Phase Diagram Study on Variational Bayes Learning of Bernoulli Mixture

Size: px
Start display at page:

Download "Phase Diagram Study on Variational Bayes Learning of Bernoulli Mixture"

Transcription

1 009 Technical Report on Information-Based Induction Sciences 009 (IBIS009) Phase Diagram Study on Variational Bayes Learning of Bernoulli Mixture Daisue Kaji Sumio Watanabe Abstract: Variational Bayes learning is widely used in statistical models that contain hidden variables, for example, normal mixtures, binomial mixtures, and hidden Marov models. Although it is reported that variational Bayes learning of mixtute model has a phase transition structure which depends on hyperparameters of mixture ratio, the detail behavior and relation of hyperparameters concerning the phase transition have not yet nown. In the present paper, we experimentally investigate the phase diagram concerning the hyperparameters by using the Bernoulli mixture and show the guidance to set the hyperparameters. Keywords: variational Bayes, phase transition, phase diagram, hyperparameter, Bernoulli mixture 1 EM [3, 8] [1, 1] /, , tel , aji@cs.pi.titech.ac.jp Toyo Inistitute of Technology, 459 Nagatsuda, Midoriu,Yoohama, Japan ( ), , tel , daisue.aji@onicaminolta.jp Konicaminolta Medical & Graphic,INC, 970 Ishiawa-machi, Hachioji-shi,Toyo, , Japan, , swatanab@cs.pi.titech.ac.jp, PI Lab., Toyo Institute of Technology, 459 Nagatsuta Midoriu, Yoohama, , Japan [3, 10] 1 M B(x µ) = µ x i (1 µ) (1 xi), i=1 x = (x 1,, x M ) T µ = (µ 1,, µ M ) T M K p(x π, µ) = π B(x µ ), =1 π B(x µ ) K x

2 z x z = (0,, 1,, 0) z x Z = (z 1,, z N ), X = (x 1,, x N ), π θ p(x Z, θ) = p(θ) = N p(z π) = n=1 =1 m N K n=1 =1 π z n, ( K M zn θ x nm m (1 θ m) (1 xnm)), p(π) = Γ(Ka) Γ(a) K K M =1 m=1 K π a 1, ( ) Γ(b) Γ(b) θb 1 m (1 θ m) b 1 (a, b) p(π) p(θ) Y X q(y ) p(y X) F (X) = F [q(y )] + KL(q(Y ) p(y X)), F, F Kullbac-Leibler KL F (X) = log p(x, Y )dy = log p(x), q(y ) F [q(y )] = q(y ) log p(x, Y ) dy, q(y ) KL(q(Y ) p(y X)) = q(y ) log p(y X)) dy. q(y ) F [q(y )] q(y ) p(y X) Kullbac- Leibler w q(y ) q(y X) = q(z, w X) = q 1 (Z X)q (w X) F [q(y X)] q 1 q Z q 1(Z X) = 1, q (w X)dw = 1 log q 1 (Z X) = E q [log P (X, Z, w)] + C 1, (1) log q (w X) = E q1 [log P (X, Z, w)] + C, () C 1, C (1) () 3. (1) ( ) VB e-step ( K ) log ρ n = ψ(α ) ψ α + r n = VB m-step ρ n K =1 ρ n N = n=1 N r n, n=1 M G(η m, η m) m=1 a = a + N N N η m = b + r n x nm, η m = b + r n (1 x nm ) G(η m, η m) n=1 = x nm ψ(η m ) x nm ψ(η m)+ψ(η m) ψ(η m + η m) ψ ψ(a) d da log Γ(a) = Γ (a) Γ(a) q 1 (π) = Dir(π α), q (θ) = K M Beta(θ m η m, η m) =1 m=1

3 4 [Theorem1:K.Watanabe,S.Watanabe] K 0 K ˆF n M = 3 p (x) = 0.8 (0.9 x x ) (0.1 x x ) 1 λ 1 log n + nk n (ŵ) + c 1 < ˆF n S n < λ log n + c S n K n (ŵ) ŵ c 1, c λ 1 λ M = M+1 λ 1 = { (K 1)a + M, (a M ) MK+K 1, (a > M ) λ = { (K K 0 )a + MK0+K0 1, (a M ) MK+K 1, (a > M ) a a = M a M 0 a > M a = M [1] [1] 1: ( ) 1 0 x i (i = 1, ) a = 3+1 = 1 8 N N = S i (i = 1,, 8) t S (t) i (t = 1,, 3) S 1 S 8 P 1 P 8

4 VB e-step log ρ Si = Ψ α () + S (1) i Ψ 1 () + (1 S (1) i )Ψ 1() + Ψ () + S () i Ψ 1 () + (1 S () i )Ψ 1() + Ψ () + S (3) i Ψ 1 () + (1 S (3) i )Ψ 1() + Ψ () ρ Si r Si = 4 =1 ρ S i VB m-step N = 4 NP i r Si, i=1 a = a + N η 1 = b + r S1 NP 1 + r S NP + r S3 NP 3 + r S4 NP 4 η = b + r S1NP 1 + r SNP + r S5NP 5 + r S6NP 6 η 3 = b + r S1 NP 1 + r S4 NP 4 + r S5 NP 5 + r S7 NP 7 η 1 = b + r S5 NP 5 + r S6 NP 6 + r S7 NP 7 + r S8 NP 8 η = b + r S3NP 3 + r S4NP 4 + r S7NP 7 + r S8NP 8 η 3 = b + r SNP + r S3NP 3 + r S6NP 6 + r S8NP 8 ( K ) Ψ α () = ψ(α ) ψ α, Ψ 1 () = ψ(η 1 ) ψ(η 1) + ψ(η 1) ψ(η 1 + η 1), Ψ () = ψ(η ) ψ(η ) + ψ(η ) ψ(η + η ), Ψ 1() = ψ(η 1) ψ(η 1 + η 1), Ψ () = ψ(η ) ψ(η + η ) 5. K = 4 a, b (log ) () π 1,, π 4 z = π π 0. z 0 ( ) a = M = 3+1 = b : a b z = π π A: B:A C C: () a b 0.5 b = 0.5 b = 1 a b 1 0 [11] a >.0 b B A

5 C b = 0.5 a <.0 C A 4 M = ( ) / 6 M =, M = 3 3: ( : ), ( : ), ( ) A,B,C [1] K. Watanabe and S. Watanabe. Stochastic complexities of general mixture models in Variational Bayesian Approximation. Neural Computation, Vol. 18, No. 5, pp , 006. [] S. Naajima and S. Watanabe. Variational Bayes Solution of Linear Neural Networs and its Generalization Performance. Neural Computation, Vol. 19, No. 4, pp , 007. [3] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 006. [4] S. Watanabe. Algebraic analysis for singular statistical estimation. Proc. of International Journal of AlgorithmicLearningTheory Lecture Notes on Computer Sciences,170, pp.39-50, : M = ( ) ( ) a, b [5] S. Watanabe. Algebraic Analysis for Nonidentifiable LearningMachines. Neural Computation, Vol.13, No.4, pp , 001 [6] S. Watanabe. Learning efficiency of redundant neural networsin Bayesian estimation. IEEE Transactions on NeuralNetwors, Vol.1, No.6, pp , 001.

6 [7] H. Attias. Inferring parameters and structure of latent variable models by variational Bayes, In Proc. of Uncertainty in Artificial Intelligence(UAI 99),1999. [8] M. J. Beal. Variational Algorithms for approximate Bayesian inference. PhD thesis, University College London, 003. [9] Z. Ghahramani and M. J. Beal. Graphical Models and Variational Methods. In Advanced Mean Field. Methods. MIT Press, 000 [10] P. F. Lazarsfeld and N. W. Henry. Latent structure analysis. Houghton Mifflin, 1968 [11] D. Kaji and S. Watanabe. Optimal Hyperparameters for Generalized Learning and Knowledge Discovery in Variational Bayes. To appear in Proc. of ICONIP, 009 [1],.. NC, January 009.

Stochastic Complexity of Variational Bayesian Hidden Markov Models

Stochastic Complexity of Variational Bayesian Hidden Markov Models Stochastic Complexity of Variational Bayesian Hidden Markov Models Tikara Hosino Department of Computational Intelligence and System Science, Tokyo Institute of Technology Mailbox R-5, 459 Nagatsuta, Midori-ku,

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

A Gradient-Based Algorithm Competitive with Variational Bayesian EM for Mixture of Gaussians

A Gradient-Based Algorithm Competitive with Variational Bayesian EM for Mixture of Gaussians A Gradient-Based Algorithm Competitive with Variational Bayesian EM for Mixture of Gaussians Miael Kuusela, Tapani Raio, Antti Honela, and Juha Karhunen Abstract While variational Bayesian (VB) inference

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2017

Cheng Soon Ong & Christian Walder. Canberra February June 2017 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2017 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 679 Part XIX

More information

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection

CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection CSC2535: Computation in Neural Networks Lecture 7: Variational Bayesian Learning & Model Selection (non-examinable material) Matthew J. Beal February 27, 2004 www.variational-bayes.org Bayesian Model Selection

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

An Introduction to Bayesian Machine Learning

An Introduction to Bayesian Machine Learning 1 An Introduction to Bayesian Machine Learning José Miguel Hernández-Lobato Department of Engineering, Cambridge University April 8, 2013 2 What is Machine Learning? The design of computational systems

More information

Bayesian methods for graph clustering

Bayesian methods for graph clustering Author manuscript, published in "Advances in data handling and business intelligence (2009) 229-239" DOI : 10.1007/978-3-642-01044-6 Bayesian methods for graph clustering P. Latouche, E. Birmelé, and C.

More information

Algorithms for Variational Learning of Mixture of Gaussians

Algorithms for Variational Learning of Mixture of Gaussians Algorithms for Variational Learning of Mixture of Gaussians Instructors: Tapani Raiko and Antti Honkela Bayes Group Adaptive Informatics Research Center 28.08.2008 Variational Bayesian Inference Mixture

More information

An introduction to Variational calculus in Machine Learning

An introduction to Variational calculus in Machine Learning n introduction to Variational calculus in Machine Learning nders Meng February 2004 1 Introduction The intention of this note is not to give a full understanding of calculus of variations since this area

More information

Aalborg Universitet. Published in: IEEE International Conference on Acoustics, Speech, and Signal Processing. Creative Commons License Unspecified

Aalborg Universitet. Published in: IEEE International Conference on Acoustics, Speech, and Signal Processing. Creative Commons License Unspecified Aalborg Universitet Model-based Noise PSD Estimation from Speech in Non-stationary Noise Nielsen, Jesper jær; avalekalam, Mathew Shaji; Christensen, Mads Græsbøll; Boldt, Jesper Bünsow Published in: IEEE

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

A Derivation of the EM Updates for Finding the Maximum Likelihood Parameter Estimates of the Student s t Distribution

A Derivation of the EM Updates for Finding the Maximum Likelihood Parameter Estimates of the Student s t Distribution A Derivation of the EM Updates for Finding the Maximum Likelihood Parameter Estimates of the Student s t Distribution Carl Scheffler First draft: September 008 Contents The Student s t Distribution The

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Variational Scoring of Graphical Model Structures

Variational Scoring of Graphical Model Structures Variational Scoring of Graphical Model Structures Matthew J. Beal Work with Zoubin Ghahramani & Carl Rasmussen, Toronto. 15th September 2003 Overview Bayesian model selection Approximations using Variational

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Algebraic Information Geometry for Learning Machines with Singularities

Algebraic Information Geometry for Learning Machines with Singularities Algebraic Information Geometry for Learning Machines with Singularities Sumio Watanabe Precision and Intelligence Laboratory Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

G8325: Variational Bayes

G8325: Variational Bayes G8325: Variational Bayes Vincent Dorie Columbia University Wednesday, November 2nd, 2011 bridge Variational University Bayes Press 2003. On-screen viewing permitted. Printing not permitted. http://www.c

More information

Deterministic annealing variant of variational Bayes method

Deterministic annealing variant of variational Bayes method Journal of Physics: Conference Series Deterministic annealing variant of variational Bayes method To cite this article: K Katahira et al 28 J. Phys.: Conf. Ser. 95 1215 View the article online for updates

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 89 Part II

More information

Lecture 2: Priors and Conjugacy

Lecture 2: Priors and Conjugacy Lecture 2: Priors and Conjugacy Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 6, 2014 Some nice courses Fred A. Hamprecht (Heidelberg U.) https://www.youtube.com/watch?v=j66rrnzzkow Michael I.

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Stochastic Complexities of Reduced Rank Regression in Bayesian Estimation

Stochastic Complexities of Reduced Rank Regression in Bayesian Estimation Stochastic Complexities of Reduced Rank Regression in Bayesian Estimation Miki Aoyagi and Sumio Watanabe Contact information for authors. M. Aoyagi Email : miki-a@sophia.ac.jp Address : Department of Mathematics,

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Stochastic Variational Inference

Stochastic Variational Inference Stochastic Variational Inference David M. Blei Princeton University (DRAFT: DO NOT CITE) December 8, 2011 We derive a stochastic optimization algorithm for mean field variational inference, which we call

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

A Bayesian Local Linear Wavelet Neural Network

A Bayesian Local Linear Wavelet Neural Network A Bayesian Local Linear Wavelet Neural Network Kunikazu Kobayashi, Masanao Obayashi, and Takashi Kuremoto Yamaguchi University, 2-16-1, Tokiwadai, Ube, Yamaguchi 755-8611, Japan {koba, m.obayas, wu}@yamaguchi-u.ac.jp

More information

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA)

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Willem van den Boom Department of Statistics and Applied Probability National University

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM Pattern Recognition and Machine Learning Chapter 9: Mixture Models and EM Thomas Mensink Jakob Verbeek October 11, 27 Le Menu 9.1 K-means clustering Getting the idea with a simple example 9.2 Mixtures

More information

U-Likelihood and U-Updating Algorithms: Statistical Inference in Latent Variable Models

U-Likelihood and U-Updating Algorithms: Statistical Inference in Latent Variable Models U-Likelihood and U-Updating Algorithms: Statistical Inference in Latent Variable Models Jaemo Sung 1, Sung-Yang Bang 1, Seungjin Choi 1, and Zoubin Ghahramani 2 1 Department of Computer Science, POSTECH,

More information

Intro to Probability. Andrei Barbu

Intro to Probability. Andrei Barbu Intro to Probability Andrei Barbu Some problems Some problems A means to capture uncertainty Some problems A means to capture uncertainty You have data from two sources, are they different? Some problems

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 6 Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.) Project Project Deadlines 3 Feb: Form teams of

More information

Bayesian Hidden Markov Models and Extensions

Bayesian Hidden Markov Models and Extensions Bayesian Hidden Markov Models and Extensions Zoubin Ghahramani Department of Engineering University of Cambridge joint work with Matt Beal, Jurgen van Gael, Yunus Saatci, Tom Stepleton, Yee Whye Teh Modeling

More information

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models

Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Bayesian Image Segmentation Using MRF s Combined with Hierarchical Prior Models Kohta Aoki 1 and Hiroshi Nagahashi 2 1 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology

More information

A Generative Block-Diagonal Model for Clustering

A Generative Block-Diagonal Model for Clustering A Generative Block-Diagonal Model for Clustering Junxiang Chen Dept. of Electrical & Computer Engineering Northeastern University Boston, MA 02115 jchen@ece.neu.edu Jennifer Dy Dept. of Electrical & Computer

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

Bayesian Mixtures of Bernoulli Distributions

Bayesian Mixtures of Bernoulli Distributions Bayesian Mixtures of Bernoulli Distributions Laurens van der Maaten Department of Computer Science and Engineering University of California, San Diego Introduction The mixture of Bernoulli distributions

More information

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures

Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures 17th Europ. Conf. on Machine Learning, Berlin, Germany, 2006. Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures Shipeng Yu 1,2, Kai Yu 2, Volker Tresp 2, and Hans-Peter

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Part I : Mathematical Learning Theory (1-8) By Sumio Watanabe, Evaluation : Report Part II : Information Statistical Mechanics (9-15) By Yoshiyuki Kabashima, Evaluation : Report

More information

CS Lecture 18. Expectation Maximization

CS Lecture 18. Expectation Maximization CS 6347 Lecture 18 Expectation Maximization Unobserved Variables Latent or hidden variables in the model are never observed We may or may not be interested in their values, but their existence is crucial

More information

Statistical Learning Theory of Variational Bayes

Statistical Learning Theory of Variational Bayes Statistical Learning Theory of Variational Bayes Department of Computational Intelligence and Systems Science Interdisciplinary Graduate School of Science and Engineering Tokyo Institute of Technology

More information

Image recognition based on hidden Markov eigen-image models using variational Bayesian method

Image recognition based on hidden Markov eigen-image models using variational Bayesian method Image recognition based on hidden Marov eigen-image models using variational Bayesian method Kei Sawada, Kei Hashimoto, Yoshihio Nanau and Keiichi Touda Department of Scientific and Engineering Simulation,

More information

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic NPFL108 Bayesian inference Introduction Filip Jurčíček Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic Home page: http://ufal.mff.cuni.cz/~jurcicek Version: 21/02/2014

More information

The Variational Gaussian Approximation Revisited

The Variational Gaussian Approximation Revisited The Variational Gaussian Approximation Revisited Manfred Opper Cédric Archambeau March 16, 2009 Abstract The variational approximation of posterior distributions by multivariate Gaussians has been much

More information

Chapter 08: Direct Maximum Likelihood/MAP Estimation and Incomplete Data Problems

Chapter 08: Direct Maximum Likelihood/MAP Estimation and Incomplete Data Problems LEARNING AND INFERENCE IN GRAPHICAL MODELS Chapter 08: Direct Maximum Likelihood/MAP Estimation and Incomplete Data Problems Dr. Martin Lauer University of Freiburg Machine Learning Lab Karlsruhe Institute

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Approximate Inference using MCMC

Approximate Inference using MCMC Approximate Inference using MCMC 9.520 Class 22 Ruslan Salakhutdinov BCS and CSAIL, MIT 1 Plan 1. Introduction/Notation. 2. Examples of successful Bayesian models. 3. Basic Sampling Algorithms. 4. Markov

More information

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC. Course on Bayesian Inference, WTCN, UCL, February 2013 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented

More information

The Minimum Message Length Principle for Inductive Inference

The Minimum Message Length Principle for Inductive Inference The Principle for Inductive Inference Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population Health University of Melbourne University of Helsinki, August 25,

More information

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Shunsuke Horii Waseda University s.horii@aoni.waseda.jp Abstract In this paper, we present a hierarchical model which

More information

Self-Organization by Optimizing Free-Energy

Self-Organization by Optimizing Free-Energy Self-Organization by Optimizing Free-Energy J.J. Verbeek, N. Vlassis, B.J.A. Kröse University of Amsterdam, Informatics Institute Kruislaan 403, 1098 SJ Amsterdam, The Netherlands Abstract. We present

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Graphical models: parameter learning

Graphical models: parameter learning Graphical models: parameter learning Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London London WC1N 3AR, England http://www.gatsby.ucl.ac.uk/ zoubin/ zoubin@gatsby.ucl.ac.uk

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Asymptotic Analysis of the Bayesian Likelihood Ratio for Testing Homogeneity in Normal Mixture Models

Asymptotic Analysis of the Bayesian Likelihood Ratio for Testing Homogeneity in Normal Mixture Models Asymptotic Analysis of the Bayesian Likelihood Ratio for Testing Homogeneity in Normal Mixture Models arxiv:181.351v1 [math.st] 9 Dec 18 Natsuki Kariya, and Sumio Watanabe Department of Mathematical and

More information

Variational Mixture of Gaussians. Sargur Srihari

Variational Mixture of Gaussians. Sargur Srihari Variational Mixture of Gaussians Sargur srihari@cedar.buffalo.edu 1 Objective Apply variational inference machinery to Gaussian Mixture Models Demonstrates how Bayesian treatment elegantly resolves difficulties

More information

Natural Gradient Learning for Over- and Under-Complete Bases in ICA

Natural Gradient Learning for Over- and Under-Complete Bases in ICA NOTE Communicated by Jean-François Cardoso Natural Gradient Learning for Over- and Under-Complete Bases in ICA Shun-ichi Amari RIKEN Brain Science Institute, Wako-shi, Hirosawa, Saitama 351-01, Japan Independent

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Intelligent Systems I

Intelligent Systems I Intelligent Systems I 00 INTRODUCTION Stefan Harmeling & Philipp Hennig 24. October 2013 Max Planck Institute for Intelligent Systems Dptmt. of Empirical Inference Which Card? Opening Experiment Which

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Master 2 Informatique Probabilistic Learning and Data Analysis

Master 2 Informatique Probabilistic Learning and Data Analysis Master 2 Informatique Probabilistic Learning and Data Analysis Faicel Chamroukhi Maître de Conférences USTV, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2013/2014 Faicel

More information

The Variational Bayesian EM Algorithm for Incomplete Data: with Application to Scoring Graphical Model Structures

The Variational Bayesian EM Algorithm for Incomplete Data: with Application to Scoring Graphical Model Structures BAYESIAN STATISTICS 7, pp. 000 000 J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.) c Oxford University Press, 2003 The Variational Bayesian EM

More information

Introduction to the Variational Bayesian Mean-Field Method

Introduction to the Variational Bayesian Mean-Field Method Introduction to the Variational Bayesian Mean-Field Method David Benjamin, Broad DSDE Methods May 11, 2016 What is variational Bayes? VB replaces a complex probability distribution with a simpler one:

More information

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza.

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. Lecture 4 Generative Models for Discrete Data - Part 3 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 6, 2017 Luigi Freda ( La Sapienza University) Lecture 4 October 6, 2017 1 / 46 Outline

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES

INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES INFINITE MIXTURES OF MULTIVARIATE GAUSSIAN PROCESSES SHILIANG SUN Department of Computer Science and Technology, East China Normal University 500 Dongchuan Road, Shanghai 20024, China E-MAIL: slsun@cs.ecnu.edu.cn,

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes

MAD-Bayes: MAP-based Asymptotic Derivations from Bayes MAD-Bayes: MAP-based Asymptotic Derivations from Bayes Tamara Broderick Brian Kulis Michael I. Jordan Cat Clusters Mouse clusters Dog 1 Cat Clusters Dog Mouse Lizard Sheep Picture 1 Picture 2 Picture 3

More information

A Bayesian Hybrid Approach to Unsupervised Time Series Discretization

A Bayesian Hybrid Approach to Unsupervised Time Series Discretization A Bayesian Hybrid Approach to Unsupervised Time Series Discretization Yoshitaka Kameya, Gabriel Synnaeve, Andrei Doncescu, Katsumi Inoue, Taisuke Sato Tokyo Institute of Technology, Japan, {kameya,sato}@mi.cs.titech.ac.jp

More information

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem

Deep Poisson Factorization Machines: a factor analysis model for mapping behaviors in journalist ecosystem 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Chapter 05: Hidden Markov Models

Chapter 05: Hidden Markov Models LEARNING AND INFERENCE IN GRAPHICAL MODELS Chapter 05: Hidden Markov Models Dr. Martin Lauer University of Freiburg Machine Learning Lab Karlsruhe Institute of Technology Institute of Measurement and Control

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Bayesian Model Selection Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Posterior Regularization

Posterior Regularization Posterior Regularization 1 Introduction One of the key challenges in probabilistic structured learning, is the intractability of the posterior distribution, for fast inference. There are numerous methods

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Manifold Constrained Variational Mixtures

Manifold Constrained Variational Mixtures Manifold Constrained Variational Mixtures Cédric Archambeau and Michel Verleysen Machine Learning Group - Université catholique de Louvain, Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium {archambeau,

More information

The Expectation Maximization or EM algorithm

The Expectation Maximization or EM algorithm The Expectation Maximization or EM algorithm Carl Edward Rasmussen November 15th, 2017 Carl Edward Rasmussen The EM algorithm November 15th, 2017 1 / 11 Contents notation, objective the lower bound functional,

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Regularized Regression A Bayesian point of view

Regularized Regression A Bayesian point of view Regularized Regression A Bayesian point of view Vincent MICHEL Director : Gilles Celeux Supervisor : Bertrand Thirion Parietal Team, INRIA Saclay Ile-de-France LRI, Université Paris Sud CEA, DSV, I2BM,

More information

Variational Bayesian Learning

Variational Bayesian Learning AB Variational Bayesian Learning Tapani Raiko April 17, 2008 Machine learning: Advanced probabilistic methods Motivation The main issue in probabilistic machine learning models is to find the posterior

More information

Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood

Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood : Asymptotically Accurate Marginal Likelihood Kohei Hayashi Global Research Center for Big Data Mathematics, ational Institute of Informatics Kawarabayashi Large Graph Project, ERATO, JST Shin-ichi Maeda

More information