Compound COM-Poisson Distribution with Binomial Compounding Distribution

Size: px
Start display at page:

Download "Compound COM-Poisson Distribution with Binomial Compounding Distribution"

Transcription

1 Compound COM-oisson Distribution with Binomial Compounding Distribution V.Saavithri Department of Mathematics Nehru Memorial College Trichy. J.riyadharshini Department of Mathematics Nehru Memorial College Trichy. Z. arvin Banu Department of Mathematics Nehru Memorial College Trichy. February 6, 8 Abstract Conway-Mawell oisson distribution is two parameter oisson distribution and also a generalization of Bernoulli, Geometric distributions. In this paper, the compound COM-oisson distribution with binomial compounding distribution is proposed. Its properties are also derived. The parameters of newly introduced distribution are estimated by the method of profile likelihood estimation. Introduction In 95, oisson - Binomial distribution was discussed by Skellam and fitted by him to quadrat data on the sedge Care flacca. In McGuire et al. this distribution was used to represent variation in the numbers of corn-borer larvae in randomly chosen areas of a field. In 96, Conway & Mawell introduced this distribution in the contet of queuing systems. In 5, Galit Shmueli revived this distribution and used for fitting discrete data. They use the acronym COM-oisson for this distribution. The COM-oisson belongs to the eponential family as well as to the twoparameter power series distributions family. Its even stronger, it is easy to use ISSN: age 33

2 fleible for fitting over and under-dispersed data. In many practical applications, the equidispersion property of the oisson distribution is not observed in the count data at hand, it motivates the search for more fleible models for this type of data. In this paper we consider the COM-oisson distribution and study the mean and variance. In this paper we define the Compound COM-oisson distribution with binomial compounding distribution. Its properties are also derived. This paper is laid out as follows: Section describes the study of COMoisson distribution. In section 3, the Compound COM-oisson distribution with binomial compounding distribution is defined and discussed some of its properties. Section 4 deals with the profile likelihood estimation of the newly introduced distribution. Section 5 concludes this paper. COM-oisson Distribution The probability density function of COM-oisson distribution [7] is ( ) λ, (!) Z(λ, ),,,... () λj for λ > and. j Here the parameter governs the rate of decay of successive ratios of probabilities such that ( ) () ( ) λ where Z(λ, ) The probability generating function of COM-oisson distribution is G (s) Z(λs, ) Z(λ, ) (3) The mean and variance are M ean() G () λzλ (λ, ) Z(λ, ) λ Zλλ (λ, ) λzλ (λ, ) λzλ (λ, ) V ar() + Z(λ, ) Z(λ, ) Z(λ, ) d where Zλ (λ, ) [Z(λ, )], dλ d [Z(λ, )] Zλλ (λ, ) dλ ISSN: age 34

3 3 Compound COM-oisson Distribution with Binomial Compounding Distribution Consider the several events that can happen simultaneously at an instant, we have a cluster (of occurences) at a point. Assume that there are Y independent random variables of the form, and N denotes the sum of these random variables. (ie) N Y Then, the compound COM-oisson binomial model is derived by the following assumptions (i) denotes the number of objects within a cluster and it follows binomial distribution with parameters (n, p) (ie) Binomial(n, p) (ii) Y denotes the number of clusters and it follows COM-oisson distribution with parameters λ and. (ie) Y CM (λ, ) This random variable, N formed by compounding these two random variables and Y gives the Compound COM-oisson Distribution with Binomial Compounding Distribution. Its probability generating function (GF) can be derived as follows. The probability mass function (MF) of is n n ( ) p q,,,,... where p >, q >, p + q Its probability generating function is G (s) E(s ) s ( ) n n s p q n (ps) q n (q + ps)n G (s) (q + ps)n ISSN: (4) age 35

4 Also, the random variable Y having probability mass function in () and the probability generating function is GY (s) Z(λs, ) Z(λ, ) (5) Since i s are iid and independent of Y, probability generating function of the random variable N is given by GN (s) E(sN ) E(s Y ) E(s Y /Y y) (Y y) y [E(s )]y (Y y) y GY (G (s)) (6) Z(λG (s), ) Z(λ, ) j [λ(q + ps)n ] Z(λ, ) j λj [q + ps] Z(λ, ) j Epanding the summation and collecting the coefficient of sm in the above equation we get λj (N m) (p)m q m for m,,... Z(λ, ) m j m/n The probability mass function of N is for m Z(λ, ) (N m) λj m m (p) q Z(λ, ) m for m,,... j m/n (7) The mean and variance are derived as follows j (q + ps)n j [λ(q + ps)n ] GN (s) Z(λ, ) j j (q + ps)n j [λ(q + ps)n ] Z(λ, ) j GN () ISSN: j(λ)j Z(λ, ) j 4 age 36

5 M ean(n ) GN () Zλ (λ, ) Z(λ, ) j j [λ(q + ps)n ] (q + ps)n (8) s Z(λ, ) j n j n j(j i) [λ(q + ps) ] λn(q + ps) p (q + ps)n Z(λ, ) j n j n j [λ(q + ps) ] (n )p(q + ps) + Z(λ, ) j j j j(j )λ jλ + (n )p Z(λ, ) j j GN (s) GN () [Zλλ (λ, ) + (n )pzλ (λ, )] Z(λ, ) V ar(n ) GN () + GN () [GN ()] Zλ (λ, ) Zλ (λ, ) [Zλλ (λ, ) + (n )pzλ (λ, )] + Z(λ, ) Z(λ, ) Z(λ, ) " # [Zλ (λ, )] Zλλ (λ, ) + (np p + )Zλ (λ, ) Z(λ, ) Z(λ, ) " # [Zλ (λ, )] V ar(n ) Zλλ (λ, ) + (np + q)zλ (λ, ) (9) Z(λ, ) Z(λ, ) The ratio between variance and mean is Ratio V ar(n ) M ean(n ) " # [Zλ (λ, )] Zλλ (λ, ) + (np + q)zλ (λ, ) Z(λ, ) Z(λ, ) Zλ (λ, ) Z(λ, ) Zλλ (λ, ) Zλ (λ, ) + (np + q) Zλ (λ, ) Z(λ, ) 4 rofile Likelihood Estimation Let N, N,..., Nm be the samples follows the Compound COM-oisson distribution with binomial compounding distribution with parameters λ >,, n > and p >. ISSN: age 37

6 L m Y (N Ni ) i m Y λj (p)ni ( p)ni N Z(λ, ) i i j Ni /n The log likelihood function is m j λj λ + l logl mlog (p)ni ( p)ni log N i j i j Ni /n () Differentiating equation () partially with respect to λ and equating to zero l λ jλj m j Ni /n λj i j Ni /n jλj (p)ni ( p)ni j m λj Ni ( p)ni (p) Ni j Ni Differentiating equation () partially with respect to p and equating to zero l p Ni λj Ni Ni Ni (p) ( p) m Ni p p j Ni /n j λ Ni ( p)ni i (p) N i j Ni /n Then ma log(λ,, n, p m) ma ma log(λ, n, p m) is calculated. λ,,n,p 5 λ,n,p Conclusion The Compound COM-oisson distribution with binomial compounding distribution is introduced and its properties are derived. Also the parameters of the newly introduced distribution are estimated. This distribution can be applied to Bacterial count data. ISSN: age 38

7 References [] CONSUL.C (989) : Generalized oisson Distributions: roperties and Applications, Marcel Dekker Inc., New York/Basel. [] CONWAY R.W, AND W.L. MAWELL (96): A queuing model with state dependent service rates, Journal of Industrial Engineering,, pp [3] JOHNSON N.L, KOTZ S AND KEM A.W (5): Univariate Discrete Distributions, 3rd edition, Wiley Series in robability and Mathematical Sciences. [4] MACEDA E.C (948) : On the Compound and Generalized oisson Distributions, Annals of Mathematical Statistics, Vol.9, No.3. (sept), pp [5] MCGUIRE J.U, BRINDLEY T.A, and BANCROFT T.A (957) : The distribution of European corn borer yrausta Nubilalis (Hbn.) in field corn, Biometrics, 3, [errata and etensions (958) 4, ]. [9.4, 9.5] [6] MEDHI J (): Stochastic rocesses, nd edition, New Age International () Ltd., ublishers. [7] SHMELI G, MINKA T., KADANE J.B, BORLE S AND BOATWRIGHT (5): A useful distribution for fitting discrete data:revival of the COM-oisson ditribution, J.R.Stat.Soc.Ser.C(Appl. Stat), 54, 7-4. [8] SKELLAM J.G. (95) : Studies in statistical ecology I: Spatial pattern, Biometrika, 39, [9.4, 9.5, 9.8] ISSN: age 39

COM-Poisson Beta Distribution

COM-Poisson Beta Distribution COM-oisson Beta Distribution V.Saavithri Department of Mathematics Nehru Memorial College Trich. saavithriramani@gmail.com S.Thilagarathinam Department of Mathematics Nehru Memorial College Trich. rathinam.thilaga93@gmail.com.bavithra

More information

COM-Poisson Neyman Type A Distribution and its Properties

COM-Poisson Neyman Type A Distribution and its Properties COM-oisso Neyma Type A Distributio ad its roperties S. Thilagarathiam Departmet of Mathematics Nehru Memorial College Trichy, Tamil Nadu, Idia. rathiam.thilaga93@gmail.com V. Saavithri Departmet of Mathematics

More information

A Useful Distribution for Fitting Discrete Data: Revival of the COM-Poisson

A Useful Distribution for Fitting Discrete Data: Revival of the COM-Poisson A Useful Distribution for Fitting Discrete Data: Revival of the COM-Poisson Galit Shmueli Department of Decision and Information Technologies, Robert H. Smith School of Business, University of Maryland,

More information

Approximating the Conway-Maxwell-Poisson normalizing constant

Approximating the Conway-Maxwell-Poisson normalizing constant Filomat 30:4 016, 953 960 DOI 10.98/FIL1604953S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Approximating the Conway-Maxwell-Poisson

More information

Monotonicity and Aging Properties of Random Sums

Monotonicity and Aging Properties of Random Sums Monotonicity and Aging Properties of Random Sums Jun Cai and Gordon E. Willmot Department of Statistics and Actuarial Science University of Waterloo Waterloo, Ontario Canada N2L 3G1 E-mail: jcai@uwaterloo.ca,

More information

Flexiblity of Using Com-Poisson Regression Model for Count Data

Flexiblity of Using Com-Poisson Regression Model for Count Data STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING Stat., Optim. Inf. Comput., Vol. 6, June 2018, pp 278 285. Published online in International Academic Press (www.iapress.org) Flexiblity of Using Com-Poisson

More information

Key Words: Conway-Maxwell-Poisson (COM-Poisson) regression; mixture model; apparent dispersion; over-dispersion; under-dispersion

Key Words: Conway-Maxwell-Poisson (COM-Poisson) regression; mixture model; apparent dispersion; over-dispersion; under-dispersion DATA DISPERSION: NOW YOU SEE IT... NOW YOU DON T Kimberly F. Sellers Department of Mathematics and Statistics Georgetown University Washington, DC 20057 kfs7@georgetown.edu Galit Shmueli Indian School

More information

( ) ( ) ( ) On Poisson-Amarendra Distribution and Its Applications. Biometrics & Biostatistics International Journal.

( ) ( ) ( ) On Poisson-Amarendra Distribution and Its Applications. Biometrics & Biostatistics International Journal. Biometrics & Biostatistics International Journal On Poisson-Amarendra Distribution and Its Applications Abstract In this paper a simple method for obtaining moments of Poisson-Amarendra distribution (PAD)

More information

Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data

Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data Eduardo Elias Ribeiro Junior 1 2 Walmes Marques Zeviani 1 Wagner Hugo Bonat 1 Clarice Garcia

More information

Bayesian density regression for count data

Bayesian density regression for count data Bayesian density regression for count data Charalampos Chanialidis 1, Ludger Evers 2, and Tereza Neocleous 3 arxiv:1406.1882v1 [stat.me] 7 Jun 2014 1 University of Glasgow, c.chanialidis1@research.gla.ac.uk

More information

Conjugate Analysis of the Conway-Maxwell-Poisson Distribution

Conjugate Analysis of the Conway-Maxwell-Poisson Distribution Bayesian Analysis (26) 1, Number 2, pp. Conjugate Analysis of the Conway-Maxwell-Poisson Distribution Joseph B. Kadane, Galit Shmueli, Thomas P. Minka, Sharad Borle, and Peter Boatwright Abstract. This

More information

On discrete distributions with gaps having ALM property

On discrete distributions with gaps having ALM property ProbStat Forum, Volume 05, April 202, Pages 32 37 ISSN 0974-3235 ProbStat Forum is an e-journal. For details please visit www.probstat.org.in On discrete distributions with gaps having ALM property E.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.0 Discrete distributions in statistical analysis Discrete models play an extremely important role in probability theory and statistics for modeling count data. The use of discrete

More information

A Quasi Gamma Distribution

A Quasi Gamma Distribution 08; 3(4): 08-7 ISSN: 456-45 Maths 08; 3(4): 08-7 08 Stats & Maths www.mathsjournal.com Received: 05-03-08 Accepted: 06-04-08 Rama Shanker Department of Statistics, College of Science, Eritrea Institute

More information

The Conway Maxwell Poisson Model for Analyzing Crash Data

The Conway Maxwell Poisson Model for Analyzing Crash Data The Conway Maxwell Poisson Model for Analyzing Crash Data (Discussion paper associated with The COM Poisson Model for Count Data: A Survey of Methods and Applications by Sellers, K., Borle, S., and Shmueli,

More information

Study on a Hierarchy Model

Study on a Hierarchy Model Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-23-212 Study on a Hierarchy Model Suisui Che Florida International University,

More information

Statistic Modelling of Count Data through the Recursive Probability Ratio of the COM-Poisson Extended Distribution

Statistic Modelling of Count Data through the Recursive Probability Ratio of the COM-Poisson Extended Distribution Applied Mathematical Sciences, Vol. 7, 2013, no. 115, 5741-5755 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37359 Statistic Modelling of Count Data through the Recursive Probability

More information

Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model

Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model Royce A. Francis 1,2, Srinivas Reddy Geedipally 3, Seth D. Guikema 2, Soma Sekhar Dhavala 5, Dominique Lord 4, Sarah

More information

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3).

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). First of all, we note that µ = 2 and σ = 2. (a) Since X 3 is equivalent

More information

Overdispersion and underdispersion characterization of weighted Poisson distributions

Overdispersion and underdispersion characterization of weighted Poisson distributions Overdispersion and underdispersion characterization of weighted Poisson distributions Célestin C. Kokonendji a; and a University of Pau - LMA UMR 5142 CNRS Pau, France Dominique Mizère a;b b Marien Ngouabi

More information

Modelling AR(1) Stationary Time series of Com-Poisson Counts

Modelling AR(1) Stationary Time series of Com-Poisson Counts Modelling AR(1) Stationary Time series of Com-Poisson Counts Naushad Mamode Khan University of Mauritius Department of Economics Statistics Reduit Mauritius nmamodekhan@uomacmu Yuvraj Suneechur University

More information

REFERENCES AND FURTHER STUDIES

REFERENCES AND FURTHER STUDIES REFERENCES AND FURTHER STUDIES by..0. on /0/. For personal use only.. Afifi, A. A., and Azen, S. P. (), Statistical Analysis A Computer Oriented Approach, Academic Press, New York.. Alvarez, A. R., Welter,

More information

Probability and Statistics

Probability and Statistics Probability and Statistics 1 Contents some stochastic processes Stationary Stochastic Processes 2 4. Some Stochastic Processes 4.1 Bernoulli process 4.2 Binomial process 4.3 Sine wave process 4.4 Random-telegraph

More information

A process capability index for discrete processes

A process capability index for discrete processes Journal of Statistical Computation and Simulation Vol. 75, No. 3, March 2005, 175 187 A process capability index for discrete processes MICHAEL PERAKIS and EVDOKIA XEKALAKI* Department of Statistics, Athens

More information

Parameter addition to a family of multivariate exponential and weibull distribution

Parameter addition to a family of multivariate exponential and weibull distribution ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 31-38 Parameter addition to a family of multivariate exponential and weibull distribution

More information

A Note on Weighted Count Distributions

A Note on Weighted Count Distributions Journal of Statistical Theory and Applications Volume 11, Number 4, 2012, pp. 337-352 ISSN 1538-7887 A Note on Weighted Count Distributions Célestin C. Kokonendji and Marta Pérez-Casany Abstract As particular

More information

Chapters 3.2 Discrete distributions

Chapters 3.2 Discrete distributions Chapters 3.2 Discrete distributions In this section we study several discrete distributions and their properties. Here are a few, classified by their support S X. There are of course many, many more. For

More information

Distribution of a Sum of Random Variables when the Sample Size is a Poisson Distribution

Distribution of a Sum of Random Variables when the Sample Size is a Poisson Distribution East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2018 Distribution of a Sum of Random Variables when the Sample Size

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Bridging the Gap: A Generalized Stochastic Process for Count Data

Bridging the Gap: A Generalized Stochastic Process for Count Data The American Statistician ISSN: 0003-305 (Print) 537-273 (Online) Journal homepage: http://amstat.tandfonline.com/loi/utas20 Bridging the Gap: A Generalized Stochastic Process for Count Data Li Zhu Kimberly

More information

TRB Paper # Examining the Crash Variances Estimated by the Poisson-Gamma and Conway-Maxwell-Poisson Models

TRB Paper # Examining the Crash Variances Estimated by the Poisson-Gamma and Conway-Maxwell-Poisson Models TRB Paper #11-2877 Examining the Crash Variances Estimated by the Poisson-Gamma and Conway-Maxwell-Poisson Models Srinivas Reddy Geedipally 1 Engineering Research Associate Texas Transportation Instute

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

arxiv: v1 [stat.ap] 9 Nov 2010

arxiv: v1 [stat.ap] 9 Nov 2010 The Annals of Applied Statistics 2010, Vol. 4, No. 2, 943 961 DOI: 10.1214/09-AOAS306 c Institute of Mathematical Statistics, 2010 A FLEXIBLE REGRESSION MODEL FOR COUNT DATA arxiv:1011.2077v1 [stat.ap]

More information

On bounds in multivariate Poisson approximation

On bounds in multivariate Poisson approximation Workshop on New Directions in Stein s Method IMS (NUS, Singapore), May 18-29, 2015 Acknowledgments Thanks Institute for Mathematical Sciences (IMS, NUS), for the invitation, hospitality and accommodation

More information

CHARACTERIZATION OF MARKOV-BERNOULLI GEOMETRIC DISTRIBUTION RELATED TO RANDOM SUMS

CHARACTERIZATION OF MARKOV-BERNOULLI GEOMETRIC DISTRIBUTION RELATED TO RANDOM SUMS Journal of Mathematics and Statistics 0 (2): 86-9, 204 ISSN: 549-3644 204 Science ublications doi:03844/jmssp204869 ublished Online 0 (2) 204 (http://wwwthescipubcom/jmsstoc) CHARACTERIZATION OF MARKOV-BERNOULLI

More information

A MODIFIED STEEPEST DESCENT METHOD WITH APPLICATIONS TO MAXIMIZING LIKELIHOOD FUNCTIONS

A MODIFIED STEEPEST DESCENT METHOD WITH APPLICATIONS TO MAXIMIZING LIKELIHOOD FUNCTIONS Ann. Inst. Statist. Math. Vol. 43, No. 2, 391-404 (1991) A MODIFIED STEEPEST DESCENT METHOD WITH APPLICATIONS TO MAXIMIZING LIKELIHOOD FUNCTIONS MOHAMED HABIBULLAH 1 AND S. K. KATTI 2 1 Division of Sciences

More information

IE 303 Discrete-Event Simulation

IE 303 Discrete-Event Simulation IE 303 Discrete-Event Simulation 1 L E C T U R E 5 : P R O B A B I L I T Y R E V I E W Review of the Last Lecture Random Variables Probability Density (Mass) Functions Cumulative Density Function Discrete

More information

ON INTERVENED NEGATIVE BINOMIAL DISTRIBUTION AND SOME OF ITS PROPERTIES

ON INTERVENED NEGATIVE BINOMIAL DISTRIBUTION AND SOME OF ITS PROPERTIES STATISTICA, anno LII, n. 4, 01 ON INTERVENED NEGATIVE BINOMIAL DISTRIBUTION AND SOME OF ITS PROPERTIES 1. INTRODUCTION Since 1985, intervened tpe distributions have received much attention in the literature.

More information

Capacity and Optimal Power Allocation of Poisson Optical Communication Channels

Capacity and Optimal Power Allocation of Poisson Optical Communication Channels , October 19-21, 2011, San Francisco, USA Capacity and Optimal ower Allocation of oisson Optical Communication Channels Samah A M Ghanem, Member, IAENG, Munnujahan Ara, Member, IAENG Abstract in this paper,

More information

CS145: Probability & Computing

CS145: Probability & Computing CS45: Probability & Computing Lecture 5: Concentration Inequalities, Law of Large Numbers, Central Limit Theorem Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis,

More information

Katz Family of Distributions and Processes

Katz Family of Distributions and Processes CHAPTER 7 Katz Family of Distributions and Processes 7. Introduction The Poisson distribution and the Negative binomial distribution are the most widely used discrete probability distributions for the

More information

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY SECOND YEAR B.Sc. SEMESTER - III SYLLABUS FOR S. Y. B. Sc. STATISTICS Academic Year 07-8 S.Y. B.Sc. (Statistics)

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Generalized Linear Model under the Extended Negative Multinomial Model and Cancer Incidence

Generalized Linear Model under the Extended Negative Multinomial Model and Cancer Incidence Generalized Linear Model under the Extended Negative Multinomial Model and Cancer Incidence Sunil Kumar Dhar Center for Applied Mathematics and Statistics, Department of Mathematical Sciences, New Jersey

More information

ISSN: Page 34

ISSN: Page 34 Estimation of Mean Time to Recruitment in a Two Graded Manpower System with Depletion and Inter-Decision Times are Independent and Non - Identically Distributed Random Variables S.Jenita #1 & S.Sendhamizh

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Univariate Discrete Distributions

Univariate Discrete Distributions Univariate Discrete Distributions Second Edition NORMAN L. JOHNSON University of North Carolina Chapel Hill, North Carolina SAMUEL KOTZ University of Maryland College Park, Maryland ADRIENNE W. KEMP University

More information

THE MODIFIED MCSP-C CONTINUOUS SAMPLING PLAN

THE MODIFIED MCSP-C CONTINUOUS SAMPLING PLAN International Journal of Pure and Applied Mathematics Volume 80 No. 2 2012, 225-237 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu THE MODIFIED MCSP-C CONTINUOUS SAMPLING PLAN P.

More information

Random Infinite Divisibility on Z + and Generalized INAR(1) Models

Random Infinite Divisibility on Z + and Generalized INAR(1) Models ProbStat Forum, Volume 03, July 2010, Pages 108-117 ISSN 0974-3235 Random Infinite Divisibility on Z + and Generalized INAR(1) Models Satheesh S NEELOLPALAM, S. N. Park Road Trichur - 680 004, India. ssatheesh1963@yahoo.co.in

More information

Using Count Regression Models to Determine the Factors which Effects the Hospitalization Number of People with Schizophrenia

Using Count Regression Models to Determine the Factors which Effects the Hospitalization Number of People with Schizophrenia Journal of Data Science 511-530, DOI: 10.6339/JDS.201807_16(3).0004 Using Count Regression Models to Determine the Factors which Effects the Esin Avcı* a Department of Statistics, University of Giresun,

More information

THE ROYAL STATISTICAL SOCIETY 2007 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 2 PROBABILITY MODELS

THE ROYAL STATISTICAL SOCIETY 2007 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 2 PROBABILITY MODELS THE ROYAL STATISTICAL SOCIETY 007 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE ROBABILITY MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

On a simple construction of bivariate probability functions with fixed marginals 1

On a simple construction of bivariate probability functions with fixed marginals 1 On a simple construction of bivariate probability functions with fixed marginals 1 Djilali AIT AOUDIA a, Éric MARCHANDb,2 a Université du Québec à Montréal, Département de mathématiques, 201, Ave Président-Kennedy

More information

Application of the hyper-poisson generalized linear model for analyzing motor vehicle crashes

Application of the hyper-poisson generalized linear model for analyzing motor vehicle crashes Application of the hyper-poisson generalized linear model for analyzing motor vehicle crashes S. Hadi Khazraee 1 Graduate Research Assistant Zachry Department of Civil Engineering Texas A&M University

More information

On Discrete Distributions Generated through Mittag-Leffler Function and their Properties

On Discrete Distributions Generated through Mittag-Leffler Function and their Properties On Discrete Distributions Generated through Mittag-Leffler Function and their Properties Mariamma Antony Department of Statistics Little Flower College, Guruvayur Kerala, India Abstract The Poisson distribution

More information

Submitted to the Brazilian Journal of Probability and Statistics

Submitted to the Brazilian Journal of Probability and Statistics Submitted to the Brazilian Journal of Probability and Statistics Sums of Possibly Associated Multivariate Indicator Functions: The Conway-Maxwell-Multinomial Distribution Joseph B. Kadane a and Zhi Wang

More information

Unit 7 Vocabulary Awareness Chart

Unit 7 Vocabulary Awareness Chart Unit 7, Activity 1, Vocabulary Self-Awareness Chart Unit 7 Vocabulary Awareness Chart Word + - Eample Definition Common ratio Decay factor Eponential decay Eponential function Eponential growth Eponential

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical CDA5530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic ti process X = {X(t), t T} is a collection of random variables (rvs); one

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2 IEOR 316: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 2 More Probability Review: In the Ross textbook, Introduction to Probability Models, read

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

Week 4 Spring Lecture 7. Empirical Bayes, hierarchical Bayes and random effects

Week 4 Spring Lecture 7. Empirical Bayes, hierarchical Bayes and random effects Week 4 Spring 9 Lecture 7 Empirical Bayes, hierarchical Bayes and random effects Empirical Bayes and Hierarchical Bayes eview: Let X N (; ) Consider a normal prior N (; ) Then the posterior distribution

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

S n = x + X 1 + X X n.

S n = x + X 1 + X X n. 0 Lecture 0 0. Gambler Ruin Problem Let X be a payoff if a coin toss game such that P(X = ) = P(X = ) = /2. Suppose you start with x dollars and play the game n times. Let X,X 2,...,X n be payoffs in each

More information

4 Branching Processes

4 Branching Processes 4 Branching Processes Organise by generations: Discrete time. If P(no offspring) 0 there is a probability that the process will die out. Let X = number of offspring of an individual p(x) = P(X = x) = offspring

More information

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr. Topic 2: Probability & Distributions ECO220Y5Y: Quantitative Methods in Economics Dr. Nick Zammit University of Toronto Department of Economics Room KN3272 n.zammit utoronto.ca November 21, 2017 Dr. Nick

More information

A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES

A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES Sankhyā : The Indian Journal of Statistics 1998, Volume 6, Series A, Pt. 2, pp. 171-175 A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES By P. HITCZENKO North Carolina State

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN 1686 On Some Generalised Transmuted Distributions Kishore K. Das Luku Deka Barman Department of Statistics Gauhati University Abstract In this paper a generalized form of the transmuted distributions has

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

PAijpam.eu REPEATED RANDOM ALLOCATIONS WITH INCOMPLETE INFORMATION Vladimir G. Panov 1, Julia V. Nagrebetskaya 2

PAijpam.eu REPEATED RANDOM ALLOCATIONS WITH INCOMPLETE INFORMATION Vladimir G. Panov 1, Julia V. Nagrebetskaya 2 International Journal of Pure and Applied Mathematics Volume 118 No. 4 2018, 1021-1032 ISSN: 1311-8080 printed version; ISSN: 1314-3395 on-line version url: http://www.ipam.eu doi: 10.12732/ipam.v118i4.16

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

Poisson Distribution Examples And Solutions

Poisson Distribution Examples And Solutions We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with poisson distribution

More information

Homework 6: Solutions Sid Banerjee Problem 1: (The Flajolet-Martin Counter) ORIE 4520: Stochastics at Scale Fall 2015

Homework 6: Solutions Sid Banerjee Problem 1: (The Flajolet-Martin Counter) ORIE 4520: Stochastics at Scale Fall 2015 Problem 1: (The Flajolet-Martin Counter) In class (and in the prelim!), we looked at an idealized algorithm for finding the number of distinct elements in a stream, where we sampled uniform random variables

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Supplement 2: Review Your Distributions Relevant textbook passages: Pitman [10]: pages 476 487. Larsen

More information

Survival Analysis for Case-Cohort Studies

Survival Analysis for Case-Cohort Studies Survival Analysis for ase-ohort Studies Petr Klášterecký Dept. of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, harles University, Prague, zech Republic e-mail: petr.klasterecky@matfyz.cz

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Notes on Mathematical Expectations and Classes of Distributions Introduction to Econometric Theory Econ. 770

Notes on Mathematical Expectations and Classes of Distributions Introduction to Econometric Theory Econ. 770 Notes on Mathematical Expectations and Classes of Distributions Introduction to Econometric Theory Econ. 77 Jonathan B. Hill Dept. of Economics University of North Carolina - Chapel Hill October 4, 2 MATHEMATICAL

More information

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTONOMY. FIRST YEAR B.Sc.(Computer Science) SEMESTER I

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTONOMY. FIRST YEAR B.Sc.(Computer Science) SEMESTER I Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTONOMY FIRST YEAR B.Sc.(Computer Science) SEMESTER I SYLLABUS FOR F.Y.B.Sc.(Computer Science) STATISTICS Academic Year 2016-2017

More information

Statistics for Managers Using Microsoft Excel (3 rd Edition)

Statistics for Managers Using Microsoft Excel (3 rd Edition) Statistics for Managers Using Microsoft Excel (3 rd Edition) Chapter 4 Basic Probability and Discrete Probability Distributions 2002 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic probability concepts

More information

Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables.

Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables. Stat 260 - Lecture 20 Recap of Last Class Last class we introduced the covariance and correlation between two jointly distributed random variables. Today: We will introduce the idea of a statistic and

More information

Continuous Univariate Distributions

Continuous Univariate Distributions Continuous Univariate Distributions Volume 2 Second Edition NORMAN L. JOHNSON University of North Carolina Chapel Hill, North Carolina SAMUEL KOTZ University of Maryland College Park, Maryland N. BALAKRISHNAN

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2018 Supplement 2: Review Your Distributions Relevant textbook passages: Pitman [10]: pages 476 487. Larsen

More information

THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE STAT131 PROBABILITY AND STATISTICS I EXAMPLE CLASS 8 Review Conditional Distributions and Conditional Expectation For any two

More information

Figure 36: Respiratory infection versus time for the first 49 children.

Figure 36: Respiratory infection versus time for the first 49 children. y BINARY DATA MODELS We devote an entire chapter to binary data since such data are challenging, both in terms of modeling the dependence, and parameter interpretation. We again consider mixed effects

More information

Confidence Intervals of the Simple Difference between the Proportions of a Primary Infection and a Secondary Infection, Given the Primary Infection

Confidence Intervals of the Simple Difference between the Proportions of a Primary Infection and a Secondary Infection, Given the Primary Infection Biometrical Journal 42 (2000) 1, 59±69 Confidence Intervals of the Simple Difference between the Proportions of a Primary Infection and a Secondary Infection, Given the Primary Infection Kung-Jong Lui

More information

Modified Kolmogorov-Smirnov Test of Goodness of Fit. Catalonia-BarcelonaTECH, Spain

Modified Kolmogorov-Smirnov Test of Goodness of Fit. Catalonia-BarcelonaTECH, Spain 152/304 CoDaWork 2017 Abbadia San Salvatore (IT) Modified Kolmogorov-Smirnov Test of Goodness of Fit G.S. Monti 1, G. Mateu-Figueras 2, M. I. Ortego 3, V. Pawlowsky-Glahn 2 and J. J. Egozcue 3 1 Department

More information

arxiv: v1 [stat.me] 7 Apr 2014

arxiv: v1 [stat.me] 7 Apr 2014 SUMS OF POSSIBLY ASSOCIATED BERNOULLI VARIABLES: THE CONWAY-MAXWELL-BINOMIAL DISTRIBUTION JOSEPH B. KADANE arxiv:1404.1856v1 [stat.me] 7 Apr 2014 Abstract. The study of sums of possibly associated Bernoulli

More information

Comment on Article by Scutari

Comment on Article by Scutari Bayesian Analysis (2013) 8, Number 3, pp. 543 548 Comment on Article by Scutari Hao Wang Scutari s paper studies properties of the distribution of graphs ppgq. This is an interesting angle because it differs

More information

3 Conditional Expectation

3 Conditional Expectation 3 Conditional Expectation 3.1 The Discrete case Recall that for any two events E and F, the conditional probability of E given F is defined, whenever P (F ) > 0, by P (E F ) P (E)P (F ). P (F ) Example.

More information

Chapter 5. Means and Variances

Chapter 5. Means and Variances 1 Chapter 5 Means and Variances Our discussion of probability has taken us from a simple classical view of counting successes relative to total outcomes and has brought us to the idea of a probability

More information

A unified view on lifetime distributions arising from selection mechanisms

A unified view on lifetime distributions arising from selection mechanisms A unified view on lifetime distributions arising from selection mechanisms Josemar Rodrigues a, N. Balakrishnan b, Gauss M. Cordeiro c and Mário de Castro d a Universidade Federal de São Carlos, Departamento

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Random Models Tusheng Zhang February 14, 013 1 Introduction In this module, we will introduce some random models which have many real life applications. The course consists of four parts. 1. A brief review

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics School of Mathematics and Statistics, University of Sheffield 2018 19 Identically distributed Suppose we have n random variables X 1, X 2,..., X n. Identically

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 4 (2011/12) 1 February 20, 2012 Outline: 1. Failure Time 2. Loss Frequency 3. Loss Severity 4. Aggregate Claim ====================================================

More information

PROD. TYPE: COM. Simple improved condence intervals for comparing matched proportions. Alan Agresti ; and Yongyi Min UNCORRECTED PROOF

PROD. TYPE: COM. Simple improved condence intervals for comparing matched proportions. Alan Agresti ; and Yongyi Min UNCORRECTED PROOF pp: --2 (col.fig.: Nil) STATISTICS IN MEDICINE Statist. Med. 2004; 2:000 000 (DOI: 0.002/sim.8) PROD. TYPE: COM ED: Chandra PAGN: Vidya -- SCAN: Nil Simple improved condence intervals for comparing matched

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

BAYESIAN INFERENCE ON MIXTURE OF GEOMETRIC WITH DEGENERATE DISTRIBUTION: ZERO INFLATED GEOMETRIC DISTRIBUTION

BAYESIAN INFERENCE ON MIXTURE OF GEOMETRIC WITH DEGENERATE DISTRIBUTION: ZERO INFLATED GEOMETRIC DISTRIBUTION IJRRAS 3 () October www.arpapress.com/volumes/vol3issue/ijrras_3 5.pdf BAYESIAN INFERENCE ON MIXTURE OF GEOMETRIC WITH DEGENERATE DISTRIBUTION: ZERO INFLATED GEOMETRIC DISTRIBUTION Mayuri Pandya, Hardik

More information