AdS/CFT correspondence from an integrable point of view Z. Bajnok

Size: px
Start display at page:

Download "AdS/CFT correspondence from an integrable point of view Z. Bajnok"

Transcription

1 Matrix Worksho: Integrability in ow-dimensional Quantum systems Creswick 17 June-July AdS/CFT corresondence from an integrable oint of view Z. Bajnok MTA Wigner Research Center for Physics, Holograhic QFT Grou, Budaest 1

2 Matrix Worksho: Integrability in ow-dimensional Quantum systems Creswick 17 June-July AdS/CFT corresondence from an integrable oint of view Z. Bajnok MTA Wigner Research Center for Physics, Holograhic QFT Grou, Budaest Prologue: QFT as the continuum limit of XXZ Sine-Gordon / massive Thirring duality Anti-de Sitter / Conformal Field Theory duality

3 Prologue: QFT as a continuum limit Consider the inhomogenous XXZ sin chain ξ = { ξ, ξ +,..., ξ + }, R(λ) = T(λ ξ) = R 1 (λ ξ 1 )R (λ ξ )......R N (λ ξ N ) = 1 sinh(λ) sinh( iγ) sinh(λ iγ) sinh(λ iγ) sinh( iγ) sinh(λ) sinh(λ iγ) sinh(λ iγ) 1 ( ) A(λ) B(λ) C(λ) D(λ)

4 Prologue: QFT as a continuum limit Consider the inhomogenous XXZ sin chain ξ = { ξ, ξ +,..., ξ + }, R(λ) = T(λ ξ) = R 1 (λ ξ 1 )R (λ ξ )......R N (λ ξ N ) = 1 sinh(λ) sinh( iγ) sinh(λ iγ) sinh(λ iγ) sinh( iγ) sinh(λ) sinh(λ iγ) sinh(λ iγ) 1 ( ) A(λ) B(λ) C(λ) D(λ) Integrability: T (λ ξ) = Tr T(λ ξ) commute [ T (λ ξ),t (λ ξ) ] = conserved charges U ± = T (ξ ± ξ) = e i a (H±P) H P

5 Prologue: QFT as a continuum limit Consider the inhomogenous XXZ sin chain ξ = { ξ, ξ +,..., ξ + }, R(λ) = T(λ ξ) = R 1 (λ ξ 1 )R (λ ξ )......R N (λ ξ N ) = 1 sinh(λ) sinh( iγ) sinh(λ iγ) sinh(λ iγ) sinh( iγ) sinh(λ) sinh(λ iγ) sinh(λ iγ) 1 ( ) A(λ) B(λ) C(λ) D(λ) Integrability: T (λ ξ) = Tr T(λ ξ) commute [ T (λ ξ),t (λ ξ) ] = conserved charges U ± = T (ξ ± ξ) = e i a (H±P) H P Eigenvectors: B(λ 1 )B(λ )...B(λ m ), Bethe Ansatz: N i=1 sinh(λ a ξ i iγ) sinh(λ a ξ i ) m b=1 Alternating inhomogeneities sinh(λ a λ b +iγ) sinh(λ a λ b iγ) = 1 ξ ± = ± γ π Λ iγ Grd st. N roots λ Exc. st. +holes: λ

6 Prologue: QFT as a continuum limit Counting function ( 1) δ e iz λ(λ) = N i=1 sinh(λ ξ i iγ) sinh(λ ξ i ) m b=1 sinh(λ λ b +iγ) sinh(λ λ b iγ) Bethe Ansatz: e iz λ(λ ) a = 1 take δ = and redefine Z N (θ) = Z λ ( γ θ), which satisfies π Z N (θ) = N { arctan[sinh(θ Λ)]+ arctan[sinh(θ + Λ)] } + m H k=1 χ(θ θ k )+Im [Klümer, Pearce, Destri, de Vega,...] G(θ) = i θ logs(θ) = dθ πi G(θ θ iη)ln ( 1+e ) iz N(θ +iη) dωe iωθ sinh( ( 1)πω ) cosh( πω ) sinh(πω ) 3

7 Prologue: QFT as a continuum limit Counting function ( 1) δ e iz λ(λ) = N i=1 sinh(λ ξ i iγ) sinh(λ ξ i ) m b=1 sinh(λ λ b +iγ) sinh(λ λ b iγ) Bethe Ansatz: e iz λ(λ ) a = 1 take δ = and redefine Z N (θ) = Z λ ( γ θ), which satisfies π Z N (θ) = N { arctan[sinh(θ Λ)]+ arctan[sinh(θ + Λ)] } + m H k=1 χ(θ θ k )+Im [Klümer, Pearce, Destri, de Vega,...] G(θ) = i θ logs(θ) = dθ πi G(θ θ iη)ln ( 1+e ) iz N(θ +iη) dωe iωθ sinh( ( 1)πω ) cosh( πω ) sinh(πω ) QFT = Scaled continuum limit N : Λ = ln 4 Ma = ln N M Z(θ) = Msinhθ i m H k=1 logs(θ θ k )+ dθ πi G(θ θ iη) ln ( 1+e iz(θ +iη) ) E ±P = M m H k=1 e±θ k MRe dθ πi e±θ+iη ln ( 1+e iz(θ+iη)) λ

8 Prologue: QFT as a continuum limit Counting function ( 1) δ e iz λ(λ) = N i=1 sinh(λ ξ i iγ) sinh(λ ξ i ) m b=1 sinh(λ λ b +iγ) sinh(λ λ b iγ) Bethe Ansatz: e iz λ(λ a ) = 1 take δ = and redefine Z N (θ) = Z λ ( γ π Z N (θ) = N { arctan[sinh(θ Λ)]+ arctan[sinh(θ + Λ)] } + m H k=1 χ(θ θ k )+Im [Klümer, Pearce, Destri, de Vega,...] G(θ) = i θ logs(θ) = QFT = Scaled continuum limit N : Λ = ln 4 Ma Z(θ) = Msinhθ i m H k=1 logs(θ θ k )+ E ±P = M m H k=1 e±θ k MRe θ), which satisfies dθ πi G(θ θ iη)ln ( 1+e ) iz N(θ +iη) = ln N M dωe iωθ sinh( ( 1)πω ) cosh( πω ) sinh(πω ) dθ πi G(θ θ iη) ln ( 1+e iz(θ +iη) ) dθ πi e±θ+iη ln ( 1+e iz(θ+iη)) λ large volume equation: e iz(θ k) = e imsinhθ k m H j=1 S(θ k θ j ) = 1 relativistic energy sectrum: E = m H j=1 Mcoshθ k

9 Sine-Gordon/massive Thirring duality SG = 1 νφ ν Φ+ m β : cos(βφ) : < β < 8π, strong-weak duality: 1+ g 4π = 4π β = +1 MT = Ψ(iγ ν ν +m )Ψ g Ψγ ν Ψ Ψγ ν Ψ 4

10 Sine-Gordon/massive Thirring duality SG = 1 νφ ν Φ+ m β : cos(βφ) : < β < 8π, g Classical sine Gordon theory Semiclassical sine Gordon theory + loo corrections Quantum sine Gordon theory Massive Thirring model + erturbative corrections strong-weak duality: 1+ g 4π = 4π β = +1 erturbative Thirring model MT = Ψ(iγ ν ν +m )Ψ g Ψγ ν Ψ Ψγ ν Ψ

11 Sine-Gordon/massive Thirring duality SG = 1 νφ ν Φ+ m β : cos(βφ) : < β < 8π, g Classical sine Gordon theory Semiclassical sine Gordon theory + loo corrections Quantum sine Gordon theory Finite size corrections Massive Thirring model uscher correction Bethe Yang equations S matrix, masses strong-weak duality: + erturbative corrections 1+ g 4π = 4π β = +1 erturbative Thirring model MT = Ψ(iγ ν ν +m )Ψ g Ψγ ν Ψ Ψγ ν Ψ

12 Classical integrable models: sin(e/h)-gordon theory V V οο sine-gordon π β φ target π β = 1 β ( βϕ) m β (1 cosβϕ) β ib sinh-gordon φ target οο = 1 ( ϕ) m b (coshbϕ 1) 5

13 Classical integrable models: sin(e/h)-gordon theory V V οο sine-gordon π β φ target π β = 1 β ( βϕ) m β (1 cosβϕ) β ib sinh-gordon φ target οο = 1 ( ϕ) m b (coshbϕ 1) φ Classical finite energy solutions: x x sine-gordon theory soliton anti-soliton breather φ φ x

14 Classical integrable models: sin(e/h)-gordon theory V V οο sine-gordon π β φ target π β = 1 β ( βϕ) m β (1 cosβϕ) β ib sinh-gordon φ target οο = 1 ( ϕ) m b (coshbϕ 1) φ Classical finite energy solutions: x x sine-gordon theory soliton anti-soliton breather φ φ x Integrability: x A t t A x +[A x,a t ] = T(λ) = P ex A(x) ν dx ν A x (λ) = i ( λ β + ϕ β + ϕ λ ) ( A t (λ) = 1 cosβϕ isinβϕ 4iλ isinβϕ cosβϕ ) gtg 1 T

15 Classical integrable models: sin(e/h)-gordon theory V V οο sine-gordon π β φ target π β = 1 β ( βϕ) m β (1 cosβϕ) β ib sinh-gordon φ target οο = 1 ( ϕ) m b (coshbϕ 1) φ Classical finite energy solutions: x x sine-gordon theory soliton anti-soliton breather φ φ x Integrability: x A t t A x +[A x,a t ] = T(λ) = P ex A(x) ν dx ν A x (λ) = i ( λ β + ϕ β + ϕ λ ) ( A t (λ) = 1 cosβϕ isinβϕ 4iλ isinβϕ cosβϕ conserved Q ±1 [ϕ] = E[ϕ]±P[ϕ] = { 1 ( ± ϕ) + m β (1 cosβϕ) } charges: Q ±3 [ϕ] = { 1 β ( ± ϕ) 1 8 ( ±ϕ) 4 + m β ( ±ϕ) (1 cosβϕ) ) dx } dx gtg 1 T

16 Classical integrable models: sin(e/h)-gordon theory V V οο sine-gordon π β φ target π β = 1 β ( βϕ) m β (1 cosβϕ) β ib sinh-gordon φ target οο = 1 ( ϕ) m b (coshbϕ 1) φ Classical finite energy solutions: x x sine-gordon theory soliton anti-soliton breather φ φ x Integrability: x A t t A x +[A x,a t ] = T(λ) = P ex A(x) ν dx ν A x (λ) = i ( λ β + ϕ β + ϕ λ ) A t (λ) = 1 4iλ ( cosβϕ isinβϕ isinβϕ cosβϕ ) gtg 1 T Classical factorized scattering: T 1 (v 1,v,...,v n ) = i T 1 (v 1,v i ) Τ v 1 > v >... > v n v n <... < v < v 1 Τ.

17 Quantum integrability: sine-gordon = 1 ( φ) m β (1 cosβφ) Perturbed Conformal Field Theory agrangian erturbation theory CFT +µ ert = 1 ( φ) +µ(v β +V β ) +V ert = 1 ( φ) m φ β U h β = β 4π definite scaling V β =: e iβφ : free massive boson+ert. 6

18 Quantum integrability: sine-gordon = 1 ( φ) m β (1 cosβφ) Perturbed Conformal Field Theory agrangian erturbation theory CFT +µ ert = 1 ( φ) +µ(v β +V β ) +V ert = 1 ( φ) m φ β U h β = β 4π definite scaling V β =: e iβφ : free massive boson+ert. Quantum conservation laws Λ 4 = Λ 4 = λ + Θ [λ] = h β, [Λ 4 ] = 4, counting argument Nonlocal symmetry: U q ( sl ˆ ) [h,j ± ] = ±J ± [J +,J ] = qh q h q q 1 (J ± ) = q h J ± +J ± q h [S, (J ± )] = arameter relation: q = e iπ Correlators= loosfeynmandiagrams Asymtotic states E() = +m S-matrix correlators SZ 1, O 1, = D 1 D D 1D T(Oϕ(1)ϕ()ϕ(3)ϕ(4)) D j = i d x j e i jx ie j t { t x +m} unitarity, crossing symmetry, analyticity raidity i = mcoshθ i S(θ) = S( θ) 1 = S(iπ θ) = = ib cschθ b4 (cschθ(πcschθ i)) 3π +... Bootstra scheme

19 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: 1 > >...> n 7

20 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: 1 > >...> n orentz: P = i i E = ie( i ) disersion relation E() = m +

21 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: 1 > >...> n orentz: P = i i E = ie( i ) disersion relation E() = (Q) m + 1 n

22 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: 1 > >...> n orentz: P = i i E = ie( i ) disersion relation E() = m + Scattering matrix S: out in commutes with symmetry [S, (Q)] =

23 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: 1 > >...> n orentz: P = i i E = ie( i ) disersion relation E() = m + Scattering matrix S: out in commutes with symmetry [S, (Q)] = m < <...< S matrix 1 1 > >...> n

24 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: 1 > >...> n orentz: P = i i E = ie( i ) disersion relation E() = m + (Q) m < <...< 1 Scattering matrix S: out in commutes with symmetry [S, (Q)] = S matrix (Q) 1 > >...> n

25 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: 1 > >...> n orentz: P = i i E = ie( i ) disersion relation E() = m + (Q) m < <...< 1 Scattering matrix S: out in commutes with symmetry [S, (Q)] = S matrix (Q) > >...> n 3 1 Higher sin concerved charge factorization + Yang-Baxter equation S 13 = S 3 S 13 S 1 = S 1 S 13 S S-matrix = scalar. Matrix

26 Bootstra rogram Asymtotic states 1,,..., n in/out form a reresentation of global symmetry: > >...> 1 n orentz: P = i i E = ie( i ) disersion relation E() = m + (Q) m < <...< 1 Scattering matrix S: out in commutes with symmetry [S, (Q)] = S matrix 3 1 (Q) 3 1 Higher sin concerved charge factorization + Yang-Baxter equation 1 > >...> n S 13 = S 3 S 13 S 1 = S 1 S 13 S 3 S-matrix = scalar. Matrix Unitarity S 1 S 1 = Id Crossing symmetry S 1 = S 1 Maximal analyticity: all oles have hysical origin boundstates, anomalous thresholds

27 Bootstra rogram: diagonal Diagonal: S-matrix = scalar S( 1, ) = S(θ 1 θ ) = msinhθ 8

28 Bootstra rogram: diagonal Diagonal: S-matrix = scalar S( 1, ) = S(θ 1 θ ) = msinhθ Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S(iπ θ) Maximal analyticity: all oles have hysical origin

29 Bootstra rogram: diagonal Diagonal: S-matrix = scalar S( 1, ) = S(θ 1 θ ) = msinhθ Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S(iπ θ) Maximal analyticity: all oles have hysical origin Minimal solution: S(θ) = 1 Free boson

30 Bootstra rogram: diagonal Diagonal: S-matrix = scalar S( 1, ) = S(θ 1 θ ) = msinhθ Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S(iπ θ) Maximal analyticity: all oles have hysical origin Minimal solution: S(θ) = 1 Free boson CDD factor: S(θ) = sinhθ isinπ sinhθ+isinπ

31 Bootstra rogram: diagonal Diagonal: S-matrix = scalar S( 1, ) = S(θ 1 θ ) = msinhθ Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S(iπ θ) Maximal analyticity: all oles have hysical origin Minimal solution: S(θ) = 1 Free boson V coshbφ 1 = 1+ CDD factor: S(θ) = sinhθ isinπ 8π b > sinhθ+isinπ Sinh-Gordon

32 Bootstra rogram: diagonal Diagonal: S-matrix = scalar S( 1, ) = S(θ 1 θ ) = msinhθ Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S(iπ θ) Maximal analyticity: all oles have hysical origin Minimal solution: S(θ) = 1 Free boson V coshbφ 1 = 1+ CDD factor: S(θ) = sinhθ isinπ 8π b > sinhθ+isinπ Sinh-Gordon Maximal analyticity: S(θ) = sinhθ+isinπ sinhθ isinπ ole at θ = iπ boundstate B bootstra: S 1 (θ)=s 11 (θ iπ )S 11(θ + iπ ) new article if 3 otherwise ee-yang

33 Bootstra rogram: diagonal Diagonal: S-matrix = scalar S( 1, ) = S(θ 1 θ ) = msinhθ Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S(iπ θ) Maximal analyticity: all oles have hysical origin Minimal solution: S(θ) = 1 Free boson CDD factor: S(θ) = sinhθ isinπ sinhθ+isinπ Sinh-Gordon Maximal analyticity: S(θ) = sinhθ+isinπ sinhθ isinπ ole at θ = iπ boundstate B bootstra: S 1 (θ)=s 11 (θ iπ )S 11(θ + iπ ) new article if 3 otherwise ee-yang Maximal analyticity: all oles have hysical origin sine-gordon solitons ιπ S 11 θ V coshbφ 1 = 1+ b 8π > ιπ S 1 θ ιπ S 1n (n+1) iπ/ (n 1)iπ/ θ iπ B 3iπ/ iπ/ B 3... B n

34 Bootstra rogram: sine-gordon Nondiagonal scattering: S-matrix = scalar. Matrix soliton doublet ( s s ) Matrix: global symmetry U q ( ˆ sl ) d evaluation res [S, (Q)] = (Q) S matrix 1 sinαπ sin iθα sin α(π+iθ) sin iαθ sin α(π+iθ) sin α(π+iθ) sinαπ sin α(π+iθ) 1 (Q) 9

35 Bootstra rogram: sine-gordon Nondiagonal scattering: S-matrix = scalar. Matrix soliton doublet ( s s ) Matrix: global symmetry U q ( ˆ sl ) d evaluation res [S, (Q)] = (Q) S matrix 1 sinαπ sin iθα sin α(π+iθ) sin iαθ sin α(π+iθ) sin α(π+iθ) sinαπ sin α(π+iθ) 1 (Q) Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S c 1(iπ θ) [ l=1 Γ((l 1)α+ αiθ π )Γ(lα+1+αiθ π ) Γ((l 1)α+ αiθ π )Γ((l 1)α+1+αiθ π )/(θ θ) ]

36 Bootstra rogram: sine-gordon Nondiagonal scattering: S-matrix = scalar. Matrix soliton doublet Matrix: global symmetry U q ( sl ˆ ) d evaluation res [S, (Q)] = (Q) S matrix 1 sinαπ sin iθα sin α(π+iθ) sin iαθ sin α(π+iθ) sin α(π+iθ) sinαπ sin α(π+iθ) 1 ( s s ) Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S c 1(iπ θ) (Q) [ l=1 Γ((l 1)α+ αiθ π )Γ(lα+1+αiθ π ) Γ((l 1)α+ αiθ π )Γ((l 1)α+1+αiθ π )/(θ θ) ] Maximal analyticity: all oles have hysical origin either boundstates or anomalous thresholds = α 1 [Zamolodchikov ] B n + B B B B

37 Bootstra rogram: sine-gordon Nondiagonal scattering: S-matrix = scalar. Matrix soliton doublet Matrix: global symmetry U q ( sl ˆ ) d evaluation res [S, (Q)] = Unitarity S(θ)S( θ) = 1 Crossing symmetry S(θ) = S c 1(iπ θ) (Q) S matrix 1 sinαπ sin iθα sin α(π+iθ) sin iαθ sin α(π+iθ) sin α(π+iθ) sinαπ sin α(π+iθ) 1 (Q) [ l=1 Γ((l 1)α+ αiθ π )Γ(lα+1+αiθ π ) Γ((l 1)α+ αiθ π )Γ((l 1)α+1+αiθ π ιπ )/(θ θ) θ ( s ] s ) Maximal analyticity: all oles have hysical origin either boundstates or anomalous thresholds = α 1 [Zamolodchikov ] B n + B B B B + S +... (1 n)ιπ...

38 QFTs in finite volume Finite volume sectrum 1 n 1

39 QFTs in finite volume Finite volume sectrum 1 n CFT uscher Bethe Yang E m m S matrix

40 QFTs in finite volume CFT uscher Bethe Yang E Finite volume sectrum 1 n m m S matrix

41 QFTs in finite volume CFT uscher Bethe Yang E Finite volume sectrum Infinite volume sectrum: E( 1,..., n ) = ie( i ) 1 i R n m m S matrix

42 QFTs in finite volume CFT uscher Bethe Yang E Finite volume sectrum Infinite volume sectrum: E( 1,..., n ) = ie( i ) 1 i R Polynomial volume corrections: Bethe-Yang; i quantized. Diagonal n m m S matrix

43 QFTs in finite volume CFT uscher Bethe Yang E Finite volume sectrum Infinite volume sectrum: E( 1,..., n ) = ie( i ) 1 i R Polynomial volume corrections: Bethe-Yang; i quantized. Diagonal n m m S matrix e i j S( j, 1 )...S( j, n ) = 1 ; S() = 1 j + k 1 i logs( j, k ) = (n+1)iπ π

44 QFTs in finite volume CFT uscher Bethe Yang E Finite volume sectrum Infinite volume sectrum: E( 1,..., n ) = ie( i ) 1 i R Polynomial volume corrections: Bethe-Yang; i quantized. Diagonal n m m S matrix e i j S(j, 1 )...S( j, n ) = 1 ; S() = 1 j + k 1 i logs( j, k ) = (n+1)iπ π Non-diagonal, sine-gordon e i j S(j, 1 )...S( j, n )Ψ = Ψ S() = P... 1 j... n

45 QFTs in finite volume CFT uscher Bethe Yang E Finite volume sectrum Infinite volume sectrum: E( 1,..., n ) = ie( i ) 1 i R Polynomial volume corrections: Bethe-Yang; i quantized. Diagonal n m m S matrix e i j S(j, 1 )...S( j, n ) = 1 ; S() = 1 j + k 1 i logs( j, k ) = (n+1)iπ π Non-diagonal, sine-gordon e i j S(j, 1 )...S( j, n )Ψ = Ψ S() = P... 1 j... n Inhomogenous XXZ sin-chain sectral roblem e isinhθ jt(θ j )S (θ j ) = 1

46 QFTs in finite volume E CFT uscher Bethe Yang Finite volume sectrum Infinite volume sectrum: E( 1,..., n ) = ie( i ) 1 i R Polynomial volume corrections: Bethe-Yang; i quantized. Diagonal n m m S matrix e i j S(j, 1 )...S( j, n ) = 1 ; S() = 1 j + k 1 i logs( j, k ) = (n+1)iπ π Non-diagonal, sine-gordon e i j S(j, 1 )...S( j, n )Ψ = Ψ S() = P... 1 j... n Inhomogenous XXZ sin-chain sectral roblem e isinhθ jt(θ j )S (θ j ) = 1 T(θ)Q(θ) = Q(θ +iπ)t (θ iπ )+Q(θ iπ)t (θ + iπ ) = Q++ T +Q T +

47 QFTs in finite volume E CFT uscher Bethe Yang Finite volume sectrum Infinite volume sectrum: E( 1,..., n ) = ie( i ) 1 i R n m m S matrix Polynomial volume corrections: Bethe-Yang; i quantized. Diagonal e i j S(j, 1 )...S( j, n ) = 1 ; S() = 1 j + k 1 i logs( j, k ) = (n+1)iπ π Non-diagonal, sine-gordon e i j S( j, 1 )...S( j, n )Ψ = Ψ S() = P... 1 j... n Inhomogenous XXZ sin-chain sectral roblem e isinhθ jt(θ j )S (θ j ) = 1 T(θ)Q(θ) = Q(θ +iπ)t (θ iπ )+Q(θ iπ)t (θ + iπ ) = Q++ T +Q T + Q(θ) = β sinh(λ(θ w β)) T (θ) = j sinh(λ(θ θ j)) Bethe Ansatz: T (w α iπ )Q(w α+iπ) T (w α + iπ )Q(w α iπ) = T Q++ T + Q α = 1

48 Thermodynamic Bethe Ansatz: diagonal Ground-state energy exactly [Zamolodchikov] 11

49 Thermodynamic Bethe Ansatz: diagonal Ground-state energy exactly [Zamolodchikov] CFT uscher Bethe Yang E m m S matrix

50 Thermodynamic Bethe Ansatz: diagonal CFT uscher Bethe Yang Ground-state energy exactly [Zamolodchikov] E m m S matrix

51 Thermodynamic Bethe Ansatz: diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Zamolodchikov] R m S matrix Euclidian artition function: Z(,R) = R Tr(e H()R ) Z(,R) = R e E ()R (1+e ER ) e H()R

52 Thermodynamic Bethe Ansatz: diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Zamolodchikov] R m S matrix Euclidian artition function: Z(,R) = R Tr(e H()R ) Z(,R) = R e E ()R (1+e ER ) e H()R Exchange sace and Euclidian time Z(,R) = R Tr(e H(R) ) = R ne E n()r e H(R) R

53 Thermodynamic Bethe Ansatz: diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Zamolodchikov] R m S matrix Euclidian artition function: Z(,R) = R Tr(e H()R ) Z(,R) = R e E ()R (1+e ER ) e H()R Exchange sace and Euclidian time Z(,R) = R Tr(e H(R) ) = R ne E n()r e H(R) R Dominant contribution: finite article/hole density ρ,ρ h : π

54 Thermodynamic Bethe Ansatz: diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Zamolodchikov] R m S matrix Euclidian artition function: Z(,R) = R Tr(e H()R ) Z(,R) = R e E ()R (1+e ER ) e H()R Exchange sace and Euclidian time Z(,R) = R Tr(e H(R) ) = R ne E n()r e H(R) R Dominant contribution: finite article/hole density ρ,ρ h : π E n (R) = i E( i) E()ρ()d j R+ k 1 i logs( j, k ) = (n+1)iπ R+ ( id logs(, ))ρ( )d = π(ρ+ρ h )

55 Thermodynamic Bethe Ansatz: diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Zamolodchikov] R m S matrix Euclidian artition function: Z(,R) = R Tr(e H()R ) Z(,R) = R e E ()R (1+e ER ) e H()R Exchange sace and Euclidian time Z(,R) = R Tr(e H(R) ) = R ne E n()r e H(R) R Dominant contribution: finite article/hole density ρ,ρ h : π E n (R) = i E( i) E()ρ()d j R+ k 1 i logs( j, k ) = (n+1)iπ R+ ( id logs(, ))ρ( )d = π(ρ+ρ h ) Z(,R) = d[ρ,ρ h ]e E(R) ((ρ+ρ h )ln(ρ+ρ h ) ρlnρ ρ h lnρ h )d

56 Thermodynamic Bethe Ansatz: diagonal CFT uscher Bethe Yang E Ground-state energy exactly [Zamolodchikov] R m m S matrix Euclidian artition function: Z(,R) = R Tr(e H()R ) Z(,R) = R e E ()R (1+e ER ) Exchange sace and Euclidian time Z(,R) = R Tr(e H(R) ) = R e H()R ne E n()r e H(R) R Dominant contribution: finite article/hole density ρ,ρ h : π E n (R) = i E( i) E()ρ()d j R+ k 1 i logs( j, k ) = (n+1)iπ R+ ( id logs(, ))ρ( )d = π(ρ+ρ h ) Z(,R) = d[ρ,ρ h ]e E(R) ((ρ+ρ h )ln(ρ+ρ h ) ρlnρ ρ h lnρ h )d Saddle oint : ǫ() = ln ρ h() ρ() ǫ() = E()+ d π id logs(,)log(1+e ǫ( ) ) Ground state energy exactly: E () = d π log(1+e ǫ() ) ee-yang, sh-g

57 Thermodynamic Bethe Ansatz: non-diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Tateo] R m S matrix Euclidian artition function: Z(,R) = R e E ()R (1+e ER ) Z(,R) = R Tr(e H(R) ) = R ne E n()r e H()R e H(R) R 1

58 Thermodynamic Bethe Ansatz: non-diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Tateo] R m S matrix Euclidian artition function: Z(,R) = R e E ()R (1+e ER ) Z(,R) = R Tr(e H(R) ) = R ne E n()r e H()R e H(R) R Finite article/hole + Bethe root density ρ,ρ h,ρi,ρ i h : e i T S j = 1, T Q++ T + Q α = 1 ιπ ιπ eriodicity ιπ / π

59 Thermodynamic Bethe Ansatz: non-diagonal CFT uscher Bethe Yang Ground-state energy exactly E m [Tateo] R m S matrix Euclidian artition function: Z(,R) = R e E ()R (1+e ER ) Z(,R) = R Tr(e H(R) ) = R ne E n()r e H()R e H(R) R Finite article/hole + Bethe root density ρ,ρ h,ρi,ρ i h : e i T S j = 1, T Q++ T + Q α = 1 ιπ ιπ eriodicity ιπ / E n (R) = i E( i) E()ρ ()d Rδ m + K m n (, )ρ n ( )d = π(ρ m +ρ m h ) π

60 Thermodynamic Bethe Ansatz: non-diagonal CFT uscher Bethe Yang Ground-state energy exactly [Tateo] R E m m S matrix Euclidian artition function: Z(,R) = R e E ()R (1+e ER ) Z(,R) = R Tr(e H(R) ) = R ne E n()r e H()R e H(R) R Finite article/hole + Bethe root density ρ,ρ h,ρi,ρ i h : e i T S j = 1, T Q++ T + Q α = 1 ιπ ιπ eriodicity ιπ / E n (R) = i E( i) E()ρ ()d Rδ m + K m n (, )ρ n ( )d = π(ρ m +ρ m h ) π Z(,R) = d[ρ i,ρ i h ]e E(R) i ((ρ i +ρ i h )ln(ρi +ρ i h ) ρi lnρ i ρ i h lnρi h )d

61 Thermodynamic Bethe Ansatz: non-diagonal CFT uscher Ground-state energy exactly [Tateo] E R m m Bethe Yang S matrix Euclidian artition function: Z(,R) = R e E()R (1+e ER ) Z(,R) = R Tr(e H(R) ) = R ne E n()r e H()R Finite article/hole + Bethe root density ρ,ρ h,ρi,ρ i h : e i T S j = 1, T Q++ T + Q α = 1 ιπ ιπ e H(R) R eriodicity ιπ / E n (R) = i E( i) E()ρ ()d Rδ m + K m n (, )ρ n ( )d = π(ρ m +ρ m h ) π Z(,R) = d[ρ i,ρ i h ]e E(R) i ((ρ i +ρ i h )ln(ρi +ρ i h ) ρi lnρ i ρ i h lnρi h )d Saddle oint : ǫ i (θ) = ln ρi () ρ i h () ǫ j (θ) = δ j E() K j i (,)log(1+e ǫi ( ) )d Ground state energy exactly: E () = d π log(1+e ǫ (θ) )dθ

62 Thermodynamic Bethe Ansatz: excited diagonal Excited state energy exactly [an idea] 1 n 13

63 Thermodynamic Bethe Ansatz: excited diagonal Excited state energy exactly [an idea] 1 n CFT uscher Bethe Yang E m m S matrix

64 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n E m m S matrix

65 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R

66 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R Particles are like defect oerators Z d (,R) = R Tr(e H(R) D) = R n n D n e E n()r

67 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R Particles are like defect oerators Z d (,R) = R Tr(e H(R) D) = R n n D n e E n()r e H(R) R

68 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R Particles are like defect oerators Z d (,R) = R Tr(e H(R) D) = R n n D n e E n()r e H(R) R

69 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R Particles are like defect oerators Z d (,R) = R Tr(e H(R) D) = R n n D n e E n()r e H(R) R Dominant contribution: finite article/hole density ρ,ρ h : π

70 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R Particles are like defect oerators Z d (,R) = R Tr(e H(R) D) = R n n D n e E n()r e H(R) R Dominant contribution: finite article/hole density ρ,ρ h : π E() E()+logS(, ) j R+ k 1 i logs( j, k ) = (n+1)iπ R+ ( id logs(, ))ρ( )d = π(ρ+ρ h )

71 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R Particles are like defect oerators Z d (,R) = R Tr(e H(R) D) = R n n D n e E n()r e H(R) R Dominant contribution: finite article/hole density ρ,ρ h : π E() E()+logS(, ) j R+ k 1 i logs( j, k ) = (n+1)iπ R+ ( id logs(, ))ρ( )d = π(ρ+ρ h ) forbidden quantizations ρ( )+ρ h ( ) = e ǫ( ) = 1

72 Thermodynamic Bethe Ansatz: excited diagonal CFT uscher Bethe Yang Excited state energy exactly [an idea] 1 n R E m m S matrix Particles are like defects: Z d (,R) = R Tr(e H d()r ) Z d (,R) = R e E d()r (1+e ER ) e H()R Particles are like defect oerators Z d (,R) = R Tr(e H(R) D) = R n n D n e E n()r Dominant contribution: finite article/hole density ρ,ρ h : π e H(R) R E() E()+logS(, ) j R+ k 1 i logs( j, k ) = (n+1)iπ R+ ( id logs(, ))ρ( )d = π(ρ+ρ h ) forbidden quantizations ρ( )+ρ h ( ) = e ǫ( ) = 1 Saddle oint : ǫ() = E()+logS(, )+ d π id logs(,)log(1+e ǫ( ) ) Excited state energy exactly: E d () = E( ) d π log(1+e ǫ() ) sh-g

73 Excited states TBA, Y-system: diagonal Excited states exactly 1 n 14

74 Excited states TBA, Y-system: diagonal Excited states exactly 1 n CFT uscher Bethe Yang E m m S matrix

75 Excited states TBA, Y-system: diagonal CFT uscher Bethe Yang E Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] dθ ǫ(θ) = mcoshθ + π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = m dθ π coshθ log(1+e ǫ(θ) ) ) )

76 Excited states TBA, Y-system: diagonal CFT uscher Bethe Yang E Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] ǫ(θ) = mcoshθ+ dθ logs(θ θ j )+ π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = m dθ π coshθ log(1+e ǫ(θ) ) ) )

77 Excited states TBA, Y-system: diagonal CFT uscher Bethe Yang E Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] ǫ(θ) = mcoshθ+ dθ logs(θ θ j )+ π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = m i sinhθj m dθ π coshθ log(1+e ǫ(θ) ) ) )

78 Excited states TBA, Y-system: diagonal CFT uscher Bethe Yang E Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] ǫ(θ) = mcoshθ+ dθ logs(θ θ j )+ π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = m i sinhθj m dθ π coshθ log(1+e ǫ(θ) ); Y(θ j ) = e ǫ(θ j) = 1 ) )

79 Excited states TBA, Y-system: diagonal CFT uscher Bethe Yang E Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] ǫ(θ) = mcoshθ+ dθ logs(θ θ j )+ π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = m i sinhθj m dθ π coshθ log(1+e ǫ(θ) ); Y(θ j ) = e ǫ(θ j) = 1 By analytical continuation: ee-yang [P.Dorey,Tateo] iπ/6 dθ ǫ(θ) = mcoshθ + π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = üscher corrections: differ by µ term m i π/6 ) ) dθ π coshθ log(1+e ǫ(θ) ) ) )

80 Excited states TBA, Y-system: diagonal CFT uscher Bethe Yang E Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] ǫ(θ) = mcoshθ+ dθ logs(θ θ j )+ π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = m i sinhθj m dθ π coshθ log(1+e ǫ(θ) ); Y(θ j ) = e ǫ(θ j) = 1 By analytical continuation: ee-yang [P.Dorey,Tateo] iπ/6 N ǫ(θ) = mcoshθ+ log S(θ θ j) S(θ θj ) + dθ π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = j=1 üscher corrections: differ by µ term m i π/6 ) ) dθ π coshθ log(1+e ǫ(θ) ) ) )

81 Excited states TBA, Y-system: diagonal CFT uscher Bethe Yang E Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] ǫ(θ) = mcoshθ+ dθ logs(θ θ j )+ π id θlogs(θ θ )log(1+e ǫ(θ E {nj } () = m i sinhθj m dθ π coshθ log(1+e ǫ(θ) ); Y(θ j ) = e ǫ(θ j) = 1 By analytical continuation: ee-yang [P.Dorey,Tateo] iπ/6 N ǫ(θ) = mcoshθ+ log S(θ θ j) S(θ θj ) + dθ π id θlogs(θ θ )log(1+e ǫ(θ j=1 E {nj } () = im (sinhθ j sinhθ j ) m üscher corrections: differ by µ term i π/6 ) ) dθ π coshθ log(1+e ǫ(θ) ) ) )

82 CFT Excited states TBA, Y-system: diagonal E uscher Bethe Yang Excited states exactly 1 n i π/ m m S matrix By lattice regularization: sinh-gordon [Teschner] ǫ(θ) = mcoshθ+ dθ logs(θ θ j )+ π id θlogs(θ θ )log(1+e ǫ(θ )) E {nj } () = m dθ sinhθj m i π coshθ log(1+e ǫ(θ) ); Y(θ j ) = e ǫ(θ j) = 1 i π/6 By analytical continuation: ee-yang [P.Dorey,Tateo] iπ/6 N ǫ(θ) = mcoshθ+ log S(θ θ j) j=1 S(θ θj ) + dθ π id θlogs(θ θ )log(1+e ǫ(θ )) E {nj } () = im (sinhθ j sinhθj ) m dθ π coshθ log(1+e ǫ(θ) ) üscher corrections: differ by µ term S(θ iπ 3 )S(θ + iπ 3 ) = S(θ) Y(θ + iπ 3 )Y(θ iπ 3 ) = 1+Y(θ) Y-system+analyticity=TBA scalar. Matrix [Bazhanov,ukyanov,Zamolodchikov]

83 Excited states TBA, Y-system: Non-diagonal Excited states exactly 1... j n... 15

84 Excited states TBA, Y-system: Non-diagonal Excited states exactly 1... j n... CFT uscher Bethe Yang E m m S matrix

85 Excited states TBA, Y-system: Non-diagonal E CFT uscher Bethe Yang Excited states exactly 1... j n... m m S matrix

86 Excited states TBA, Y-system: Non-diagonal E CFT uscher Bethe Yang Excited states exactly 1... j n... ιπ eriodicity ιπ / m m S matrix ιπ Y-system: sine-gordon π Y s (θ + iπ )Y s(θ iπ ) = (1+Y s 1)(1+Y s+1 ) (e iπ +e iπ )logy s = ri sr log(1+y r )... +1

87 Excited states TBA, Y-system: Non-diagonal CFT uscher E Bethe Yang Excited states exactly 1... j n... ιπ eriodicity ιπ / m m S matrix ιπ Y-system: sine-gordon π Y s (θ + iπ )Y s(θ iπ ) = (1+Y s 1)(1+Y s+1 ) (e iπ +e iπ )logy s = ri sr log(1+y r ) Excited states: analyticity from üscher [Balog, Hegedus]

88 Excited states TBA, Y-system: Non-diagonal E CFT uscher Bethe Yang Excited states exactly 1... j n... ιπ eriodicity ιπ / m m S matrix ιπ Y-system: sine-gordon π Y s (θ + iπ )Y s(θ iπ ) = (1+Y s 1)(1+Y s+1 ) (e iπ +e iπ )logy s = ri sr log(1+y r ) Excited states: analyticity from üscher [Balog, Hegedus] attice regularization: [Destri,de Vega,Ravanini,...] sg Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ

89 Excited states TBA, Y-system: Non-diagonal CFT uscher E Bethe Yang Excited states exactly 1... j n... ιπ eriodicity ιπ / m m S matrix ιπ Y-system: sine-gordon Y s (θ + iπ )Y s(θ iπ ) = (1+Y s 1)(1+Y s+1 ) (e iπ +e iπ )logy s = ri sr log(1+y r ) π Excited states: analyticity from üscher [Balog, Hegedus] attice regularization: [Destri,de Vega,Ravanini,...] sg Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Z(θ) = Msinhθ +source(θ {θ k })+Im dxg(θ x iǫ)log [ 1 e iz(x+iǫ)] source(θ {θ k }) = i klogs (θ θ k) kernel: G(θ) = i θ logs (θ) Energy: E = M kcoshθ k MIm dxg(θ +iǫ)log [ 1 e iz(x+iǫ)] Bethe-Yang e iz(θ k) = 1

90 Sine-Gordon/massive Thirring duality SG = 1 νφ ν Φ+ m β : cos(βφ) : < β < 8π, g Classical sine Gordon theory Semiclassical sine Gordon theory + loo corrections Quantum sine Gordon theory Finite size corrections Massive Thirring model uscher correction Bethe Yang equations S matrix, masses strong-weak duality: + erturbative corrections 1+ g 4π = 4π β = +1 erturbative Thirring model MT = Ψ(iγ ν ν +m )Ψ g Ψγ ν Ψ Ψγ ν Ψ 16

91 AdS/CFT duality: t Hooft Integrability in QCD: Feynman Richard Feynman ( ) What I cannot create I do not understand QED: Feynman grahs To learn: Bethe Ansatz Probs., Kondo, D Hall, accel tem, Non linear classical Hydro Strong interaction? 17

92 CFT: maximally suersymmetric gauge theory Feynman: If you want to learn about nature, to areciate nature, it is necessary to understand the language she seaks in. Fundamental interactions: gauge theory Couling non erturbative no analytical tool interaction articles gauge theory electromagnetic hoton+electron U(1) electroweak W ±,Z µ,ν+higgs SU() U(1) strong gluon+quarks SU(3) SU(3) SU() U(1) erturbative strong force electroweak force Energy only analytical tool: erturbation theory 18

93 CFT: maximally suersymmetric gauge theory Feynman: If you want to learn about nature, to areciate nature, it is necessary to understand the language she seaks in. Fundamental interactions: gauge theory interaction articles gauge theory electromagnetic hoton+electron U(1) electroweak W ±,Z µ,ν+higgs SU() U(1) strong gluon+quarks SU(3) only analytical tool: erturbation theory maximally suersymmetric gauge theory (harmonic oscillator) interaction articles gauge theory N = 4 suersymm. gluon+quarks+scalars SU(N) all fields N 1 comonent matrix = g YM Ψ 1,,3,4 ր ց A µ Φ 1,,3,4,5,6 ց ր Ψ 1,,3,4 d 4 xtr [ 1 4 F 1 (DΦ) +iψd/ψ+v ] V(Φ,Ψ) = 1 4 [Φ,Φ] +Ψ[Φ,Ψ] Couling SU(3) SU() U(1) non erturbative no analytical tool erturbative strong force electroweak force Energy no running β = CFT no confinement suersymmetric heavy ion collision: finite T SUSY is broken quark-gluon lasma is not confined

94 CFT: Observables maximally suersymmetric gauge theory Ψ 1,,3,4 A Φ 1,,3,4,5,6 S = g YM Ψ 1,,3,4 fields SU(N) matrices d 4 xtr [ 1 4 F 1 (DΦ) +iψd/ψ+v ] V(Φ,Ψ) = 1 4 [Φ,Φ] +Ψ[Φ,Ψ] observables arameters: g YM,N observables: artition function gauge-invariant oerators O(x) = Tr(A 1Ψ Φ 3..),det() correlators: O 1 (x 1 )...O n (x n ) correlators: O 1 (x)o () = [da...]e is O 1 (x)o () = O 1 (x)o ()e iv erturbation: g YM g YM g YM N genus ex. g YM N3 = N λ, λ = g YM N artition func. (t Hooft) Z(λ, 1 N ) = N g( 1 N )g nα(g,n)λ n string interactions? 19

95 ositively curved sace AdS: string theory on Anti de Sitter

96 AdS: string theory on Anti de Sitter ositively curved sace Anti de Sitter: negatively curved sace

97 AdS: string theory on Anti de Sitter ositively curved sace Anti de Sitter: negatively curved sace

98 AdS: string theory on Anti de Sitter ositively curved sace Anti de Sitter: negatively curved sace relativistic oint article: ds = dx +dx S worldline ds = ẋ ẋdτ x x x( τ) x 1

99 AdS: string theory on Anti de Sitter ositively curved sace Anti de Sitter: negatively curved sace relativistic oint article: ds = dx +dx S worldline ds = ẋ ẋdτ relativistic string: ds = dx +dx x x x( τ) x 1 x S worldsheet da = (ẋ x ) ẋ x dτdσ x( τ,σ) x τ σ x 1

100 AdS: string theory on Anti de Sitter ositively curved sace Anti de Sitter: negatively curved sace relativistic oint article: ds = dx +dx S worldline ds = ẋ ẋdτ relativistic string: ds = dx +dx x x x( τ) x 1 x S worldsheet da = (ẋ x ) ẋ x dτdσ S 5 S 5 :Y +Y 1 +Y +Y 3 +Y 4 +Y 5 = R 5 AdS x( τ,σ) x τ σ x 1 AdS 5 : X +X 1 +X +X 3 +X 4 X 5 = R S = R dτdσ α 4π ( a X M a X M + a Y M a Y M ) +fermions suercoset PSU(, 4) SO(5) SO(1,4)

101 AdS/CFT corresondence (Maldacena 1998) II B suerstring on AdS 5 S 5 4D Minkowski sace time sace extra dimension 5D anti de Sitter sace 5D shere 6 1 Y i = R ++++ = R ( ) a X M a X M + a Y M a Y M +... R dτdσ α 4π g YM N = 4 D=4 SU(N) SYM d 4 xtr [ 1 4 F 1 (DΦ) +iψd/ψ+v ] V(Φ,Ψ) = 1 4 [Φ,Φ] +Ψ[Φ,Ψ] PSU(, 4) β = suerconformal SO(5) SO(1,4) gaugeinvariants:o = Tr(Φ ),det( ) 1

102 AdS/CFT corresondence (Maldacena 1998) II B suerstring on AdS 5 S 5 4D Minkowski sace time sace extra dimension 5D anti de Sitter sace 5D shere 6 1 Y i = R ++++ = R ( ) a X M a X M + a Y M a Y M +... R dτdσ α 4π Coul.: λ = R α, g s = λ N D QFT String energy levels: E(λ) E(λ) = E( )+ E 1 + E λ λ +... Dictionary g YM strong weak N = 4 D=4 SU(N) SYM d 4 xtr [ 1 4 F 1 (DΦ) +iψd/ψ+v ] V(Φ,Ψ) = 1 4 [Φ,Φ] +Ψ[Φ,Ψ] PSU(, 4) β = suerconformal SO(5) SO(1,4) gaugeinvariants:o = Tr(Φ ),det( ) λ = g YM N, N lanar O n (x)o m () = δ nm x n(λ) Anomalous dim (λ) (λ) = ()+λ 1 +λ +...

103 AdS/CFT corresondence (Maldacena 1998) II B suerstring on AdS 5 S 5 4D Minkowski sace time sace extra dimension 5D anti de Sitter sace 5D shere 6 1 Y i = R ++++ = R ( ) a X M a X M + a Y M a Y M +... R dτdσ α 4π Coul.: λ = R α, g s = λ N D QFT String energy levels: E(λ) E(λ) = E( )+ E 1 + E λ λ +... Dictionary g YM strong weak N = 4 D=4 SU(N) SYM d 4 xtr [ 1 4 F 1 (DΦ) +iψd/ψ+v ] V(Φ,Ψ) = 1 4 [Φ,Φ] +Ψ[Φ,Ψ] PSU(, 4) β = suerconformal SO(5) SO(1,4) gaugeinvariants:o = Tr(Φ ),det( ) λ = g YM N, N lanar O n (x)o m () = δ nm x n(λ) Anomalous dim (λ) (λ) = ()+λ 1 +λ +... D integrable QFT sectrum: Q = 1,,..., disersion: ǫ Q () = Q + λ π sin Exact scattering matrix: S Q1 Q ( 1,,λ)

104 Motivation: AdS/CFT

105 Motivation: AdS/CFT g J

106 Motivation: AdS/CFT g Classical string theory J

107 Motivation: AdS/CFT g Classical string theory Semiclassical string theory J

108 Motivation: AdS/CFT g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory J

109 Motivation: AdS/CFT g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory 1 loo erturbative gauge theory J

110 Motivation: AdS/CFT g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory J

111 Motivation: AdS/CFT g Classical string theory Semiclassical string theory Quantum String theory + string loo corrections S matrix Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory J

112 Motivation: AdS/CFT g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections Asymtotic Bethe Ansatz S matrix 1 loo erturbative gauge theory J

113 Motivation: AdS/CFT Classical string theory g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections 1 loo erturbative gauge theory Need finite J (volume) solution of the sectral roblem J

114 Classical integrability: AdS Classical string theory g AdS 5 S 5 Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections AdS σ model τ σ target = R α ( a X M a X M + a Y M a Y M ) +fermions 1 loo erturbative gauge theory J 3

115 Classical integrability: AdS Classical string theory g AdS 5 S 5 Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections AdS σ model τ σ target = R α ( a X M a X M + a Y M a Y M ) +fermions 1 loo erturbative gauge theory S 5 J Classical solutions are found, for examle magnon: J

116 Classical integrability: AdS Classical string theory g AdS 5 S 5 Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections AdS σ model τ σ target = R α ( a X M a X M + a Y M a Y M ) +fermions 1 loo erturbative gauge theory S 5 J Classical solutions are found, for examle magnon: J Coset Nσ model: g PSU(, 4) SO(4,1) SO(5) J = g 1 dg = J +J Z 4 graded structure: [Metsaev, Tseytlin 3] J,J 1,J,J 3 STr(J J ) STr(J 1 J 3 )

117 Classical integrability: AdS g Classical string theory AdS 5 S 5 Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix AdS σ model τ σ target = R α ( a X M a X M + a Y M a Y M ) +fermions + gauge loo corrections 1 loo erturbative gauge theory S 5 J Classical solutions are found, for examle magnon: J Coset Nσ model: g PSU(, 4) SO(4,1) SO(5) J = g 1 dg = J +J Z 4 graded structure: [Metsaev, Tseytlin 3] J,J 1,J,J 3 STr(J J ) STr(J 1 J 3 ) Integrability from flat connection: da A A = A(µ) = J +µ 1 J 1 +(µ +µ )J /+(µ +µ )J /+µj 3 Conserved charges from the trace of the monodromy matrix T(µ) = P ex A(x) µ dx µ No roof of quantum integrability: let us assume it! gtg 1 T

118 Bootstra rogram: AdS Nondiagonal scattering: S-matrix = scalar. Matrix g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections 1 loo erturbative gauge theory J 4

119 Bootstra rogram: AdS Nondiagonal scattering: S-matrix = scalar. Matrix Perturbative sectrum: 8 boson + 8 fermion global symmetry PSU( ) Q = 1 res b 1 b f 3 f 4 b 1 b f 3 f 4 g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz J S matrix (Q) [S, (Q)] = S matrix (Q)

120 Bootstra rogram: AdS Nondiagonal scattering: S-matrix = scalar. Matrix Perturbative sectrum: 8 boson + 8 fermion global symmetry PSU( ) Q = 1 res [S, (Q)] = b 1 b f 3 f 4 (Q) S matrix (Q) b 1 b f 3 f 4 g Quantum String theory Classical string theory Semiclassical string theory + string loo corrections Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory A.. b c.. c... d..... e b..d e A c.. c d..e d..... e.... f..... g f.. g a h.. h B.. i.... f g f..... g... h.. h i.. B a Wraing/uscher correction Asymtotic Bethe Ansatz J S matrix

121 Bootstra rogram: AdS Nondiagonal scattering: S-matrix = scalar. Matrix Perturbative sectrum: 8 boson + 8 fermion global symmetry PSU( ) Q = 1 res [S, (Q)] = b 1 b f 3 f 4 (Q) S matrix Unitarity S(z 1,z )S(z,z 1 ) = 1 (Q) b 1 b f 3 f 4 Crossing symmetry [Janik] [Volin] S(z 1,z ) = S c 1(z,z 1 +ω ) g Quantum String theory Classical string theory Semiclassical string theory + string loo corrections Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory A.. b c.. c... d..... e b..d e A c.. c d..e d..... e.... f..... g f.. g a h.. h B.. i.... f g f..... g... h.. h i.. B a S = u 1 u i u 1 u +i eiθ(z 1,z ) u = 1 cot E() Wraing/uscher correction [Beisert,Eden,Staudacher] = am(z) Asymtotic Bethe Ansatz J S matrix

122 Bootstra rogram: AdS Nondiagonal scattering: S-matrix = scalar. Matrix Perturbative sectrum: 8 boson + 8 fermion global symmetry PSU( ) Q = 1 res [S, (Q)] = b 1 b f 3 f 4 (Q) S matrix (Q) b 1 b f 3 f 4 Unitarity S(z 1,z )S(z,z 1 ) = 1 S 11 Crossing symmetry [Janik] [Volin] S(z 1,z ) = S c 1(z,z 1 +ω ) g Quantum String theory Classical string theory Semiclassical string theory + string loo corrections Nonerturbative gauge theory gauge loo corrections. A.. b c. 1 loo. erturbative gauge c theory... d..... e b..d e A c.. c d..e d..... e.... f..... g f.. g a h.. h B.. i.... f g f..... g... h.. h i.. B a 11 = u 1 u i u 1 u +i eiθ(z 1,z ) u = 1 cot E() Wraing/uscher correction [Beisert,Eden,Staudacher] = am(z) ω Asymtotic Bethe Ansatz J S matrix Maximal analyticity: boundstates aty symre: Q N anomalous thresholds [N.Dorey,Maldacena,Hofman,Okamura] Q 1 ω / Q 1 1 Q Physical domain ω 1/ ω 1/

123 Bethe-Yang=Asymtotic Bethe Ansatz Finite volume sectrum 1 n g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections 1 loo erturbative gauge theory J 5

124 Bethe-Yang=Asymtotic Bethe Ansatz Finite volume sectrum 1 n g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections Infinite volume sectrum: E( 1,..., n ) = ie( i ) E() = 1+(4gsin ) 1 loo erturbative gauge theory i [ π,π] J

125 Bethe-Yang=Asymtotic Bethe Ansatz Finite volume sectrum 1 n g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix Infinite volume sectrum: E( 1,..., n ) = ie( i ) E() = 1+(4gsin ) + gauge loo corrections 1 loo erturbative gauge theory J i [ π,π] Polynomial volume corrections: Asymtotic Bethe Ansatz; i quantized,. e i j S(j, 1 )...S( j, n )Ψ = Ψ S() = ˆP... 1 j... n

126 Bethe-Yang=Asymtotic Bethe Ansatz Finite volume sectrum 1 n g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections Infinite volume sectrum: E( 1,..., n ) = ie( i ) E() = 1+(4gsin ) 1 loo erturbative gauge theory i [ π,π] J Polynomial volume corrections: Asymtotic Bethe Ansatz; i quantized,. e i j S( j, 1 )...S( j, n )Ψ = Ψ S() = ˆP... 1 j... n Inhomogenous Hubbard sin-chain: e i js (u j) Q++ 4 (u j ) Q 4 (u j) T(u j)ṫ(u j ) = 1

127 Bethe-Yang=Asymtotic Bethe Ansatz Finite volume sectrum 1 n g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix Infinite volume sectrum: E( 1,..., n ) = ie( i ) E() = 1+(4gsin ) + gauge loo corrections 1 loo erturbative gauge theory J i [ π,π] Polynomial volume corrections: Asymtotic Bethe Ansatz; i quantized,. e i j S( j, 1 )...S( j, n )Ψ = Ψ S() = ˆP... 1 j... n Inhomogenous Hubbard sin-chain: e i js (u j) Q++ 4 (u j ) Q 4 (u j) T(u j)ṫ(u j ) = 1 T(u) = B 1 B+ 3 R (+) 4 B + 1 B 3 R ( ) 4 [ Q Q+ 3 Q Q 3 R ( ) 4 Q + 3 R (+) 4 Q 3 + Q++ Q 1 Q Q + 1 B+(+) 4 Q 1 B +( ) 4 Q + 1 ] [Beisert,Staudacher] Q j (u) = R j (u)b j (u) and R (±) j = k x(u) x j,k x j,k B (±) j = k 1 x(u) x j,k x j,k

128 Bethe-Yang=Asymtotic Bethe Ansatz Finite volume sectrum 1 n g Classical string theory Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix Infinite volume sectrum: E( 1,..., n ) = ie( i ) E() = 1+(4gsin ) + gauge loo corrections 1 loo erturbative gauge theory i [ π,π] J Polynomial volume corrections: Asymtotic Bethe Ansatz; i quantized,. e i j S( j, 1 )...S( j, n )Ψ = Ψ S() = ˆP... 1 j... n Inhomogenous Hubbard sin-chain: e i js (u j) Q++ 4 (u j ) Q T(u) = B 1 B+ 3 R (+) 4 B 1 + B 3 R ( ) 4 [ Q Q+ 3 Q Q 3 Q j (u) = R j (u)b j (u) and R (±) j Bethe Ansatz: Q+ B( ) 4 Q B(+) 4 R ( ) 4 Q + 3 R (+) 4 Q 3 = k 1 = 1 Q Q+ 1 Q+ 3 Q ++ Q 1 Q 3 x(u) x j,k x j,k + Q++ Q 1 Q Q + 1 B (±) j 4 (u j) T(u j)ṫ(u j ) = 1 B+(+) 4 Q 1 B +( ) 4 Q + 1 = k = 1 Q+ R( ) 4 Q R(+) 4 1 x(u) x j,k x j,k ] 3 = 1 [Beisert,Staudacher]

129 Thermodynamic Bethe Ansatz: AdS Classical string theory Ground-state energy exactly [Bombardelli,Tateo,Fioravanti,Frolov,Arutyunov, Gromov,Kazakov,Viera,Kozak] Euclidien E +(4gsin ) = 1 artition function: R g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix J Z(,R) = R e E ()R (1+e ER ) e H()R Z(,R) = R Tr(e H(R) ) = R ne Ẽ n ()R e H(R) R 6

130 Thermodynamic Bethe Ansatz: AdS Classical string theory Ground-state energy exactly [Bombardelli,Tateo,Fioravanti,Frolov,Arutyunov, Gromov,Kazakov,Viera,Kozak] Euclidien E +(4gsin ) = 1 artition function: R g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix J Z(,R) = R e E ()R (1+e ER ) e H()R Z(,R) = R Tr(e H(R) ) = R ne Ẽ n ()R e H(R) R Finite article/hole + Bethe root density ρ Q,ρ Q h,ρi,ρ i h : i no eriodicity

131 Thermodynamic Bethe Ansatz: AdS Classical string theory Ground-state energy exactly [Bombardelli,Tateo,Fioravanti,Frolov,Arutyunov, Gromov,Kazakov,Viera,Kozak] Euclidien E +(4gsin ) = 1 artition function: R g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix J Z(,R) = R e E ()R (1+e ER ) e H()R Z(,R) = R Tr(e H(R) ) = R ne Ẽ n ()R e H(R) R Finite article/hole + Bethe root density ρ Q,ρ Q h,ρi,ρ i h : i Ẽ n (R) = i,qẽq( i ) Q ẼQ ( )ρ Q ( )d e i S Q ++ 4 Q 4 T Ṫ 4 = 1 Q+ B( ) 4 Q B(+) 4 1 = 1 Q Q+ 1 Q+ 3 Q ++ Q 1 Q 3 = 1 Q+ R( ) 4 Q R(+) 4 3 = 1 no eriodicity K m n (, )ρ n ( )d = π(ρ m +ρ m h )

132 Thermodynamic Bethe Ansatz: AdS Classical string theory Ground-state energy exactly [Bombardelli,Tateo,Fioravanti,Frolov,Arutyunov, Gromov,Kazakov,Viera,Kozak] Euclidien E +(4gsin ) = 1 artition function: R g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix Z(,R) = R e E ()R (1+e ER ) e H()R J Z(,R) = R Tr(e H(R) ) = R ne Ẽ n ()R e H(R) R Finite article/hole + Bethe root density ρ Q,ρ Q h,ρi,ρ i h : i Ẽ n (R) = i,qẽq( i ) Q ẼQ ( )ρ Q ( )d e i S Q ++ 4 Q 4 T Ṫ 4 = 1 Q+ B( ) 4 Q B(+) 4 1 = 1 Q Q+ 1 Q+ 3 Q ++ Q 1 Q 3 = 1 Q+ R( ) 4 Q R(+) 4 3 = 1 no eriodicity K m n (, )ρ n ( )d = π(ρ m +ρ m h ) Z(,R) = d[ρ i,ρ i h ]e E(R) i ((ρ i +ρ i h )ln(ρi +ρ i h ) ρi lnρ i ρ i h lnρi h )d

133 Thermodynamic Bethe Ansatz: AdS Classical string theory Ground-state energy exactly [Bombardelli,Tateo,Fioravanti,Frolov,Arutyunov, Gromov,Kazakov,Viera,Kozak] Euclidien E +(4gsin ) = 1 artition function: R g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory + gauge loo corrections 1 loo erturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix Z(,R) = R e E ()R (1+e ER ) Z(,R) = R Tr(e H(R) ) = R ne Ẽ n ()R e H()R e H(R) R J Finite article/hole + Bethe root density ρ Q,ρ Q h,ρi,ρ i h : i Ẽ n (R) = i,qẽq( i ) Q ẼQ ( )ρ Q ( )d e i S Q ++ 4 Q 4 T Ṫ 4 = 1 Q+ B( ) 4 Q B(+) 4 1 = 1 Q Q+ 1 Q+ 3 Q ++ Q 1 Q 3 = 1 Q+ R( ) 4 Q R(+) 4 3 = 1 no eriodicity K m n (, )ρ n ( )d = π(ρ m +ρ m h ) Z(,R) = d[ρ i,ρ i h ]e E(R) i ((ρ i +ρ i h )ln(ρi +ρ i h ) ρi lnρ i ρ i h lnρi h )d Saddle oint : ǫ i ( ) = ln ρi ( ) ρ i h ( ) ǫ j (θ) = δ j QẼQ( ) K j i (, )log(1+e ǫi ( ) )d Ground state energy exactly: E () = Q d π log(1+e ǫ Q( ) )d

134 Excited states TBA, Y-system: AdS Classical string theory Excited states exactly 1... j n... g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections 1 loo erturbative gauge theory J 7

135 Excited states TBA, Y-system: AdS Classical string theory Excited states exactly 1... j n... i no eriodicity g Semiclassical string theory + string loo corrections Quantum String theory Nonerturbative gauge theory Wraing/uscher correction Asymtotic Bethe Ansatz S matrix + gauge loo corrections Y-system: AdS [Gromov,Kazakov,Viera] 1 loo erturbative gauge theory J Y a,s (θ+ i )Y a,s(θ i ) Y a+1,s Y a 1,s = (1+Y a,s 1)(1+Y a,s+1 ) (1+Y a+1,s )(1+Y a 1,s )

Gauge/gravity duality: an overview. Z. Bajnok

Gauge/gravity duality: an overview. Z. Bajnok Conference of the Middle European Cooperation in Statistical Physics, MECO37, March 18-22, 2012, Tatranské Matliare, Slovak Republik Gauge/gravity duality: an overview Z. Bajnok Theoretical Physics Research

More information

Casimir effect and the quark anti-quark potential. Zoltán Bajnok,

Casimir effect and the quark anti-quark potential. Zoltán Bajnok, Gauge/gravity duality, Munich, July 3, 23 Casimir effect and the quark anti-quark potential Zoltán Bajnok, MTA-Lendület Holographic QFT Group, Wigner esearch Centre for Physics, Hungary with L. Palla,

More information

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Seminar in Wigner Research Centre for Physics Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Introduction - Old aspects of String theory - AdS/CFT and its Integrability String non-linear sigma

More information

Aspects of integrability in classical and quantum field theories

Aspects of integrability in classical and quantum field theories Aspects of integrability in classical and quantum field theories Second year seminar Riccardo Conti Università degli Studi di Torino and INFN September 26, 2018 Plan of the talk PART 1 Supersymmetric 3D

More information

Numerics and strong coupling results in the planar AdS/CFT correspondence. Based on: Á. Hegedűs, J. Konczer: arxiv:

Numerics and strong coupling results in the planar AdS/CFT correspondence. Based on: Á. Hegedűs, J. Konczer: arxiv: Numerics and strong coupling results in the planar AdS/CFT correspondence Based on: Á. Hegedűs, J. Konczer: arxiv:1604.02346 Outline Introduction : planar AdS/CFT spectral problem From integrability to

More information

S Leurent, V. Kazakov. 6 July 2010

S Leurent, V. Kazakov. 6 July 2010 NLIE for SU(N) SU(N) Principal Chiral Field via Hirota dynamics S Leurent, V. Kazakov 6 July 2010 1 Thermodynaamic Bethe Ansatz (TBA) and Y -system Ground state energy Excited states 2 3 Principal Chiral

More information

Integrability of spectrum of N=4 SYM theory

Integrability of spectrum of N=4 SYM theory Todai/Riken joint workshop on Super Yang-Mills, solvable systems and related subjects University of Tokyo, October 23, 2013 Integrability of spectrum of N=4 SYM theory Vladimir Kazakov (ENS, Paris) Collaborations

More information

A warm-up for solving noncompact sigma models: The Sinh-Gordon model

A warm-up for solving noncompact sigma models: The Sinh-Gordon model A warm-up for solving noncompact sigma models: The Sinh-Gordon model Jörg Teschner Based on A. Bytsko, J.T., hep-th/0602093, J.T., hep-th/0702122 Goal: Understand string theory on AdS-spaces Building blocks:

More information

TESTING ADS/CFT. John H. Schwarz STRINGS 2003

TESTING ADS/CFT. John H. Schwarz STRINGS 2003 TESTING ADS/CFT John H. Schwarz STRINGS 2003 July 6, 2003 1 INTRODUCTION During the past few years 1 Blau et al. constructed a maximally supersymmetric plane-wave background of type IIB string theory as

More information

Magnon kinematics in planar N = 4 Yang-Mills

Magnon kinematics in planar N = 4 Yang-Mills Magnon kinematics in planar N = 4 Yang-Mills Rafael Hernández, IFT-Madrid Collaboration with N. Beisert, C. Gómez and E. López Outline Introduction Integrability in the AdS/CFT correspondence The quantum

More information

Spiky strings, light-like Wilson loops and a pp-wave anomaly

Spiky strings, light-like Wilson loops and a pp-wave anomaly Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arxiv:080.039 A. Tseytlin, M.K. arxiv:0804.3438 R. Ishizeki, A. Tirziu, M.K. Summary Introduction

More information

AdS/CFT duality, spin chains and 2d effective actions

AdS/CFT duality, spin chains and 2d effective actions AdS/CFT duality, spin chains and 2d effective actions R. Roiban, A. Tirziu and A. A. Tseytlin Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz type effective 2-d actions, hep-th/0604199 also talks

More information

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries N. Kitanine IMB, Université de Bourgogne. In collaboration with: G. Filali RAQIS 21, Annecy June 15 - June 19, 21 Typeset

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary. The Mirror TBA

String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary. The Mirror TBA The Mirror TBA Through the Looking-Glass, and, What Alice Found There Gleb Arutyunov Institute for Theoretical Physics, Utrecht University Lorentz Center, Leiden, 12 April 2010 Summary of the mirror TBA

More information

Continuum limit of fishnet graphs and AdS sigma model

Continuum limit of fishnet graphs and AdS sigma model Continuum limit of fishnet graphs and AdS sigma model Benjamin Basso LPTENS 15th Workshop on Non-Perturbative QCD, IAP, Paris, June 2018 based on work done in collaboration with De-liang Zhong Motivation

More information

Towards solution of string theory in AdS3 x S 3

Towards solution of string theory in AdS3 x S 3 Towards solution of string theory in AdS3 x S 3 Arkady Tseytlin based on work with Ben Hoare: arxiv:1303.1037, 1304.4099 Introduction / Review S-matrix for string in AdS3 x S3 x T4 with RR and NSNS flux

More information

Scaling dimensions at small spin

Scaling dimensions at small spin Princeton Center for Theoretical Science Princeton University March 2, 2012 Great Lakes String Conference, Purdue University arxiv:1109.3154 Spectral problem and AdS/CFT correspondence Spectral problem

More information

Y-system for the Spectrum of Planar AdS/CFT: News and Checks

Y-system for the Spectrum of Planar AdS/CFT: News and Checks -,,,,, Y-system for the Spectrum of Planar AdS/CFT: News and Checks Vladimir Kazakov (ENS, Paris) Collaborations with N.Gromov, A.Kozak, S.Leurent, Z.Tsuboi and P.Vieira Outline Integrability for QFT in

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β

Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β Based on arxiv:1201.2635v1 and on-going work With C. Ahn, D. Bombardelli and B-H. Lee February 21, 2012 Table of contents 1 One parameter generalization

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

String/gauge theory duality and QCD

String/gauge theory duality and QCD String/gauge theory duality and QCD M. Kruczenski Purdue University ASU 009 Summary Introduction String theory Gauge/string theory duality. AdS/CFT correspondence. Mesons in AdS/CFT Chiral symmetry breaking

More information

An alternative to perturbative QFT: lattice discretization of the Sine-Gordon model

An alternative to perturbative QFT: lattice discretization of the Sine-Gordon model An alternative to perturbative QFT: lattice discretization of the Sine-Gordon model Rob Klabbers II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany,

More information

2nd Asia-Pacific Summer School in Mathematical Physics, Canberra

2nd Asia-Pacific Summer School in Mathematical Physics, Canberra 1. Wrapping effect 2. Thermodynamic Bethe ansatz method 3. Luscher corrections 4. Y-systems High-order Feynman diagrams connect operators farther away When the length of a composite operator is shorter

More information

Anomalous Strong Coupling

Anomalous Strong Coupling Simons Center for Geometry and Physics, Stony Brook based on [Brenno Carlini Vallilo, LM, arxiv:1102.1219 [hep-th] ] for a pedagogical review, [LM, arxiv:1104.2604][hep-th] ] XI Workshop on Nonperturbative

More information

Exact spectral equations in planar N=4 SYM theory

Exact spectral equations in planar N=4 SYM theory Euler Symposium on Theoretical and Mathematical Physics Euler International Mathematical Institute, St. Petersburg, July 12-17, 2013 Exact spectral equations in planar N=4 SYM theory Vladimir Kazakov (ENS,

More information

Systematic construction of (boundary) Lax pairs

Systematic construction of (boundary) Lax pairs Thessaloniki, October 2010 Motivation Integrable b.c. interesting for integrable systems per ce, new info on boundary phenomena + learn more on bulk behavior. Examples of integrable b.c. that modify the

More information

The form factor program a review and new results

The form factor program a review and new results The form factor program a review and new results the nested SU(N)-off-shell Bethe ansatz H. Babujian, A. Foerster, and M. Karowski FU-Berlin Budapest, June 2006 Babujian, Foerster, Karowski (FU-Berlin)

More information

Six-point gluon scattering amplitudes from -symmetric integrable model

Six-point gluon scattering amplitudes from -symmetric integrable model YITP Workshop 2010 Six-point gluon scattering amplitudes from -symmetric integrable model Yasuyuki Hatsuda (YITP) Based on arxiv:1005.4487 [hep-th] in collaboration with K. Ito (TITECH), K. Sakai (Keio

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT D-branes Type IIA string theory: Dp-branes p even (0,2,4,6,8) Type IIB string theory: Dp-branes p odd (1,3,5,7,9) 10D Type IIB two parallel D3-branes low-energy effective description:

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Amplitudes & Wilson Loops at weak & strong coupling

Amplitudes & Wilson Loops at weak & strong coupling Amplitudes & Wilson Loops at weak & strong coupling David Skinner - Perimeter Institute Caltech - 29 th March 2012 N=4 SYM, 35 years a!er Twistor space is CP 3, described by co-ords It carries a natural

More information

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Yoshiyuki Nakagawa Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku,

More information

Scaling and integrability from AdS 5 S 5

Scaling and integrability from AdS 5 S 5 Scaling and integrability from AdS 5 S 5 Riccardo Ricci Imperial College London DAMTP Cambridge 14th October Work in collaboration with S. Giombi, R.Roiban, A. Tseytlin and C.Vergu Outline Introduction

More information

Solving the AdS/CFT Y-system

Solving the AdS/CFT Y-system Solving the AdS/CFT Y-system Dmytro Volin Nordita, Stockholm IHP, 2011 1110.0562 N.Gromov, V.Kazakov, S.Leurent. D.V. Setup: = IIB, AdS 5 xs 5 0 This is a talk about the spectral problem: Conformal dimension

More information

Gluon scattering amplitudes and two-dimensional integrable systems

Gluon scattering amplitudes and two-dimensional integrable systems Gluon scattering amplitudes and two-dimensional integrable systems Yuji Satoh (University of Tsukuba) Based on Y. Hatsuda (DESY), K. Ito (TIT), K. Sakai (YITP) and Y.S. JHEP 004(200)08; 009(200)064; 04(20)00

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

Introduction to Integrability in AdS/CFT: Lecture 4

Introduction to Integrability in AdS/CFT: Lecture 4 Introduction to Integrability in AdS/CFT: Lecture 4 Rafael Nepomechie University of Miami Introduction Recall: 1-loop dilatation operator for all single-trace operators in N=4 SYM is integrable 1-loop

More information

Nikolay Gromov. Based on

Nikolay Gromov. Based on Nikolay Gromov Based on N. G., V.Kazakov, S.Leurent, D.Volin 1305.1939,????.???? N. G., F. Levkovich-Maslyuk, G. Sizov, S.Valatka????.???? A. Cavaglia, D. Fioravanti, N.G, R.Tateo????.???? December, 2013

More information

Y-system for the exact spectrum of N = 4 SYM

Y-system for the exact spectrum of N = 4 SYM Universitȁt von Bonn, 6 Juni 2011 Y-system for the exact spectrum of N = 4 SYM Vladimir Kazakov (ENS,Paris) Theoretical Challenges in Quantum Gauge Field Theory QFT s in dimension>2, in particular 4D Yang-Mills

More information

Marta Orselli. Based on: hep-th/ , hep-th/ hep-th/ , arxiv: arxiv: , arxiv: work in progress

Marta Orselli. Based on: hep-th/ , hep-th/ hep-th/ , arxiv: arxiv: , arxiv: work in progress Marta Orselli Based on: hep-th/0605234, hep-th/0608115 hep-th/0611242, arxiv:0707.1621 arxiv:0806.3370, arxiv:0912.5522 + work in progress IDEA: obtain an understanding of the quantum mechanical nature

More information

Condensation properties of Bethe roots in the XXZ chain

Condensation properties of Bethe roots in the XXZ chain Condensation properties of Bethe roots in the XXZ chain K K Kozlowski CNRS, aboratoire de Physique, ENS de yon 25 th of August 206 K K Kozlowski "On condensation properties of Bethe roots associated with

More information

N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable 4D Conformal Field Theory

N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable 4D Conformal Field Theory PACIFIC 2014 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 15-20, 2014, Moorea, French Polynesia N=4 Super-Yang-Mills in t Hooft limit as Exactly Solvable

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Exact Quantization of a Superparticle in

Exact Quantization of a Superparticle in 21st October, 2010 Talk at SFT and Related Aspects Exact Quantization of a Superparticle in AdS 5 S 5 Tetsuo Horigane Institute of Physics, Univ. of Tokyo(Komaba) Based on arxiv : 0912.1166( Phys.Rev.

More information

arxiv: v1 [hep-th] 17 Sep 2010

arxiv: v1 [hep-th] 17 Sep 2010 Preprint typeset in JHEP style - HYPER VERSION arxiv:1009.3428v1 [hep-th] 17 Sep 2010 A numerical test of the Y-system in the small size limit of the ËÍ µ ËÍ µ Principal Chiral Model Matteo Beccaria and

More information

Half BPS solutions in type IIB and M-theory

Half BPS solutions in type IIB and M-theory Half BPS solutions in type IIB and M-theory Based on work done in collaboration with Eric D Hoker, John Estes, Darya Krym (UCLA) and Paul Sorba (Annecy) E.D'Hoker, J.Estes and M.G., Exact half-bps type

More information

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain V. Terras CNRS & ENS Lyon, France People involved: N. Kitanine, J.M. Maillet, N. Slavnov and more recently: J.

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, P SU(2, 2 4) Integrable Spin Chain INTEGRABILITY IN YANG-MILLS THEORY

D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, P SU(2, 2 4) Integrable Spin Chain INTEGRABILITY IN YANG-MILLS THEORY INTEGRABILITY IN YANG-MILLS THEORY D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, in the Planar Limit N, fixed g 2 N P SU(2, 2 4) Integrable Spin Chain Yangian Symmetry Algebra of P SU(2, 2 4) Local

More information

Gluon Scattering Amplitudes from Gauge/String Duality and Integrability

Gluon Scattering Amplitudes from Gauge/String Duality and Integrability Gluon Scattering Amplitudes from Gauge/String Duality and Integrability University of Tsukuba Yuji Satoh based on JHEP 0910:001; JHEP 1001:077 w/ K. Sakai (Keio Univ.) JHEP 1004:108; JHEP 1009:064, arxiv:1101:xxxx

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

Classical AdS String Dynamics. In collaboration with Ines Aniceto, Kewang Jin

Classical AdS String Dynamics. In collaboration with Ines Aniceto, Kewang Jin Classical AdS String Dynamics In collaboration with Ines Aniceto, Kewang Jin Outline The polygon problem Classical string solutions: spiky strings Spikes as sinh-gordon solitons AdS string ti as a σ-model

More information

The TT Deformation of Quantum Field Theory

The TT Deformation of Quantum Field Theory The TT Deformation of Quantum Field Theory John Cardy University of California, Berkeley All Souls College, Oxford ICMP, Montreal, July 2018 Introduction all QFTs that we use in physics are in some sense

More information

THE SPECTRUM OF BOUNDARY SINE- GORDON THEORY

THE SPECTRUM OF BOUNDARY SINE- GORDON THEORY THE SPECTRUM OF BOUNDARY SINE- GORDON THEORY Z. Bajnok, L. Palla and G. Takács Institute for Theoretical Physics, Eötvös University, Budapest, Hungary Abstract We review our recent results on the on-shell

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State Ë Ë Ë³ Gerry and Fermi Liquid Theory Thomas Schaefer North Carolina State Introduction I learned about Fermi liquid theory (FLT from Gerry. I was under the imression that the theory amounted to the oeration

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Quantization of gravity, giants and sound waves p.1/12

Quantization of gravity, giants and sound waves p.1/12 Quantization of gravity, giants and sound waves Gautam Mandal ISM06 December 14, 2006 Quantization of gravity, giants and sound waves p.1/12 Based on... GM 0502104 A.Dhar, GM, N.Suryanarayana 0509164 A.Dhar,

More information

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit PACIFIC 2015 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 12-19, 2015, Moorea, French Polynesia Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills

More information

APPLICATION OF MASSIVE INTEGRABLE QUANTUM FIELD THEORIES TO PROBLEMS IN CONDENSED MATTER PHYSICS

APPLICATION OF MASSIVE INTEGRABLE QUANTUM FIELD THEORIES TO PROBLEMS IN CONDENSED MATTER PHYSICS APPLICATION OF MASSIVE INTEGRABLE QUANTUM FIELD THEORIES TO PROBLEMS IN CONDENSED MATTER PHYSICS FABIAN H.L. ESSLER The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road,

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

AdS/CFT Beyond the Planar Limit

AdS/CFT Beyond the Planar Limit AdS/CFT Beyond the Planar Limit T.W. Brown Queen Mary, University of London Durham, October 2008 Diagonal multi-matrix correlators and BPS operators in N=4 SYM (0711.0176 [hep-th]) TWB, Paul Heslop and

More information

Massless integrable quantum field theories and massless scattering in 1+1 dimensions

Massless integrable quantum field theories and massless scattering in 1+1 dimensions USC-93-0 arxiv:hep-th/9310058v1 11 Oct 1993 Massless integrable quantum field theories and massless scattering in 1+1 dimensions P. Fendley and H. Saleur Department of Physics, University of Southern California

More information

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München .. Gauge/Gravity Duality: An introduction Johanna Erdmenger Max Planck Institut für Physik, München 1 Outline I. Foundations 1. String theory 2. Dualities between quantum field theories and gravity theories

More information

Spectrum of Holographic Wilson Loops

Spectrum of Holographic Wilson Loops Spectrum of Holographic Wilson Loops Leopoldo Pando Zayas University of Michigan Continuous Advances in QCD 2011 University of Minnesota Based on arxiv:1101.5145 Alberto Faraggi and LPZ Work in Progress,

More information

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5 ds/cft Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, 2011 Contents 1 Lecture 1 2 2 Lecture 2 5 1 ds/cft Lecture 1 1 Lecture 1 We will first review calculation of quantum field theory

More information

Bogolyubov Limit of Bethe Ansatz. and Dark Solitons

Bogolyubov Limit of Bethe Ansatz. and Dark Solitons Bogolyubov Limit of Bethe Ansatz and Dark Solitons Konstantin Zarembo (LPT) arxiv:0702:???? Journées de la FRIF, 1.02.2008 Large-N expansion of YM theory String theory AdS/CFT correspondence Maldacena

More information

Feynman Diagrams of the Standard Model Sedigheh Jowzaee

Feynman Diagrams of the Standard Model Sedigheh Jowzaee tglied der Helmholtz-Gemeinschaft Feynman Diagrams of the Standard Model Sedigheh Jowzaee PhD Seminar, 5 July 01 Outlook Introduction to the standard model Basic information Feynman diagram Feynman rules

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

How I learned to stop worrying and love the tachyon

How I learned to stop worrying and love the tachyon love the tachyon Max Planck Institute for Gravitational Physics Potsdam 6-October-2008 Historical background Open string field theory Closed string field theory Experimental Hadron physics Mesons mass

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

Chiral Symmetry Breaking from Monopoles and Duality

Chiral Symmetry Breaking from Monopoles and Duality Chiral Symmetry Breaking from Monopoles and Duality Thomas Schaefer, North Carolina State University with A. Cherman and M. Unsal, PRL 117 (2016) 081601 Motivation Confinement and chiral symmetry breaking

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables Véronique TERRAS CNRS & Université Paris Sud, France Workshop: Beyond integrability.

More information

Perturbative Integrability of large Matrix Theories

Perturbative Integrability of large Matrix Theories 35 th summer institute @ ENS Perturbative Integrability of large Matrix Theories August 9 th, 2005 Thomas Klose Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam, Germany

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

arxiv:hep-th/ v1 14 Jul 2005

arxiv:hep-th/ v1 14 Jul 2005 Nonlinear integral equations for the finite size effects of RSOS and vertex-models and related quantum field theories arxiv:hep-th/0507132v1 14 Jul 2005 Árpád Hegedűs Istituto Nazionale di Fisica Nucleare,

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions Durham University Work in collaboration with Matthew Elliot-Ripley June 26, 2015 Introduction to baby Skyrmions in flat space and AdS 3 Discuss

More information

The AdS/CFT correspondence and applications to QCD

The AdS/CFT correspondence and applications to QCD The AdS/CFT correspondence and applications to QCD Philip Fol October 8, 2013 Contents 1 Introduction 1 2 The AdS/CFT correspondence 4 2.1 The concept of a dual theory.......................... 4 2.2 The

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

August 2008 Solitons and AdS string solutions 2

August 2008 Solitons and AdS string solutions 2 * In collaboration with Kewang Jin, Chrysostomos Kalousios and AnastasiaVolovich. Outline Classical string solutions: spiky strings Spikes as sinh Gordon solitons AdS string as a σ model Inverse scattering

More information

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works

Introduction Calculation in Gauge Theory Calculation in String Theory Another Saddle Point Summary and Future Works Introduction AdS/CFT correspondence N = 4 SYM type IIB superstring Wilson loop area of world-sheet Wilson loop + heavy local operator area of deformed world-sheet Zarembo s solution (1/2 BPS Wilson Loop)

More information

Drag force from AdS/CFT

Drag force from AdS/CFT Drag force from AdS/CFT Shankhadeep Chakrabortty IOP (Bhubaneswar, India) USTC, He Fei, China January 5, 2012 Introduction Strong interaction QCD. Quarks and gluons (fundamental constituents in a confined

More information

Four-point functions in the AdS/CFT correspondence: Old and new facts. Emery Sokatchev

Four-point functions in the AdS/CFT correspondence: Old and new facts. Emery Sokatchev Four-point functions in the AdS/CFT correspondence: Old and new facts Emery Sokatchev Laboratoire d Annecy-le-Vieux de Physique Théorique LAPTH Annecy, France 1 I. The early AdS/CFT correspondence The

More information

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Lectures on gauge-gravity duality

Lectures on gauge-gravity duality Lectures on gauge-gravity duality Annamaria Sinkovics Department of Applied Mathematics and Theoretical Physics Cambridge University Tihany, 25 August 2009 1. Review of AdS/CFT i. D-branes: open and closed

More information

Integrability of Conformal Fishnet Theory

Integrability of Conformal Fishnet Theory Integrability of Conformal Fishnet Theory Gregory Korchemsky IPhT, Saclay In collaboration with David Grabner, Nikolay Gromov, Vladimir Kazakov arxiv:1711.04786 15th Workshop on Non-Perturbative QCD, June

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Chern-Simons Theories and AdS/CFT

Chern-Simons Theories and AdS/CFT Chern-Simons Theories and AdS/CFT Igor Klebanov PCTS and Department of Physics Talk at the AdS/CMT Mini-program KITP, July 2009 Introduction Recent progress has led to realization that coincident membranes

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

As we have seen the last time, it is useful to consider the matrix elements involving the one-particle states,

As we have seen the last time, it is useful to consider the matrix elements involving the one-particle states, L7 As we have seen the last time, it is useful to consider the matrix elements involving the one-particle states, F (x, θ) = 0 σ(x/2)µ( x/2) A(θ). (7.1) From this, and similar matrix element F (x, θ),

More information

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks SUSY gauge theories SUSY QCD Consider a SUSY SU(N) with F flavors of quarks and squarks Q i = (φ i, Q i, F i ), i = 1,..., F, where φ is the squark and Q is the quark. Q i = (φ i, Q i, F i ), in the antifundamental

More information

Operator-algebraic construction of integrable QFT and CFT

Operator-algebraic construction of integrable QFT and CFT Operator-algebraic construction of integrable QFT and CFT Yoh Tanimoto University of Rome Tor Vergata, supported by Programma Rita Levi Montalcini June 1st 2018, ICFT 22 Cardiff Y. Tanimoto (Tor Vergata

More information