mickael Montassier a, and Alexandre Pinlou b a Université de Montpellier, LIRMM b Université

More information

Decompositions of graphs into cycles with chords

Decompositions of graphs into cycles with chords Decompositions of graphs into cycles with chords Paul Balister Hao Li Richard Schelp May 22, 2017 In memory of Dick Schelp, who passed away shortly after the submission of this paper Abstract We show that

More information

The Quantum Query Complexity of the Determinant

The Quantum Query Complexity of the Determinant The Quantum Query Complexity of the Determinant Sebastian Dörn Inst. für Theoretische Informatik Universität Ulm 89069 Ulm, Germany Thomas Thierauf Fak. Elektronik und Informatik HTW Aalen 73430 Aalen,

More information

RECAP: Extremal problems Examples

RECAP: Extremal problems Examples RECAP: Extremal problems Examples Proposition 1. If G is an n-vertex graph with at most n edges then G is disconnected. A Question you always have to ask: Can we improve on this proposition? Answer. NO!

More information

Out-colourings of Digraphs

Out-colourings of Digraphs Out-colourings of Digraphs N. Alon J. Bang-Jensen S. Bessy July 13, 2017 Abstract We study vertex colourings of digraphs so that no out-neighbourhood is monochromatic and call such a colouring an out-colouring.

More information

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Tokyo Institute of Technology & Simon Fraser University Understanding Efficiency Better understanding of Efficient Computation Good Algorithms

More information

CHAPTER 2 LINEAR LAW FORM 5 PAPER 1. Diagram 1 Diagram 1 shows part of a straight line graph drawn to represent

CHAPTER 2 LINEAR LAW FORM 5 PAPER 1. Diagram 1 Diagram 1 shows part of a straight line graph drawn to represent PAPER. n ( 8, k ) Diagram Diagram shows part of a straight line graph drawn to represent and n.. Find the values of k [4 marks] 2. log ( 3,9 ) ( 7,) log Diagram 2 Diagram 2 shows part of a straight line

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer On the power of the congested clique model Citation for published version: Drucker, A, Kuhn, F & Oshman, R 2014, On the power of the congested clique model. in ACM Symposium

More information

Balanced bipartitions of graphs

Balanced bipartitions of graphs 2010.7 - Dedicated to Professor Feng Tian on the occasion of his 70th birthday Balanced bipartitions of graphs Baogang Xu School of Mathematical Science, Nanjing Normal University baogxu@njnu.edu.cn or

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Advanced Combinatorial Optimization Updated February 18, Lecture 5. Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009)

Advanced Combinatorial Optimization Updated February 18, Lecture 5. Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009) 18.438 Advanced Combinatorial Optimization Updated February 18, 2012. Lecture 5 Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009) In this lecture, we establish the connection between nowhere-zero k-flows

More information

On covering graphs by complete bipartite subgraphs

On covering graphs by complete bipartite subgraphs On covering graphs by complete bipartite subgraphs S. Jukna a,1, A. S. Kulikov b,2 a Institute of Mathematics, Akademijos 4, LT-80663 Vilnius, Lithuania b Steklov Institute of Mathematics, Fontanka 27,

More information

The Rainbow Turán Problem for Even Cycles

The Rainbow Turán Problem for Even Cycles The Rainbow Turán Problem for Even Cycles Shagnik Das University of California, Los Angeles Aug 20, 2012 Joint work with Choongbum Lee and Benny Sudakov Plan 1 Historical Background Turán Problems Colouring

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 310 (2010) 3398 303 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Maximal cliques in {P 2 P 3, C }-free graphs S.A.

More information

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006.

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. Outline A last complete problem for NP conp, conp NP Function problems MAX-CUT A cut in a graph G=(V,E) is a set of nodes S used to partition

More information

On subgraphs of large girth

On subgraphs of large girth 1/34 On subgraphs of large girth In Honor of the 50th Birthday of Thomas Vojtěch Rödl rodl@mathcs.emory.edu joint work with Domingos Dellamonica May, 2012 2/34 3/34 4/34 5/34 6/34 7/34 ARRANGEABILITY AND

More information

The structure of bull-free graphs II elementary trigraphs

The structure of bull-free graphs II elementary trigraphs The structure of bull-free graphs II elementary trigraphs Maria Chudnovsky Columbia University, New York, NY 10027 USA May 6, 2006; revised April 25, 2011 Abstract The bull is a graph consisting of a triangle

More information

The Goldberg-Seymour Conjecture on the edge coloring of multigraphs

The Goldberg-Seymour Conjecture on the edge coloring of multigraphs The Goldberg-Seymour Conjecture on the edge coloring of multigraphs Guangming Jing Georgia State University Atlanta, GA Nov 3rd, 2018 Joint work with Guantao Chen and Wenan Zang Guangming Jing (Georgia

More information

Exercises - Solutions

Exercises - Solutions Chapter 1 Exercises - Solutions Exercise 1.1. The first two definitions are equivalent, since we follow in both cases the unique path leading from v to a sink and using only a i -edges leaving x i -nodes.

More information

A Complexity Theory for Parallel Computation

A Complexity Theory for Parallel Computation A Complexity Theory for Parallel Computation The questions: What is the computing power of reasonable parallel computation models? Is it possible to make technology independent statements? Is it possible

More information

CSE 135: Introduction to Theory of Computation NP-completeness

CSE 135: Introduction to Theory of Computation NP-completeness CSE 135: Introduction to Theory of Computation NP-completeness Sungjin Im University of California, Merced 04-15-2014 Significance of the question if P? NP Perhaps you have heard of (some of) the following

More information

Quantum algorithms based on span programs

Quantum algorithms based on span programs Quantum algorithms based on span programs Ben Reichardt IQC, U Waterloo [arxiv:0904.2759] Model: Complexity measure: Quantum algorithms Black-box query complexity Span programs Witness size [KW 93] [RŠ

More information

The Strength of Multilinear Proofs

The Strength of Multilinear Proofs The Strength of Multilinear Proofs Ran Raz Iddo Tzameret December 19, 2006 Abstract We introduce an algebraic proof system that manipulates multilinear arithmetic formulas. We show that this proof system

More information