DYNAMIC STUDY OF THE CONTACT ANGLE HYSTERESIS IN THE PRESENCE OF PERIODIC DEFECTS *

Size: px
Start display at page:

Download "DYNAMIC STUDY OF THE CONTACT ANGLE HYSTERESIS IN THE PRESENCE OF PERIODIC DEFECTS *"

Transcription

1 11 th Natioal Cogress o Theoretical ad Applied Mechaics, 2-5 Sept. 2009, Borovets, Bulgaria DYNAMIC STUDY OF THE CONTACT ANGLE HYSTERESIS IN THE PRESENCE OF PERIODIC DEFECTS * STANIMIR ILIEV, NINA PESHEVA Istitute of Mechaics, Bulgaria Academy of Scieces, Acad. G. Bochev St. 4, 1113 Sofia, Bulgaria s: stai@imbm.bas.bg, ia@imbm.bas.bg VADIM NIKOLAYEV ESEME, Service des Basses Températures, INAC/CEA, Greoble, Frace ad ESEME, PMMH-ESPCI-P6-P7, 10, rue Vauqueli, Paris Cedex 5, Frace vadim.ikolayev@espci.fr ABSTRACT. A modificatio of the cotact lie dissipatio model is proposed to treat the cotact lie motio o chemically heterogeeous substrates with sharp border betwee the two types of domais with differet surface eergies. It is applied to the quasi-static motio of the cotact lies i the Wilhelmy plate geometry where a solid plate is withdraw/immersed vertically at a costat speed from/ito a bath of liquid. The plate surface is a 2D patter of roud spots (defects) of surface eergy differet from the rest of the plate. The spot patter is spatially periodic i both horizotal ad vertical directios. A umerical code is developed for simulatio of the motio of the 3D liquid meiscus icludig the three-phase cotact lie for differet plate velocities. Critical velocities are obtaied beyod which the liquid etraimet or dryig thresholds are attaied. The average cotact agle is obtaied from the capillary cotributio to the force actig o the plate. It is show that the chemical heterogeeity leads to a larger the zero value of the average cotact agle for the etraimet threshold ad smaller tha 180 value for the dryig threshold. KEY WORDS: relaxatio, dissipative system dyamics, dyamic cotact agles 1. Itroductio. The spreadig/recedig of liquid o o-ideal solid surfaces is still a ope problem of geeral iterest. This problem is very importat sice most real surfaces appearig i ature, i the laboratories ad i the differet techological processes, are rough ad/or heterogeeous. We study here the ect of the substrate chemical heterogeeity o the cotact lie (CL) motio ad i particular o the dyamic cotact agle (CA) i the framework of the Cotact Lie Dissipatio Approach (CLDA) [1, 2]. We cosider the motio of the cotact lie i the Wilhelmy plate geometry (a vertical flat solid * S.I. has received fiacial support from the NSF-Bulgaria uder grat umber DО /2008.

2 Iliev, Pesheva ad Nikolayev plate is withdraw/pushed from/ito a liquid bath at costat velocity u, see Fig. 1). The heterogeeous surface of the solid plate cosists of two types of domais; the surface eergy chages sharply o the borders betwee them. The ect of the substrate chemical heterogeeity o the CL motio i the framework of the CLDA is studied i a umber of previous works. I [3-5] the ifluece of the heterogeeity is modeled by icludig i the uatio for the CL motio of a additioal term: a elastic restorig force. The cocept of the elastic force is developed earlier, see e.g. [6]. Nikolayev [7] obtaied a aalytical CLDA uatio describig the CL dyamics ad solved it umerically for the CL motio o a substrate with periodic heterogeeity. However, he assumed that the slope of the liquid surface is small, which is ot always satisfied. Our goal here is to exted such a aalysis to ay iterface slope by performig a full-scale 3D dyamic umerical simulatio of the CL slow motio o a substrate with periodic heterogeeity withi the CLDA. 2. Problem formulatio. The classical Wilhelmy plate surface is described with Cartesia coordiates ( y, z ), where the y-axis is horizotal ad the z-axis is directed upward. The plate surface is ifiite ad cosists of regularly spaced idetical circular spots with surface eergy differet from that of the rest of the surface. Fig. 1. Schematic drawig of the cosidered system. The spot ceters form a quadratic lattice with uit cell of size λ. The spot radius is deoted by a. Betwee the spots the surface is homogeeous is characterized by uilibrium cotact agle θ ( 1) that it forms with the liquid meiscus. The spots are ( 2) ( 1) characterized by uilibrium cotact agle θ θ so that the surface eergy of the plate chages sharply at the borders of the spots. The liquid meiscus forms a cotact lie L with the movig plate. The dyamic cotact agle value θ ( R), where R L deotes a poit belogig to the plate surface, varies alog the CL. The distace betwee the plate ad the (distat) bath wall opposite to the plate is deoted by d x. The cotact lie Lt ( ) at time momet t is described by its height hyt (, ) relative to the meiscus level sufficietly far from the plate, where the meiscus is horizotal.

3 Dyamic Study of the Cotact Agle Hysteresis We study the motio of the CL i the framework of the CLDA. I the CLDA oe eglects the viscous dissipatio i the bulk of the liquid with respect to that occurrig i the viciity of the movig CL. The dissipatio is the cosidered as 2 localized at the CL. The dissipatio rate per CL legth Σ = ξv 2 is proportioal to l the squared local CL velocity v (assumed to be positive whe the liquid advace). We deote by ξ the frictio coiciet, which has the same dimesioality as the liquid viscosity. We assume here that ξ is idepedet of v, which holds, e.g., for the molecular-kietic model of the cotact lie motio [8]. For simplicity we assume here that both types of domais have the same ξ value. Accordig to the CLDA, the motio of the poit R of the CL is give by: (2.1) v ( L( R, t) ) = γ (cosθ ( R) cos θ( R )) ξ, where θ ( R ) is the uilibrium (Youg) cotact agle ual to θ ( 2) or to ( 2) θ depedig o R, γ is the surface tesio. Whe the plate is movig dowwards with velocity u, the CL velocity with respect to the solid surface is v = h + u, where h is the time derivative of the CL height. Equatio (2.1) holds whe θ ( ) R is a cos smooth fuctio i the eighborhood of the poit R. However, whe R belogs to the border betwee two domais where the surface eergy chages sharply, oe should use the coditio obtaied by Iliev ad Pesheva [9]. Accordig to it, the border poit R L remais immobile with respect to the plate while () 1 ( 2) ( 2) ( 1) ( 2) ( 1) θ( R) θ, θ if θ > θ or θ( R ) θ, θ if ( 2) ( 1) θ < θ. This pheomeo is at the origi of the stick-slip behavior of the CL.Equatio (2.1) ca be made dimesioless by expressig the legths i terms of the capillary legth l = γ / ρ g c ( ρ : liquid desity; g : gravity acceleratio) ad the time i terms of the characteristic time τ = l / 0 c ξ γ, i.e., x = x/ l, y = y / l, z = z / l, t = t / τ (ad therefore the c c c 0 dimesioless velocity is v = ξv / γ ): (2.5) v ( L( R, t )) = cosθ ( R ) cosθ. Our study here focuses o a specific system studied previously i [7] for which (1) (2) θ = 70, θ = 110, a = 0.1, ad λ = Numerical algorithm. We employ the followig umerical algorithm [2] havig three basic steps. First, for a give positio of the CL at the movig plate the statioary shape of the meiscus of the liquid with fixed volume i the domai eclosed betwee the surfaces x = 0 ad x = d is determied. We impose periodic boudary coditios i x y-directio ad we set the right cotact agle at the cotaier wall opposite to the movig plate. Next, velocity at every poit of the CL is obtaied directly from the

4 Iliev, Pesheva ad Nikolayev uality of variatios of the free eergy ad of the CL dissipatio (which is uivalet to usig Eq. (2.1) [2]). Third, the CL positio at the ext istat of time is foud explicitly from the kiematic coditio Δ R = v Δ t. The above algorithm is repeated for the successive time steps. The mai igrediets of this algorithm are the determiatio of the meiscus shape with give volume of the liquid i the tak ad give cotact lie, ad the calculatio of the velocity of the cotact lie. The determiatio of the meiscus shape is realized by a iterative miimizatio procedure based o the local variatios method ad adapted to treat the Wilhelmy plate geometry i [10]. 4. Numerical results. We study the CL motio for differet plate velocities. Our umerical simulatios show that i a certai iterval of (dimesioless) plate velocities * * u u, u r a a double periodic solutio (both i t ad y ) for hyt (, ) appears after the CL passes through several rows of defects. Outside this iterval the double periodic * solutios do ot appear. The liquid is etraied by the plate whe u u r (dyamic complete wettig; Ladau-Levich trasitio). The gas etraimet betwee the liquid * ad the plate (dyamic complete uwettig) occurs whe u u a. I Fig. 2 we show the obtaied cotact lies (i a referece system immobile with respect to the plate). The dotted lie shows the border of the circular defect where the uilibrium cotact (2) agle is θ = 110. The successive cotact lies are show with solid lies (goig from top to bottom). Oe ca see that, whe the CL reaches the upper ed of the defect, the CL accelerates sice the local CL velocity sharply icreases with cos 70 cos110. The part of the CL which lies outside the defect is also etraied. We observe also that whe the cotact lie reaches the lower ed of the defect a part of the cotact lie remais fixed to the border of the defect. These cotact lies which have part stuck to the border of the defect are show with dashed lies. Thus a stick-slip behavior of the CL i the CLDA is modeled. Here we are iterested i the calculatio of the wettig force (or else the capillary restorig force) which the liquid exerts o the solid plate. It ca be determied experimetally by tesiometric methods i Wilhelmy plate geometry ad is used to study the dyamic CA ad its depedece o the CL velocity [5]. Whe a periodic motio of the CL is attaied, the time ad space averaged force is (the time period is P= λ / u ): P λ γ (4.1) F = cosθ ( y) ( z ( y) ) dydt λp 0 0 With this force oe ca itroduce the ective dyamic CA heterogeeous surface, (4.2) cos θ = F / γ. θ for the

5 Dyamic Study of the Cotact Agle Hysteresis I Fig 3. we plot the results for cosθ as fuctio of u ~ u* r z 0.7 cosθ y ~ u* a ~ u Fig. 2. Uit cell λxλ of the plate surface icludig oe of the surface defects. The dash-dotted lie is the border of the defect. The CLs positios (i a referece system immobile with respect to the plate) for the double periodical solutio are show with time step Δ t = 0.15 for the plate movig upwards with velocity u = 0.1. The CLs are show with solid lies except for those which are partially stuck to the border of the defect (dashed lies). Fig. 3. The cosie of the ective cotact agle as fuctio of the plate velocity u. A cotact agle hysteresis 13 is observed whe u 0. Critical velocities u * ad u * r a are obtaied above which the etraimet trasitios occur for recedig or advacig motio, respectively. For the cosidered type of heterogeeity we obtai a depedece close to liear betwee the velocity ad the cosie of the ective CA. The CA hysteresis is observed both i dyamics ad i statics. The static hysteresis (for u 0 ) is of the order of 13. The dyamic hysteresis ca be defied as a differece i θ for u of the same modules but opposite sigs. Threshold velocities u *, u * (ad correspodig critical advacig ad a r *a *r recedig dyamic cotact agles θ, θ ) are obtaied. Beyod them the etraimet trasitios occur. Oe ca see that at the etraimet threshold * * r cosθ < 1 (i.e., θ > 0 * a ad θ < 180 ). Note that, withi CLDA, the etraimet trasitios for a homogeeous plate occur whe cosθ = 1. This differece appears because, for heterogeeous plate, the etraimet threshold is attaied first for oe of the domais. Such a behavior is similar to that described by the hydrodyamic approach [11]. It shows that the experimetally observed iuality for the Ladau- Levich threshold θ * > 0 [11] ca be explaied by the iteractio with the surface heterogeeity withi the quasi-static CLDA, without usig more complicated

6 Iliev, Pesheva ad Nikolayev hydrodyamic approaches. 5. Coclusio. A quasi-static cotact lie dissipatio approach is applied to simulate the slow motio of the cotact lie o a chemically heterogeeous substrate with sharp spatial variatio of the surface eergy. A stick-slip behavior of the CL is observed. The cotact agle hysteresis is obtaied both i statics ad dyamics. Critical velocities ad critical ective cotact agles are determied beyod which the liquid or gas are etraied by the plate. The fiiteess of the dyamic cotact agle at Ladau-Levich liquid etraimet trasitio ca be explaied by the iteractio with the substrate heterogeeity. R E F E R E N C E S [1] de Gees, P. G. Wettig: statics ad dyamics. Rev. Mod. Phys., 57 (1985), [2] Iliev S., N. Pesheva, V. S. Nikolayev. Quasistatic relaxatio of arbitrarily shaped sessile drops. Phys. Rev. E, 72 (2005), [3] Raphael, E., P.G. de Gees. Dyamics of wettig with oideal surfaces. The sigle defect problem. J. Chem. Phys., 90 (1989), [4] Joay, J.-F., M. O. Robbis. Motio of a Cotact Lie o a Heterogeeous Surface. J. Chem. Phys., 92 (1990), [5] Mouliet, S., C. Guthma, E. Rolley. Dissipatio i the dyamics of a movig cotact lie: ect of the substrate disorder. Eur. Phys. J. B, 37, (2004), [6] Joay J.F., P.G de Gees. A model for cotact agle hysteresis. J. Chem. Phys., 81 (1984), [7] Nikolayev, V. S. Dyamics ad depiig of the triple cotact lie i the presece of periodic surface defects. J. Phys.: Codes. Matter., 17 (2005), [8] Blake, T. D., J. M. Hayes. Kietics of Liquid/Liquid Displacemet. J. Colloid Iterface Sci., 30 (1969), [9] Iliev, S., N. Pesheva. Wettig Properties of Well Structured Heterogeeous Substrates. Lagmuir, 19 (2003), [10] Iliev S., N. Pesheva, V. S. Nikolayev. Dyamic modellig of cotact lie deformatio: compariso with experimet. Phys. Rev. E, 78 (2008), [11] Delo G., Fermigier M., Soeijer J., Adreotti B. Relaxatio of a dewettig cotact lie. Part 2: Experimets. J. Fluid Mech. 604 (2008),

Analysis of composites with multiple rigid-line reinforcements by the BEM

Analysis of composites with multiple rigid-line reinforcements by the BEM Aalysis of composites with multiple rigid-lie reiforcemets by the BEM Piotr Fedeliski* Departmet of Stregth of Materials ad Computatioal Mechaics, Silesia Uiversity of Techology ul. Koarskiego 18A, 44-100

More information

MATHEMATICAL MODELLING OF ARCH FORMATION IN GRANULAR MATERIALS

MATHEMATICAL MODELLING OF ARCH FORMATION IN GRANULAR MATERIALS 6 th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE MATHEMATICAL MODELLING OF ARCH FORMATION IN GRANULAR MATERIALS Istva eppler SZIE Faculty of Mechaics, H-2103 Gödöllő Páter. 1., Hugary Abstract: The mathematical

More information

DETERMINATION OF MECHANICAL PROPERTIES OF A NON- UNIFORM BEAM USING THE MEASUREMENT OF THE EXCITED LONGITUDINAL ELASTIC VIBRATIONS.

DETERMINATION OF MECHANICAL PROPERTIES OF A NON- UNIFORM BEAM USING THE MEASUREMENT OF THE EXCITED LONGITUDINAL ELASTIC VIBRATIONS. ICSV4 Cairs Australia 9- July 7 DTRMINATION OF MCHANICAL PROPRTIS OF A NON- UNIFORM BAM USING TH MASURMNT OF TH XCITD LONGITUDINAL LASTIC VIBRATIONS Pavel Aokhi ad Vladimir Gordo Departmet of the mathematics

More information

EXPERIMENT OF SIMPLE VIBRATION

EXPERIMENT OF SIMPLE VIBRATION EXPERIMENT OF SIMPLE VIBRATION. PURPOSE The purpose of the experimet is to show free vibratio ad damped vibratio o a system havig oe degree of freedom ad to ivestigate the relatioship betwee the basic

More information

Damped Vibration of a Non-prismatic Beam with a Rotational Spring

Damped Vibration of a Non-prismatic Beam with a Rotational Spring Vibratios i Physical Systems Vol.6 (0) Damped Vibratio of a No-prismatic Beam with a Rotatioal Sprig Wojciech SOCHACK stitute of Mechaics ad Fudametals of Machiery Desig Uiversity of Techology, Czestochowa,

More information

Physics Supplement to my class. Kinetic Theory

Physics Supplement to my class. Kinetic Theory Physics Supplemet to my class Leaers should ote that I have used symbols for geometrical figures ad abbreviatios through out the documet. Kietic Theory 1 Most Probable, Mea ad RMS Speed of Gas Molecules

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

METHOD OF FUNDAMENTAL SOLUTIONS FOR HELMHOLTZ EIGENVALUE PROBLEMS IN ELLIPTICAL DOMAINS

METHOD OF FUNDAMENTAL SOLUTIONS FOR HELMHOLTZ EIGENVALUE PROBLEMS IN ELLIPTICAL DOMAINS Please cite this article as: Staisław Kula, Method of fudametal solutios for Helmholtz eigevalue problems i elliptical domais, Scietific Research of the Istitute of Mathematics ad Computer Sciece, 009,

More information

Lecture 7: Polar representation of complex numbers

Lecture 7: Polar representation of complex numbers Lecture 7: Polar represetatio of comple umbers See FLAP Module M3.1 Sectio.7 ad M3. Sectios 1 ad. 7.1 The Argad diagram I two dimesioal Cartesia coordiates (,), we are used to plottig the fuctio ( ) with

More information

THE LEVEL SET METHOD APPLIED TO THREE-DIMENSIONAL DETONATION WAVE PROPAGATION. Wen Shanggang, Sun Chengwei, Zhao Feng, Chen Jun

THE LEVEL SET METHOD APPLIED TO THREE-DIMENSIONAL DETONATION WAVE PROPAGATION. Wen Shanggang, Sun Chengwei, Zhao Feng, Chen Jun THE LEVEL SET METHOD APPLIED TO THREE-DIMENSIONAL DETONATION WAVE PROPAGATION We Shaggag, Su Chegwei, Zhao Feg, Che Ju Laboratory for Shock Wave ad Detoatio Physics Research, Southwest Istitute of Fluid

More information

1 Adiabatic and diabatic representations

1 Adiabatic and diabatic representations 1 Adiabatic ad diabatic represetatios 1.1 Bor-Oppeheimer approximatio The time-idepedet Schrödiger equatio for both electroic ad uclear degrees of freedom is Ĥ Ψ(r, R) = E Ψ(r, R), (1) where the full molecular

More information

Boundary layer problem on conveyor belt. Gabriella Bognár University of Miskolc 3515 Miskolc-Egyetemváros, Hungary

Boundary layer problem on conveyor belt. Gabriella Bognár University of Miskolc 3515 Miskolc-Egyetemváros, Hungary Boudary layer problem o coveyor belt Gabriella Bogár Uiversity of Miskolc 355 Miskolc-Egyetemváros, Hugary e-mail: matvbg@ui-miskolc.hu Abstract: A techologically importat source of the boudary layer pheomeo

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Position Time Graphs 12.1

Position Time Graphs 12.1 12.1 Positio Time Graphs Figure 3 Motio with fairly costat speed Chapter 12 Distace (m) A Crae Flyig Figure 1 Distace time graph showig motio with costat speed A Crae Flyig Positio (m [E] of pod) We kow

More information

Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle

Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle Similarity betwee quatum mechaics ad thermodyamics: Etropy, temperature, ad Carot cycle Sumiyoshi Abe 1,,3 ad Shiji Okuyama 1 1 Departmet of Physical Egieerig, Mie Uiversity, Mie 514-8507, Japa Istitut

More information

2C09 Design for seismic and climate changes

2C09 Design for seismic and climate changes 2C09 Desig for seismic ad climate chages Lecture 02: Dyamic respose of sigle-degree-of-freedom systems I Daiel Grecea, Politehica Uiversity of Timisoara 10/03/2014 Europea Erasmus Mudus Master Course Sustaiable

More information

Fluid Physics 8.292J/12.330J % (1)

Fluid Physics 8.292J/12.330J % (1) Fluid Physics 89J/133J Problem Set 5 Solutios 1 Cosider the flow of a Euler fluid i the x directio give by for y > d U = U y 1 d for y d U + y 1 d for y < This flow does ot vary i x or i z Determie the

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

DISTRIBUTION LAW Okunev I.V.

DISTRIBUTION LAW Okunev I.V. 1 DISTRIBUTION LAW Okuev I.V. Distributio law belogs to a umber of the most complicated theoretical laws of mathematics. But it is also a very importat practical law. Nothig ca help uderstad complicated

More information

APPENDIX A EARLY MODELS OF OXIDE CMP

APPENDIX A EARLY MODELS OF OXIDE CMP APPENDIX A EALY MODELS OF OXIDE CMP Over the past decade ad a half several process models have bee proposed to elucidate the mechaism ad material removal rate i CMP. Each model addresses a specific aspect

More information

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons Statistical Aalysis o Ucertaity for Autocorrelated Measuremets ad its Applicatios to Key Comparisos Nie Fa Zhag Natioal Istitute of Stadards ad Techology Gaithersburg, MD 0899, USA Outlies. Itroductio.

More information

Finite Difference Derivations for Spreadsheet Modeling John C. Walton Modified: November 15, 2007 jcw

Finite Difference Derivations for Spreadsheet Modeling John C. Walton Modified: November 15, 2007 jcw Fiite Differece Derivatios for Spreadsheet Modelig Joh C. Walto Modified: November 15, 2007 jcw Figure 1. Suset with 11 swas o Little Platte Lake, Michiga. Page 1 Modificatio Date: November 15, 2007 Review

More information

a b c d e f g h Supplementary Information

a b c d e f g h Supplementary Information Supplemetary Iformatio a b c d e f g h Supplemetary Figure S STM images show that Dark patters are frequetly preset ad ted to accumulate. (a) mv, pa, m ; (b) mv, pa, m ; (c) mv, pa, m ; (d) mv, pa, m ;

More information

We will conclude the chapter with the study a few methods and techniques which are useful

We will conclude the chapter with the study a few methods and techniques which are useful Chapter : Coordiate geometry: I this chapter we will lear about the mai priciples of graphig i a dimesioal (D) Cartesia system of coordiates. We will focus o drawig lies ad the characteristics of the graphs

More information

Numerical Study on MHD Flow And Heat Transfer With The Effect Of Microrotational Parameter In The Porous Medium

Numerical Study on MHD Flow And Heat Transfer With The Effect Of Microrotational Parameter In The Porous Medium IOSR Joural of Egieerig (IOSRJEN) ISSN (e): 5-3, ISSN (p): 78-879 Vol. 5, Issue 4 (April. 5), V PP 8-7 www.iosrje.org Numerical Study o MHD Flow Ad Heat rasfer With he Effect Of Microrotatioal Parameter

More information

Exercises and Problems

Exercises and Problems HW Chapter 4: Oe-Dimesioal Quatum Mechaics Coceptual Questios 4.. Five. 4.4.. is idepedet of. a b c mu ( E). a b m( ev 5 ev) c m(6 ev ev) Exercises ad Problems 4.. Model: Model the electro as a particle

More information

Stopping oscillations of a simple harmonic oscillator using an impulse force

Stopping oscillations of a simple harmonic oscillator using an impulse force It. J. Adv. Appl. Math. ad Mech. 5() (207) 6 (ISSN: 2347-2529) IJAAMM Joural homepage: www.ijaamm.com Iteratioal Joural of Advaces i Applied Mathematics ad Mechaics Stoppig oscillatios of a simple harmoic

More information

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let.

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let. Joh Riley 8 Jue 03 ANSWERS TO EXERCISES IN APPENDIX B Sectio B VECTORS AND SETS Exercise B-: Covex sets (a) Let 0 x, x X, X, hece 0 x, x X ad 0 x, x X Sice X ad X are covex, x X ad x X The x X X, which

More information

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body!

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body! OINTCOORDINATE FORMULATION Two or more poits ca be used to describe a rigid body. This will elimiate the eed to defie rotatioal coordiates for the body i z r i i, j r j j rimary oits: The coordiates of

More information

Types of Waves Transverse Shear. Waves. The Wave Equation

Types of Waves Transverse Shear. Waves. The Wave Equation Waves Waves trasfer eergy from oe poit to aother. For mechaical waves the disturbace propagates without ay of the particles of the medium beig displaced permaetly. There is o associated mass trasport.

More information

R is a scalar defined as follows:

R is a scalar defined as follows: Math 8. Notes o Dot Product, Cross Product, Plaes, Area, ad Volumes This lecture focuses primarily o the dot product ad its may applicatios, especially i the measuremet of agles ad scalar projectio ad

More information

INF-GEO Solutions, Geometrical Optics, Part 1

INF-GEO Solutions, Geometrical Optics, Part 1 INF-GEO430 20 Solutios, Geometrical Optics, Part Reflectio by a symmetric triagular prism Let be the agle betwee the two faces of a symmetric triagular prism. Let the edge A where the two faces meet be

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

ANALYSIS OF DAMPING EFFECT ON BEAM VIBRATION

ANALYSIS OF DAMPING EFFECT ON BEAM VIBRATION Molecular ad Quatum Acoustics vol. 7, (6) 79 ANALYSIS OF DAMPING EFFECT ON BEAM VIBRATION Jerzy FILIPIAK 1, Lech SOLARZ, Korad ZUBKO 1 Istitute of Electroic ad Cotrol Systems, Techical Uiversity of Czestochowa,

More information

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. AP Calculus AB Portfolio Project Multiple Choice Practice Name: CALCULUS AB SECTION I, Part A Time 60 miutes Number of questios 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directios: Solve

More information

THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE ABSTRACT

THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE ABSTRACT Europea Joural of Egieerig ad Techology Vol. 3 No., 5 ISSN 56-586 THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE Atif Nazir, Tahir Mahmood ad

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

Formation of A Supergain Array and Its Application in Radar

Formation of A Supergain Array and Its Application in Radar Formatio of A Supergai Array ad ts Applicatio i Radar Tra Cao Quye, Do Trug Kie ad Bach Gia Duog. Research Ceter for Electroic ad Telecommuicatios, College of Techology (Coltech, Vietam atioal Uiversity,

More information

TRACEABILITY SYSTEM OF ROCKWELL HARDNESS C SCALE IN JAPAN

TRACEABILITY SYSTEM OF ROCKWELL HARDNESS C SCALE IN JAPAN HARDMEKO 004 Hardess Measuremets Theory ad Applicatio i Laboratories ad Idustries - November, 004, Washigto, D.C., USA TRACEABILITY SYSTEM OF ROCKWELL HARDNESS C SCALE IN JAPAN Koichiro HATTORI, Satoshi

More information

The Mathematical Model and the Simulation Modelling Algoritm of the Multitiered Mechanical System

The Mathematical Model and the Simulation Modelling Algoritm of the Multitiered Mechanical System The Mathematical Model ad the Simulatio Modellig Algoritm of the Multitiered Mechaical System Demi Aatoliy, Kovalev Iva Dept. of Optical Digital Systems ad Techologies, The St. Petersburg Natioal Research

More information

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall Iteratioal Mathematical Forum, Vol. 9, 04, o. 3, 465-475 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/imf.04.48 Similarity Solutios to Usteady Pseudoplastic Flow Near a Movig Wall W. Robi Egieerig

More information

CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS

CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS C.PRAX ad H.SADAT Laboratoire d'etudes Thermiques,URA CNRS 403 40, Aveue du Recteur Pieau 86022 Poitiers Cedex,

More information

Balancing. Rotating Components Examples of rotating components in a mechanism or a machine. (a)

Balancing. Rotating Components Examples of rotating components in a mechanism or a machine. (a) alacig NOT COMPLETE Rotatig Compoets Examples of rotatig compoets i a mechaism or a machie. Figure 1: Examples of rotatig compoets: camshaft; crakshaft Sigle-Plae (Static) alace Cosider a rotatig shaft

More information

Free Surface Hydrodynamics

Free Surface Hydrodynamics Water Sciece ad Egieerig Free Surface Hydrodyamics y A part of Module : Hydraulics ad Hydrology Water Sciece ad Egieerig Dr. Shreedhar Maskey Seior Lecturer UNESCO-IHE Istitute for Water Educatio S. Maskey

More information

DYNAMIC ANALYSIS OF BEAM-LIKE STRUCTURES SUBJECT TO MOVING LOADS

DYNAMIC ANALYSIS OF BEAM-LIKE STRUCTURES SUBJECT TO MOVING LOADS DYNAMIC ANALYSIS OF BEAM-LIKE STRUCTURES SUBJECT TO MOVING LOADS Ivaa Štimac 1, Ivica Kožar 1 M.Sc,Assistat, Ph.D. Professor 1, Faculty of Civil Egieerig, Uiverity of Rieka, Croatia INTRODUCTION The vehicle-iduced

More information

The Minimum Distance Energy for Polygonal Unknots

The Minimum Distance Energy for Polygonal Unknots The Miimum Distace Eergy for Polygoal Ukots By:Johaa Tam Advisor: Rollad Trapp Abstract This paper ivestigates the eergy U MD of polygoal ukots It provides equatios for fidig the eergy for ay plaar regular

More information

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5!

L 5 & 6: RelHydro/Basel. f(x)= ( ) f( ) ( ) ( ) ( ) n! 1! 2! 3! If the TE of f(x)= sin(x) around x 0 is: sin(x) = x - 3! 5! aylor epasio: Let ƒ() be a ifiitely differetiable real fuctio. At ay poit i the eighbourhood of =0, the fuctio ca be represeted as a power series of the followig form: X 0 f(a) f() ƒ() f()= ( ) f( ) (

More information

Deterministic Model of Multipath Fading for Circular and Parabolic Reflector Patterns

Deterministic Model of Multipath Fading for Circular and Parabolic Reflector Patterns To appear i the Proceedigs of the 5 IEEE outheastco, (Ft. Lauderdale, FL), April 5 Determiistic Model of Multipath Fadig for Circular ad Parabolic Reflector Patters Dwight K. Hutcheso dhutche@clemso.edu

More information

Orthogonal Gaussian Filters for Signal Processing

Orthogonal Gaussian Filters for Signal Processing Orthogoal Gaussia Filters for Sigal Processig Mark Mackezie ad Kiet Tieu Mechaical Egieerig Uiversity of Wollogog.S.W. Australia Abstract A Gaussia filter usig the Hermite orthoormal series of fuctios

More information

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to: 2.003 Egieerig Dyamics Problem Set 9--Solutio Problem 1 Fid the equatio of motio for the system show with respect to: a) Zero sprig force positio. Draw the appropriate free body diagram. b) Static equilibrium

More information

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka) 7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.

More information

A STUDY ON MHD BOUNDARY LAYER FLOW OVER A NONLINEAR STRETCHING SHEET USING IMPLICIT FINITE DIFFERENCE METHOD

A STUDY ON MHD BOUNDARY LAYER FLOW OVER A NONLINEAR STRETCHING SHEET USING IMPLICIT FINITE DIFFERENCE METHOD IRET: Iteratioal oural of Research i Egieerig ad Techology eissn: 39-63 pissn: 3-7308 A STUDY ON MHD BOUNDARY LAYER FLOW OVER A NONLINEAR STRETCHING SHEET USING IMPLICIT FINITE DIFFERENCE METHOD Satish

More information

Hydrogen (atoms, molecules) in external fields. Static electric and magnetic fields Oscyllating electromagnetic fields

Hydrogen (atoms, molecules) in external fields. Static electric and magnetic fields Oscyllating electromagnetic fields Hydroge (atoms, molecules) i exteral fields Static electric ad magetic fields Oscyllatig electromagetic fields Everythig said up to ow has to be modified more or less strogly if we cosider atoms (ad ios)

More information

Paper-II Chapter- Damped vibration

Paper-II Chapter- Damped vibration Paper-II Chapter- Damped vibratio Free vibratios: Whe a body cotiues to oscillate with its ow characteristics frequecy. Such oscillatios are kow as free or atural vibratios of the body. Ideally, the body

More information

Diagnosis of Kinematic Vertical Velocity in HYCOM. By George Halliwell, 28 November ( ) = z. v (1)

Diagnosis of Kinematic Vertical Velocity in HYCOM. By George Halliwell, 28 November ( ) = z. v (1) Diagosis of Kiematic Vertical Velocity i HYCOM By George Halliwell 28 ovember 2004 Overview The vertical velocity w i Cartesia coordiates is determied by vertically itegratig the cotiuity equatio dw (

More information

Systems of Particles: Angular Momentum and Work Energy Principle

Systems of Particles: Angular Momentum and Work Energy Principle 1 2.003J/1.053J Dyamics ad Cotrol I, Sprig 2007 Professor Thomas Peacock 2/20/2007 Lecture 4 Systems of Particles: Agular Mometum ad Work Eergy Priciple Systems of Particles Agular Mometum (cotiued) τ

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

CHAPTER 8 SYSTEMS OF PARTICLES

CHAPTER 8 SYSTEMS OF PARTICLES CHAPTER 8 SYSTES OF PARTICLES CHAPTER 8 COLLISIONS 45 8. CENTER OF ASS The ceter of mass of a system of particles or a rigid body is the poit at which all of the mass are cosidered to be cocetrated there

More information

11 Correlation and Regression

11 Correlation and Regression 11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

More information

True Nature of Potential Energy of a Hydrogen Atom

True Nature of Potential Energy of a Hydrogen Atom True Nature of Potetial Eergy of a Hydroge Atom Koshu Suto Key words: Bohr Radius, Potetial Eergy, Rest Mass Eergy, Classical Electro Radius PACS codes: 365Sq, 365-w, 33+p Abstract I cosiderig the potetial

More information

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes The 22 d Aual Meetig i Mathematics (AMM 207) Departmet of Mathematics, Faculty of Sciece Chiag Mai Uiversity, Chiag Mai, Thailad Compariso of Miimum Iitial Capital with Ivestmet ad -ivestmet Discrete Time

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Microscopic traffic flow modeling

Microscopic traffic flow modeling Chapter 34 Microscopic traffic flow modelig 34.1 Overview Macroscopic modelig looks at traffic flow from a global perspective, whereas microscopic modelig, as the term suggests, gives attetio to the details

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

AN OPEN-PLUS-CLOSED-LOOP APPROACH TO SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC MAPS

AN OPEN-PLUS-CLOSED-LOOP APPROACH TO SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC MAPS http://www.paper.edu.c Iteratioal Joural of Bifurcatio ad Chaos, Vol. 1, No. 5 () 119 15 c World Scietific Publishig Compay AN OPEN-PLUS-CLOSED-LOOP APPROACH TO SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC

More information

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context EECS 5 Sprig 4, Lecture 9 Lecture 9: Diffusio, Electrostatics review, ad Capacitors EECS 5 Sprig 4, Lecture 9 Cotext I the last lecture, we looked at the carriers i a eutral semicoductor, ad drift currets

More information

Lecture 4. Random variable and distribution of probability

Lecture 4. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture. Radom variable ad distributio of probability dr hab.iż. Katarzya Zarzewsa, prof.agh Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information

The Relative Angle Distribution Function in the Langevin Theory of Dilute Dipoles. Robert D. Nielsen

The Relative Angle Distribution Function in the Langevin Theory of Dilute Dipoles. Robert D. Nielsen The Relative Agle Distributio Fuctio i the agevi Theory of Dilute Dipoles Robert D. Nielse ExxoMobil Research ad Egieerig Co., Clito Towship, 545 Route East, Aadale, NJ 0880 robert.ielse@exxomobil.com

More information

Wave Motion

Wave Motion Wave Motio Wave ad Wave motio: Wave is a carrier of eergy Wave is a form of disturbace which travels through a material medium due to the repeated periodic motio of the particles of the medium about their

More information

Notes The Incremental Motion Model:

Notes The Incremental Motion Model: The Icremetal Motio Model: The Jacobia Matrix I the forward kiematics model, we saw that it was possible to relate joit agles θ, to the cofiguratio of the robot ed effector T I this sectio, we will see

More information

An Analysis of a Certain Linear First Order. Partial Differential Equation + f ( x, by Means of Topology

An Analysis of a Certain Linear First Order. Partial Differential Equation + f ( x, by Means of Topology Iteratioal Mathematical Forum 2 2007 o. 66 3241-3267 A Aalysis of a Certai Liear First Order Partial Differetial Equatio + f ( x y) = 0 z x by Meas of Topology z y T. Oepomo Sciece Egieerig ad Mathematics

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t,

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t, Lecture 5 omplex Variables II (Applicatios i Physics) (See hapter i Boas) To see why complex variables are so useful cosider first the (liear) mechaics of a sigle particle described by Newto s equatio

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

Lecture 5. Random variable and distribution of probability

Lecture 5. Random variable and distribution of probability Itroductio to theory of probability ad statistics Lecture 5. Radom variable ad distributio of probability prof. dr hab.iż. Katarzya Zarzewsa Katedra Eletroii, AGH e-mail: za@agh.edu.pl http://home.agh.edu.pl/~za

More information

Supporting Information Imaging mechanical vibrations in suspended graphene sheets

Supporting Information Imaging mechanical vibrations in suspended graphene sheets Supportig Iformatio Imagig mechaical vibratios i suspeded graphee sheets D. Garcia-Sachez, A. M. va der Zade, A. Sa Paulo, B. Lassage, P. L. McEue ad A. Bachtold A - Sample fabricatio Suspeded graphee

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors

Diffusivity and Mobility Quantization. in Quantum Electrical Semi-Ballistic. Quasi-One-Dimensional Conductors Advaces i Applied Physics, Vol., 014, o. 1, 9-13 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/aap.014.3110 Diffusivity ad Mobility Quatizatio i Quatum Electrical Semi-Ballistic Quasi-Oe-Dimesioal

More information

A Recurrence Formula for Packing Hyper-Spheres

A Recurrence Formula for Packing Hyper-Spheres A Recurrece Formula for Packig Hyper-Spheres DokeyFt. Itroductio We cosider packig of -D hyper-spheres of uit diameter aroud a similar sphere. The kissig spheres ad the kerel sphere form cells of equilateral

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep.

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep. Aoucemet Course webpage http://www.phys.ttu.edu/~slee/3301/ PHYS-3301 Lecture 10 HW3 (due 10/4) Chapter 5 4, 8, 11, 15, 22, 27, 36, 40, 42 Sep. 27, 2018 Exam 1 (10/4) Chapters 3, 4, & 5 CHAPTER 5 Wave

More information

Fizeau s Experiment with Moving Water. New Explanation. Gennady Sokolov, Vitali Sokolov

Fizeau s Experiment with Moving Water. New Explanation. Gennady Sokolov, Vitali Sokolov Fizeau s Experimet with Movig Water New Explaatio Geady Sokolov, itali Sokolov Email: sokolov@vitalipropertiescom The iterferece experimet with movig water carried out by Fizeau i 85 is oe of the mai cofirmatios

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

SINGLE-CHANNEL QUEUING PROBLEMS APPROACH

SINGLE-CHANNEL QUEUING PROBLEMS APPROACH SINGLE-CHANNEL QUEUING ROBLEMS AROACH Abdurrzzag TAMTAM, Doctoral Degree rogramme () Dept. of Telecommuicatios, FEEC, BUT E-mail: xtamta@stud.feec.vutbr.cz Supervised by: Dr. Karol Molár ABSTRACT The paper

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

Added mass estimation of open flat membranes vibrating in still air

Added mass estimation of open flat membranes vibrating in still air Added mass estimatio of ope flat membraes vibratig i still air *Yua-qi Li 1),Yi Zhou ), Akihito YOHIDA 3) ad Yukio TAMURA 4) 1), ) Departmet of Buildig Egieerig, Togji Uiversity, haghai, 9, Chia 1) liyq@togji.edu.c

More information

Analysis of Experimental Measurements

Analysis of Experimental Measurements Aalysis of Experimetal Measuremets Thik carefully about the process of makig a measuremet. A measuremet is a compariso betwee some ukow physical quatity ad a stadard of that physical quatity. As a example,

More information

MATH 31B: MIDTERM 2 REVIEW

MATH 31B: MIDTERM 2 REVIEW MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate x (x ) (x 3).. Partial Fractios Solutio: The umerator has degree less tha the deomiator, so we ca use partial fractios. Write x (x ) (x 3) = A x + A (x ) +

More information

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES LECTURE Third Editio FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES A. J. Clark School of Egieerig Departmet of Civil ad Evirometal Egieerig Chapter 7.4 b Dr. Ibrahim A. Assakkaf SPRING 3 ENES

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

AP Calculus BC 2011 Scoring Guidelines Form B

AP Calculus BC 2011 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The College Board The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad opportuity. Fouded i 9, the College

More information

Fundamental Concepts: Surfaces and Curves

Fundamental Concepts: Surfaces and Curves UNDAMENTAL CONCEPTS: SURACES AND CURVES CHAPTER udametal Cocepts: Surfaces ad Curves. INTRODUCTION This chapter describes two geometrical objects, vi., surfaces ad curves because the pla a ver importat

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

The axial dispersion model for tubular reactors at steady state can be described by the following equations: dc dz R n cn = 0 (1) (2) 1 d 2 c.

The axial dispersion model for tubular reactors at steady state can be described by the following equations: dc dz R n cn = 0 (1) (2) 1 d 2 c. 5.4 Applicatio of Perturbatio Methods to the Dispersio Model for Tubular Reactors The axial dispersio model for tubular reactors at steady state ca be described by the followig equatios: d c Pe dz z =

More information