Framework for using modern devices in an introductory physics course

Size: px
Start display at page:

Download "Framework for using modern devices in an introductory physics course"

Transcription

1 Framework for using modern devices in an introductory physics course Gorazd Planinšič Faculty for Mathematics and Physics University of Ljubljana, Slovenia Eugenia Etkina Graduate School of Education, Rutgers University USA SEEMPE 2015 PEF UL, Ljubljana

2 How to integrate modern topics (devices, concepts ) into physics curriculum?

3 Most of the approaches focus on the following questions: How to explain new physics in a simple/ comprehensible way? How to demonstrate new phenomena? How to motivate/attract /entertain pupils by showing interesting experiments or let them play with them?

4 Only few examples: Liquid crystals (Mojca Čepič) Superconductivity (SPERCOMET, Marisa Michelini ) Basic Quantum mechanics (Dean Zollman, Marisa Michelini ) LEDs (Dean Zollman, James Overhizer ) AFM (Manfred Euler, Ansi Lindel, GP ).

5 But we will focus on a different aspect of the question: How to integrate modern topics (devices, concepts ) into physics curriculum - - without loosing the coherence of the curriculum and without overloading it?

6 Three different ways of utilizing modern devices in an introductory physics course The proposed framework is not meant to be theoretical framework, but rather a guide that will help teachers and educators to think of how to use modern devices in IPCs.

7

8 Learning how X works Using X as a black box DEVICE X Learning new physics using knowledge of how X works G. Planinšič, E. Etkina, TPT, 52 (2014)

9 Let s see how this works for a light emmitting diode (LED)

10 Using LED as a black box

11 Recording and analyzing motion using blinking LED and long-time exposure photos E. Etkina, G. Planinšič, Physics World (March 2014)

12 But even black boxes offer opportunities for comparisons and contrasts Why don t we use a small incadenscent light bulb instead of the LED for tracking motion? Switch LED Bulb

13 Learning how an LED works Physical experiences and images are required in order to understand anything at all. * Physical experience Images Inventing ideas and testing them. and only THAN Time for telling *J Zull, The art of changing the brain, 2002

14 Similarities and differences between a light bulb (known) and an LED unknown) E. Etkina, G. Planinšič, TPT 52 (2014)

15 Making it glow qualitative investigation U(V) LED Light bulb -3.0 V Does not glow GLOWS -1.5 V Does not glow Glows 0 V Does not glow Does not glow +1.5 V Does not glow Glows V GLOWS GLOWS

16 Measuring I-U dependence quantitative investigation I(mA) Light bulb U(V) I(mA) LED U(V)

17 Close view images I can see a small (glowing) wire. I can see nothing.

18 Observing an LED under microscope more images

19 The teacher can stop here, but if time permits she can proceed with telling combined with analogies and kinaestetic activities.

20 Learning new physics using knowledge of how LEDs work Students have learned: I-U characteristic of LED Colour mixing rules Wave optics, spectrum

21 Learning new physics using knowledge White LED of how LEDs work Observe spectra of different colour LEDs (R,G,B) using a grating. Identify patterns. Observe spectrum of the white LED using a grating. Identify patterns. Photos of the actual experiment G. Planinšič, E. Etkina, TPT (2015) in press.

22 Propose several mechanisms that could explain how the white LED produces the observed spectrum. E1: R,G and B LEDs E2: Small incandescent light bulb E3: A single colour LED covered with some material that changes the colour of light when the LED light passes through it (if necessary, triggered by a teacher)

23 Design experiments to test the explanations. For each experiment make predictions of the outcome based on each explanation (E1, E2, E3). Testing experiment: Measure I-U curve of the white LED Predictions based on explanations: If E1 than the turn on voltage should be at least 5V (LEDs in series) or 1.5 V (LEDs in parallel) If E2 than the current should flow through the device for any non-zero voltage. If E3 than the I-U curve should be similar to the I-U curve of some monochromatic LED.

24 Outcome of the testing experiment: White LED Blue LED E1: R,G and B LEDs E2: Small incandescent light bulb E3: A single LED covered with some material We can not reject E3!

25 Additional observational experiment: Microscopic observation Blue LED White LED OFF ON

26 Improved explanation: Blue and Yellow light = White light Blue LED Yellow material

27 Testing experiment: Take a blue LED and shine it through a yellow piece of paper. Prediction: We will see white spot where the blue light is shining on the yellow paper. Outcome: shows that only certain type of colour markers produce white colour. Now students have need to know and are ready to learn about FLUORESCENCE.

28 ISLE cycle MORE Observational experiments PATTERNS Reflections and revisions Check assumptions PROPOSE DIFFERENT Possible explanations NO Testing experiments Do outcomes agree with predicitions? YES PREDICTION More testing experiments Application ISLE - Investigative Science Learning Environment E Etkina and A Van Heuvelen, 2001 and 2007

29 Walking through the introductory physics with LEDs 1. Kinematics 2. Energy 3. Electric field 4. DC circuits 5. Capacitors 6. AC circuits 7. Electromagnetic oscillations 8. Geometrical optics 9. Color and wave optics 10. Electromagnetic radiation and photons 11. Semiconductors and p-n junctions 12. Photoelectric effect 13. Nature of light emission, fluorescence and phosphorescence G Planinšič, E Etkina, TPT 52 (2014) (includes 41 references!)

30 New physics using know. about LEDs How LED works? Black box An example of a Unit: Energy Experiment Connect an incandescent light bulb to a battery and observe it glow. Repeat with connecting an LED to a battery and a resistor and observe it glow [5]. Connect an LED to a battery and a resistor and observe it glow. Then take the LED alone and connect it to a voltmeter. Shine white light on it and observe a non-zero voltmeter reading [6]. Connect an LED alone to a voltmeter (use red, green, or blue LED). Shine different color lights on the LED and observe voltmeter reading. The LED produces highest voltage when it is illuminated by light of characteristic wavelength. This potential difference can even power another LED. Questions Describe macroscopically the energy flow and energy conversions in these experiments. Compare and contrast these processes for the two cases. Explain microscopically the energy flow and energy conversions in these experiments. Compare and contrast these processes for the two cases. What are the patterns in your observations? What general rule relating the voltage produced by an LED and the intensity and color of light incident on the LED can you suggest?

31 Summary Two messages that I want to send: Modern devices can be integrated in physics curriculum without overloading it. Students need to practice science process when investigating those devices.

Light-Emitting Diodes: A Hidden Treasure

Light-Emitting Diodes: A Hidden Treasure Light-Emitting Diodes: A Hidden Treasure Gorazd Planinši and Eugenia Etkina Citation: The Physics Teacher 52, 94 (2014); doi: 10.1119/1.4862113 View online: http://dx.doi.org/10.1119/1.4862113 View Table

More information

(d) Fill in the table below with some other symbols: Part of Circuit Sketch Schematic Symbol Notes (what does this element do?

(d) Fill in the table below with some other symbols: Part of Circuit Sketch Schematic Symbol Notes (what does this element do? uggé: DC Circuits 2 Learning the Language for DC Circuits 2.1 Circuit Diagrams (a) circuit diagram is a representation that uses symbols to show the components in a circuit and how they are connected:

More information

A Determination of Planck s Constant with LED s written by Mark Langella

A Determination of Planck s Constant with LED s written by Mark Langella A Determination of Planck s Constant with LED s written by Mark Langella The purpose of this experiment is to measure Planck s constant, a fundamental physical constant in nature, by studying the energy

More information

T U T O R I A L : A M O D E L F O R C I R C U I T S

T U T O R I A L : A M O D E L F O R C I R C U I T S South Pasadena Physics Name 10 Circuits Period Date T U T O R I A L : A M O D E L F O R C I R C U I T S Tutorial Instructions This Tutorial contains Activities and Exercises. Activities: These are intended

More information

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER]

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER] NTIONL QULIFICTIONS CURRICULUM SUPPORT Physics Electricity Questions and Solutions James Page rthur Baillie [HIGHER] The Scottish Qualifications uthority regularly reviews the arrangements for National

More information

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5 Chapter 24 Photonics Data throughout this chapter: e = 1.6 10 19 C; h = 6.63 10 34 Js (or 4.14 10 15 ev s); m e = 9.1 10 31 kg; c = 3.0 10 8 m s 1 Question 1 Visible light has a range of photons with wavelengths

More information

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

More information

29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN

29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN L 33 Modern Physics [1] 29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices

More information

Introduction. Outline

Introduction. Outline Introduction Outline Planck s constant (h = 6.63 x 10-34 Js) is a universal constant that lies at the heart of quantum physics. It defines the scale of this theory just as the speed of light (c = 3.00

More information

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test Name... Set... Don.... manner~ man makptb Winchester College Physics 3rd year Revision Test Electrical Circuits Common Time 2011 Mark multiple choice answers with a cross (X) using the box below. I A B

More information

Producing and Harnessing Light

Producing and Harnessing Light Chemical Dominoes Activity 5 Producing and Harnessing Light GOALS In this activity you will: Describe the relationship between energy, frequency, and wavelength of electromagnetic radiation. Explain how

More information

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1]

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1] 1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. 1 (a) (b) Name the effect described above....[1] The variation with frequency f of the maximum

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric Higher -o-o-o- Past Paper questions 1991-2010 -o-o-o- 3.3 Photoelectric 1996 Q36 The work function for sodium metal is 2.9x10-19 J. Light of wavelength 5.4x10-7 m strikes the surface of this metal. What

More information

Lab 1: Measuring Planck s Constant Using LEDs Adapted from a lab procedure written by Martin Hackworth, University of Idaho

Lab 1: Measuring Planck s Constant Using LEDs Adapted from a lab procedure written by Martin Hackworth, University of Idaho Lab 1: Measuring Planck s Constant Using LEDs Adapted from a lab procedure written by Martin Hackworth, University of Idaho Objective: Scientists use Planck s constant (h) frequently. In this experiment,

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #4: Electronic Circuits I Lab Writeup Due: Mon/Wed/Thu/Fri, Feb. 12/14/15/16, 2018 Background The concepts

More information

KICKSTART PHYSICS IDEAS TO IMPLEMENTATIONS SCHOOL OF PHYSICS.

KICKSTART PHYSICS IDEAS TO IMPLEMENTATIONS SCHOOL OF PHYSICS. KICKSTART PHYSICS IDEAS TO IMPLEMENTATIONS SCHOOL OF PHYSICS 1. HERTZ S EXPERIMENTS 2. CATHODE RAY TUBES 3. THE PHOTOELECTRIC EFFECT 4. CONDUCTORS AND SEMICONDUCTORS 5. SUPERCONDUCTORS Kickstart would

More information

Energy and the Electron: Atomic View and Argumentation. b. Draw what you think an atom looks like. Label the different parts of the atom.

Energy and the Electron: Atomic View and Argumentation. b. Draw what you think an atom looks like. Label the different parts of the atom. Name Energy and the Electron: Atomic View and Argumentation Part I: Warm Up 1. Consider the following questions individually: a. What do you know about the structure of the atom? b. Draw what you think

More information

KICKSTART PHYSICS IDEAS TO IMPLEMENTATION 1. HERTZ S EXPERIMENTS 2. CATHODE RAY TUBES 3. THE PHOTOELECTRIC EFFECT 4. CONDUCTORS AND SEMICONDUCTORS

KICKSTART PHYSICS IDEAS TO IMPLEMENTATION 1. HERTZ S EXPERIMENTS 2. CATHODE RAY TUBES 3. THE PHOTOELECTRIC EFFECT 4. CONDUCTORS AND SEMICONDUCTORS KICKSTART PHYSICS IDEAS TO IMPLEMENTATION 1. HERTZ S EXPERIMENTS 2. CATHODE RAY TUBES 3. THE PHOTOELECTRIC EFFECT 4. CONDUCTORS AND SEMICONDUCTORS 5. SUPERCONDUCTORS Kickstart would like to acknowledge

More information

4.2.1 Current, potential difference and resistance

4.2.1 Current, potential difference and resistance 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

QM all started with - - The Spectrum of Blackbody Radiation

QM all started with - - The Spectrum of Blackbody Radiation QM all started with - - The Spectrum of Blackbody Radiation Thermal Radiation: Any object, not at zero temperature, emits electromagnetic called thermal. When we measure the intensity of a real object,

More information

An Introduction to: Light

An Introduction to: Light An Introduction to: Light Created by Anna Opitz July 2007 Why is light important? Light allows us to see. Light carries information from our surroundings to our eyes and brain. Light enables us to communicate

More information

ACTIVITY 2 Exploring Light Patterns

ACTIVITY 2 Exploring Light Patterns Name: Class: SOLIDS & Visual Quantum Mechanics LIGHT ACTIVITY 2 Exploring Light Patterns Goal We will continue to investigate the properties of LEDs and the incandescent lamp by observing and exploring

More information

UNIT 7 ATOMIC AND NUCLEAR PHYSICS

UNIT 7 ATOMIC AND NUCLEAR PHYSICS 1 UNIT 7 ATOMIC AND NUCLEAR PHYSICS PHYS:1200 LECTURE 33 ATOMIC AND NUCLEAR PHYSICS (1) The physics that we have presented thus far in this course is classified as Classical Physics. Classical physics

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) NAME: August 2009--------------------------------------------------------------------------------------------------------------------------------- 11 41.

More information

Photoelectric Effect

Photoelectric Effect Photoelectric Effect Teacher s Handbook In association with the Cherenkov Telescope Array Goldleaf Electroscope Experiment Goldleaf Electroscope Experiment Duration: 50mins Prerequisites: Knowledge of

More information

Physics Circuits: Series

Physics Circuits: Series FACULTY OF EDUCATION Department of Curriculum and Pedagogy Physics Circuits: Series Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund 2012-2013 Series

More information

Planck's "quantum of action" and external photoelectric effect (Item No.: P )

Planck's quantum of action and external photoelectric effect (Item No.: P ) Planck's "quantum of action" and external photoelectric effect (Item No.: P2510502) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Modern Physics Subtopic: Quantum Physics

More information

EXPERIMENT 18 THE PHOTOELECTRIC EFFECT

EXPERIMENT 18 THE PHOTOELECTRIC EFFECT 220 18-1 I. THEORY EXPERIMENT 18 THE PHOTOELECTRIC EFFECT When light or other electromagnetic waves of sufficiently high frequency fall on a metal surface, they cause electrons to be emitted by the surface.

More information

HS AP Physics 1 Science

HS AP Physics 1 Science Scope And Sequence Timeframe Unit Instructional Topics 5 Day(s) 20 Day(s) 5 Day(s) Kinematics Course AP Physics 1 is an introductory first-year, algebra-based, college level course for the student interested

More information

4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1.

4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1. 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

12) An infinite line charge produces a field of N C 1 at a distance of 2 cm. Calculate the linear charge density.

12) An infinite line charge produces a field of N C 1 at a distance of 2 cm. Calculate the linear charge density. PHYSICS UNIT 1 (ELECTOSTATICS) 1) State Coulomb s law in electrostatics and represent it in vector form. 2) What is an electric dipole? Define electric dipole moment? 3) Distinguish between electric potential

More information

Teaching about circuits at the introductory level: An emphasis on potential difference

Teaching about circuits at the introductory level: An emphasis on potential difference Teaching about circuits at the introductory level: An emphasis on potential difference A. S. Rosenthal and C. Henderson Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008 Received

More information

Physics Attitudes, Skills, & Knowledge Survey (PASKS) Form 3

Physics Attitudes, Skills, & Knowledge Survey (PASKS) Form 3 Physics Attitudes, Skills, & Knowledge Survey (PASKS) Form 3 Directions to Students: Do not open this booklet until you are told to do so. Please respond to the following items by marking the best answer

More information

Lab 4. Current, Voltage, and the Circuit Construction Kit

Lab 4. Current, Voltage, and the Circuit Construction Kit Physics 2020, Spring 2009 Lab 4 Page 1 of 8 Your name: Lab section: M Tu Wed Th F TA name: 8 10 12 2 4 Lab 4. Current, Voltage, and the Circuit Construction Kit The Circuit Construction Kit (CCK) is a

More information

LC-4: Photoelectric Effect

LC-4: Photoelectric Effect LC-4: Photoelectric Effect Lab Worksheet Name In this lab you investigate the photoelectric effect, one of the experiments whose explanation by Einstein forced scientists into accepting the ideas of quantum

More information

TEACHERS OF SCIENCE: Physics 9-12 FORM I-D GRID

TEACHERS OF SCIENCE: Physics 9-12 FORM I-D GRID 8710.4750 TEACHERS OF SCIENCE: sics 9-12 FORM I-D GRID Professional Education Program Evaluation Report (PEPER II) 8710.4750 Teachers of Science: sics 9-12 Subp. 7. Subject matter standards for teachers

More information

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31)

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31) Final exam: Dec 20, 11.30am -1.30pm, here, cumulative Chs: 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 22, 23, 24, 25, 26, 27, 31 Review Session Tue Dec 13 Today: Finish Color (Ch. 27) Intro to Quantum

More information

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy L 35 Modern Physics [1] Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices The Bohr atom emission & absorption of radiation LASERS

More information

Standard circuit diagram symbols Content Key opportunities for skills development

Standard circuit diagram symbols Content Key opportunities for skills development 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet Farr High School HIGHER PHYSICS Unit 3 Electricity Question Booklet 1 MONITORING ND MESURING.C. 1. What is the peak voltage of the 230 V mains supply? The frequency of the mains supply is 50 Hz. How many

More information

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 1: Approved specimen question paper. Version 1.2

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 1: Approved specimen question paper. Version 1.2 GCE AS and A Level Physics A AS exams 2009 onwards A2 exams 2010 onwards Unit 1: Approved specimen question paper Version 1.2 Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature

More information

E. Physics: The Characteristics of Electricity (Grades 9)

E. Physics: The Characteristics of Electricity (Grades 9) E. Physics: The Characteristics of Electricity (Grades 9) Overall Expectations E1. assess some of the costs and benefits associated with the production of electrical energy from renewable and non renewable

More information

Physics 2020 Lab 5 Intro to Circuits

Physics 2020 Lab 5 Intro to Circuits Physics 2020 Lab 5 Intro to Circuits Name Section Tues Wed Thu 8am 10am 12pm 2pm 4pm Introduction In this lab, we will be using The Circuit Construction Kit (CCK). CCK is a computer simulation that allows

More information

Sample Question Paper. Class XII. Physics. Time Allowed: 3 Hours Maximum Marks: 70

Sample Question Paper. Class XII. Physics. Time Allowed: 3 Hours Maximum Marks: 70 Sample Question Paper Class XII Physics Time Allowed: 3 Hours Maximum Marks: 70 General Instructions 1. All questions are compulsory. There are 26 questions in all. 2. This question paper has five sections:

More information

Curricular Requirements. Scoring Components. The guide contains the following sections and information:

Curricular Requirements. Scoring Components. The guide contains the following sections and information: The guide contains the following sections and information: Requirements Scoring Components The curricular requirements are the core elements of the course. Your syllabus must provide clear evidence that

More information

Quantum Theory. The most accurate and complete description of physical reality

Quantum Theory. The most accurate and complete description of physical reality Quantum Theory The most accurate and complete description of physical reality Originating 1900 to 1930 and still under active development Set of ideas Scientist use to study microscopic world Nature is

More information

2000 Advanced Placement Program Free-Response Questions

2000 Advanced Placement Program Free-Response Questions 2000 Advanced Placement Program Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other

More information

Scientific Processes 1. Read through the following scenario and identify the claim, evidence and reasoning.

Scientific Processes 1. Read through the following scenario and identify the claim, evidence and reasoning. PS Physics Study Guide End of Course Exam Scientific Processes 1. Read through the following scenario and identify the claim, evidence and reasoning. Lea just finished her lunch. All that is left is her

More information

OPAC 101 Introduction to Optics

OPAC 101 Introduction to Optics OPAC 101 Introduction to Optics Topic 2 Light Sources Department of http://www1.gantep.edu.tr/~bingul/opac101 Optical & Acustical Engineering Gaziantep University Sep 2017 Sayfa 1 Light Sources: maybe

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2 - CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

More information

Modesto Junior College Course Outline of Record PHYS 143

Modesto Junior College Course Outline of Record PHYS 143 Modesto Junior College Course Outline of Record PHYS 143 I. OVERVIEW The following information will appear in the 2011-2012 catalog PHYS 143 Electricity, Magnetism, Optics, Atomic and Nuclear Structure

More information

CBSE Annual Examination Question Paper 2013

CBSE Annual Examination Question Paper 2013 CBSE Annual Examination Question Paper 2013 PHYSICS (THEY) Time allowed: 3 hours] [Maximum marks: 70 General Instructions: (i) All questions are compulsory. (ii) There are 29 questions in total. Question

More information

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms CHEMISTRY & YOU What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5. Electron Arrangement in Atoms 5.3 Atomic and the Quantum Mechanical Model An electric

More information

Episode 506: Particles as waves

Episode 506: Particles as waves Episode 506: Particles as waves This episode introduces an important phenomenon: wave - particle duality. In studying the photoelectric effect, students have learned that light, which we think of as waves,

More information

PHYSICS (042) CLASS-XII ( )

PHYSICS (042) CLASS-XII ( ) PHYSICS (042) CLASS-XII (2012-13) 0 CLASS XII PHYSICS (Theory) Time allowed: 3 hours Maximum Marks: 70 General Instructions: (i) All questions are compulsory. (ii) There is no overall choice. However an

More information

Spectra from transitions in atoms and lighting

Spectra from transitions in atoms and lighting Spectra from transitions in atoms and lighting Safety: This experiment uses a Mercury Light source and a laser. Mercury light source emits Ultraviolet light. You should always have the ground glass shield

More information

The Photoelectric Effect. One weight

The Photoelectric Effect. One weight 1 The Photoelectric Effect One weight 1. Objective Students will be introduced to the photoelectric effect and two competing theoretical explanations of the effect. In a series of measurements, they will

More information

Photoelectric Effect

Photoelectric Effect PC1144 Physics IV Photoelectric Effect 1 Objectives Demonstrate the different predictions of the classical wave and quantum model of light with respect to the photoelectric effect. Determine an experimental

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

Sample Question Paper. Class XII -Physics. (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70

Sample Question Paper. Class XII -Physics. (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70 Sample Question Paper Class XII -Physics (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70 General Instructions 1. All questions are compulsory. There are 26 questions in

More information

Problem Solver Skill 5. Defines multiple or complex problems and brainstorms a variety of solutions

Problem Solver Skill 5. Defines multiple or complex problems and brainstorms a variety of solutions Motion and Forces Broad Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. LS 1.1 Compare and contrast vector quantities (such as, displacement, velocity,

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

THE INDIAN COMMUNITY SCHOOL, KUWAIT SECOND SEMESTER EXAMINATION PHYSICS (Theory)

THE INDIAN COMMUNITY SCHOOL, KUWAIT SECOND SEMESTER EXAMINATION PHYSICS (Theory) CLASS:XII Marks : 70 General Instructions: THE INDIAN COMMUNITY SCHOOL, KUWAIT SECOND SEMESTER EXAMINATION 2016-17 PHYSICS (Theory) Time : Hrs (i) (ii) (iii) (iv) (v) All questions are compulsory. This

More information

Physics Department. CfE Higher Unit 3: Electricity. Problem Booklet

Physics Department. CfE Higher Unit 3: Electricity. Problem Booklet Physics Department CfE Higher Unit 3: Electricity Problem Booklet Name Class 1 Contents Exercise 1: Monitoring and measuring a.c. Exercise 2: Current, voltage, power and resistance Exercise 3: Electrical

More information

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy. 30 Light Emission Answers and Solutions for Chapter 30 Reading Check Questions 1. At these high frequencies, ultraviolet light is emitted. 2. Discrete means unique, that other states don t overlap it.

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction.

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction. Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2 DUE IN CLASS ON Thursday Sept 28! You CAN work in a group of 2, but you need only turn in

More information

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity (JUN10PHAY101 TOTAL

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity (JUN10PHAY101 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: a pencil and a ruler a calculator a Data and

More information

Greek Letter Omega Ω = Ohm (Volts per Ampere)

Greek Letter Omega Ω = Ohm (Volts per Ampere) ) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What

More information

Lecture 11. Power in Electric Circuits, Kirchhoff s Rules

Lecture 11. Power in Electric Circuits, Kirchhoff s Rules Lecture 11. Power in Electric Circuits, Kirchhoff s Rules Outline: Energy and power in electric circuits. Voltage and Current Sources. Kirchhoff s Rules. Lecture 10: Connection of resistors in parallel

More information

Chapter 1: Circuit Variables

Chapter 1: Circuit Variables Chapter 1: Circuit Variables 1.1 Electrical Engineering: An Overview Electrical Engineers are concerned with the design, analysis, and operation of systems involving electrical signals. Examples: Communications/signal

More information

Lesson Plan: Introduction to Quantum Mechanics via Wave Theory and the Photoelectric Effect

Lesson Plan: Introduction to Quantum Mechanics via Wave Theory and the Photoelectric Effect Lesson Plan: Introduction to Quantum Mechanics via Wave Theory and the Photoelectric Effect Will Stoll, Norcross High School Problem: To understand the basic principles of Quantum Mechanics through an

More information

Study Guide for Physics 1100 Final Exam

Study Guide for Physics 1100 Final Exam Study Guide for Physics 1100 Final Exam Dr. Fazzini s Physics 1100 Final Exam will take place on Wednesday, May 16 th, 2018 from 9:00AM-10:50AM in Room BIC-3535. Click on the Detailed Class Information

More information

L 35 Modern Physics [1]

L 35 Modern Physics [1] L 35 Modern Physics [1] Introduction- quantum physics Particles of light PHOTONS The photoelectric effect Photocells & intrusion detection devices The Bohr atom emission & absorption of radiation LASERS

More information

COWLEY COLLEGE & Area Vocational Technical School

COWLEY COLLEGE & Area Vocational Technical School COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR ENGINEERING PHYSICS II PHS4561 5 Credit Hours Student Level: This course is open to students on the college level in the freshman

More information

Amarillo ISD Science Curriculum

Amarillo ISD Science Curriculum Amarillo Independent School District follows the Texas Essential Knowledge and Skills (TEKS). All of AISD curriculum and documents and resources are aligned to the TEKS. The State of Texas State Board

More information

AP Physics 2 Sample Syllabus 3

AP Physics 2 Sample Syllabus 3 Syllabus 066439v Curricular Requirements CR Students and teachers have access to college-level resources including college-level textbooks and reference materials in print or electronic format. CRa The

More information

PHYA1 (JUN09PHYA101) General Certificate of Education Advanced Subsidiary Examination June Unit 1 Particles, Quantum Phenomena and Electricity

PHYA1 (JUN09PHYA101) General Certificate of Education Advanced Subsidiary Examination June Unit 1 Particles, Quantum Phenomena and Electricity Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A General Certificate of Education Advanced Subsidiary Examination June 2009 PHYA1

More information

AP Physics 2 Sample Syllabus 3

AP Physics 2 Sample Syllabus 3 Curricular Requirements CR CRa CRb CRc CRd CRe CRf CRg CR3 CR4 CR CR6a CR6b CR7 CR8 Students and teachers have access to college-level resources including collegelevel textbooks and reference materials

More information

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light Lecture 15 Notes: 07 / 26 The photoelectric effect and the particle nature of light When diffraction of light was discovered, it was assumed that light was purely a wave phenomenon, since waves, but not

More information

UNIT 3: Electric charge.

UNIT 3: Electric charge. UNIT 3: Electric charge Recommended Prior Knowledge Students should be aware of the two types of charge, charging by friction and by induction. They should be able to distinguish between conductors and

More information

Sierzega: DC Circuits 4 Searching for Patterns in Series and Parallel Circuits

Sierzega: DC Circuits 4 Searching for Patterns in Series and Parallel Circuits Searching for Series and Parallel Circuits. Observe and Design Draw circuit diagrams according to the word descriptions below. Build the circuits and use the symbols to represent the battery and the light

More information

AQA GCSE Physics 9-1 Required Practicals Revision Booklet Name

AQA GCSE Physics 9-1 Required Practicals Revision Booklet Name Paper 2 15 th June 2018 Paper 1 23rd May 2018 AQA GCSE Physics 9-1 Required Practicals Revision Booklet Name Specific Heat Capacity Thermal Insulation Resistance I-V characteristics Density Force and Extension

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-4 Resistivity Example 25-5: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper

More information

Chemistry Lecture #25: Emission Spectra

Chemistry Lecture #25: Emission Spectra Chemistry Lecture #25: Emission Spectra We ve learned that electrons orbit the nucleus. We ve also learned that photons are a form of electromagnetic energy that has a frequency and wavelength. In today

More information

What can laser light do for (or to) me?

What can laser light do for (or to) me? What can laser light do for (or to) me? Phys 1020, Day 15: Questions? Refection, refraction LASERS: 14.3 Next Up: Finish lasers Cameras and optics 1 Eyes to web: Final Project Info Light travels more slowly

More information

The Phantastic Photon and LEDs (combined lab) Jim Overhiser, Gil Toombes (Phantastic Photon) Preeti Chalsani, Ralph Greco (LED Lab)

The Phantastic Photon and LEDs (combined lab) Jim Overhiser, Gil Toombes (Phantastic Photon) Preeti Chalsani, Ralph Greco (LED Lab) Title: Original: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: Special Notes: 8 July 2009 27 June 2010 The Phantastic Photon and LEDs (combined lab) Jim Overhiser, Gil

More information

School of the Future * Curriculum Map for Physics II: E&M and Waves Teacher(s) Michael Zitolo

School of the Future * Curriculum Map for Physics II: E&M and Waves Teacher(s) Michael Zitolo School of the Future * Curriculum Map for Physics II: E&M and Waves Teacher(s) Michael Zitolo Year Long Essential Question: How can physics be used to improve our understanding of the world? & How are

More information

Class XII Physics (Theory)

Class XII Physics (Theory) DATE : 0/03/209 SET-3 Code No. //3 Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-000. Ph.: 0-4762346 Class XII Physics (Theory) Time : 3 Hrs. Max. Marks : 70 (CBSE 209) GENERAL INSTRUCTIONS :. All

More information

Modified Physics Course Descriptions Old

Modified Physics Course Descriptions Old Modified Physics Course Descriptions Old New PHYS 122, General Physics II, 4 cr, 3 cl hrs, 2 recitation hrs Prerequisite: PHYS 121 Corequisites: MATH 132; PHYS 122L Continuation of PHYS 121 including electricity

More information

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli

ConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli ConcepTest Clicker Questions Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli 2008 Pearson Education, Inc. This work is protected by United States copyright laws

More information

For use with Comprehensive Secondary Physics

For use with Comprehensive Secondary Physics SUB- 166 SUB- 167 For use with Physics Secondary Form Four Physics : Term One SUB- 1 Converging and diverging lenses diverging and converging lenses. Using light beams to distinguish between diverging

More information

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30. Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.3 The Mass and Momentum of a Photon 30.4 Photon Scattering and

More information

Level 2 Physics, 2011

Level 2 Physics, 2011 90257 902570 2SUPERVISOR S Level 2 Physics, 2011 90257 Demonstrate understanding of electricity and electromagnetism 2.00 pm ednesday Wednesday 1 November 2011 Credits: Five Check that the National Student

More information

Classical and Planck picture. Planck s constant. Question. Quantum explanation for the Wein Effect.

Classical and Planck picture. Planck s constant. Question. Quantum explanation for the Wein Effect. 6.1 Quantum Physics. Particle Nature of Light Particle nature of Light Blackbody Radiation Photoelectric Effect Properties of photons Ionizing radiation Radiation damage x-rays Compton effect X-ray diffraction

More information

Chapter 28: Quantum Physics. Don t Copy This. Quantum Physics 3/16/13

Chapter 28: Quantum Physics. Don t Copy This. Quantum Physics 3/16/13 Chapter 28: Quantum Physics Key Terms: Photoelectric effect Photons de Broglie wavelength Energy level diagram Wave-particle duality Don t Copy This Except for relativity, everything we have studied up

More information

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena. Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.

More information

PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP

PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP In 1900 Planck introduced the hypothesis that light is emitted by matter in the form of quanta of energy hν. In 1905 Einstein extended this idea proposing

More information

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S lecture based on 2016 Pearson Education, Ltd. The Electric Battery Electric Current

More information