Separability of Dirac equation in higher dimensional Kerr NUT de Sitter spacetime

Size: px
Start display at page:

Download "Separability of Dirac equation in higher dimensional Kerr NUT de Sitter spacetime"

Transcription

1 Physics Letters B wwwelseviercom/locate/physletb Separability of Dirac equation in higher dimensional Kerr NUT de Sitter spacetime Takeshi Oota a Yukinori Yasui b a Osaka City University Advanced Mathematical Institute OCAMI Sugimoto Sumiyoshi Osaka Japan b Department of Mathematics and Physics Graduate School of Science Osaka City University Sugimoto Sumiyoshi Osaka Japan Received 2 November 2007; accepted 28 November 2007 Available online 3 December 2007 Editor: M Cvetič Abstract It is shown that the Dirac equations in general higher dimensional Kerr NUT de Sitter spacetimes are separated into ordinary differential equations 2007 Elsevier BV All rights reserved Recently the separability of Klein Gordon equations in higher dimensional Kerr NUT de Sitter spacetimes [] was shown by Frolov et al [2] This separation is deeply related to that of geodesic Hamilton Jacobi equations Indeed a geometrical object called conformal Killing Yano tensor plays an important role in the separability theory [2 9] However at present a similar separation of the variables of Dirac equations is lacking although the separability in the four-dimensional Kerr geometry was given by Chandrasekhar [0] In this Letter we shall show that Dirac equations can also be separated in general Kerr NUT de Sitter spacetimes The D-dimensional Kerr NUT de Sitter metrics are written as follows []: a D = 2n g 2n = n dx 2 n Q x + Q x n A k dψ k 2 b D = 2n + g 2n+ = n dx 2 n Q x + Q x n 2 n 2 A k dψ k + c A n A k dψ k 2 The functions Q = 2naregivenby Q x = X U U = ν x 2 xν 2 3 * Corresponding author addresses: toota@sciosaka-cuacjp T Oota yasui@sciosaka-cuacjp Y Yasui /$ see front matter 2007 Elsevier BV All rights reserved doi:006/jphysletb

2 T Oota Y Yasui / Physics Letters B where X is a function depending only on the coordinate x and A k and A k are the elementary symmetric functions of {x 2 ν } and {x 2 ν } ν respectively: t x 2 ν = A 0 t n A t n + + n A n ν t x 2 ν = A 0 tn A tn + + n A n The metrics are Einstein if X takes the form [] a D = 2n X = n b D = 2n + X = c 2k x 2k + b x n c 2k x 2k + b + n c x 2 where cc 2k and b are free parameters D = 2n For the metric we introduce the following orthonormal basis {e a }={e e n+ } = 2n: e = dx Q The dual vector fields are given by e = Q e n+ = x e n+ = n Q A k dψ k n The spin connection is calculated as [] k x 2n k Q U ψ k 8 9 ω ν = x ν Qν x 2 x2 ν e x Q x 2 e ν x2 ν ν x Qρ ω n+ = Q e n+ x 2 ρ ρ x2 e n+ρ no sum over ω n+ν = x Qν x 2 x2 ν ω n+n+ν = x Qν x 2 x2 ν e n+ x Q x 2 x2 ν e x ν x 2 x2 ν e n+ν Q e ν Then the Dirac equation is written in the form γ a D a + m Ψ = 0 where D a is a covariant differentiation D a = e a + 4 ω bce a γ b γ c ν ν 0 2 From 9 0 and 2 we obtain the explicit expression for the Dirac equation

3 690 T Oota Y Yasui / Physics Letters B n γ Q + n X + + x 2 X 2 n γ n+ Q n ν k x 2n k X x x 2 x2 ν ˆΨ ψ k + 2 n ν x ν x 2 x2 ν Let us use the following representation of γ -matrices: {γ a γ b }=2δ ab γ ν γ n+ν ˆΨ + m ˆΨ = 0 3 γ = σ 3 σ 3 σ }{{} 3 σ I I γ n+ = σ 3 σ 3 σ }{{} 3 σ 2 I I where I is the 2 2 identity matrix and σ i are the Pauli matrices In this representation we write the 2 n components of the spinor field as Ψ ɛ ɛ 2 ɛ n ɛ =± and it follows that 4 γ Ψ ɛ ɛ 2 ɛ n = ɛ ν Ψ ɛ ɛ ɛ ɛ + ɛ n γ n+ Ψ = iɛ ɛ ɛ 2 ɛ n ɛ ν Ψ ɛ ɛ ɛ ɛ + ɛ n By the isometry the spinor field takes the form n Ψ ɛ ɛ 2 ɛ n x ψ = ˆΨ ɛ ɛ 2 ɛ n x exp i N k ψ k with arbitrary constants N k Substituting 5 into 3 we obtain n Q ɛ ρ + X + ɛ Y + n Ψ ɛ ɛ x 2 X 2 X 2 x ɛ ɛ ν x ɛ ɛ + ɛ n + mψ ɛ ɛ 2 ɛ n = 0 ν where we have introduced the function n Y = k x 2n k N k ν which depends only on x Consider now the region x x ν > 0for<νand x + x ν > 0 Let us define Φ ɛ ɛ 2 ɛ n x = <ν n Then one can obtain an equality x + ɛ ɛ ν x ν Φ ɛ ɛ ɛ ɛ + ɛ n x = ɛ ɛ ρ Φ ɛ ɛ 2 ɛ n x n U x ɛ ɛ ν x ν ν Now we show that the Dirac equation allows a separation of variables by setting ˆΨ ɛ ɛ 2 ɛ n x = Φ ɛ ɛ 2 ɛ n x χ ɛ x It should be noticed that x log ˆΨ ɛ ɛ ɛ ɛ + ɛ n = d dx log χ ɛ 2 n ν x ɛ ɛ ν x ν

4 T Oota Y Yasui / Physics Letters B By using 20 and 22 the substitution of 2 into 7 leads to n where P ɛ Putting P ɛ P n ν ɛ x ɛ x ɛ ν x ν + m = 0 is a function of the coordinate x only = ɛ n d X + dx 2 n 2 Qy = my n + q j y j j=0 with arbitrary constants q j we find P ɛ x = Qɛ x Thus the functions χ ɛ d + X + ɛ Y χ dx 2 X X χ ɛ X satisfy the ordinary differential equations ɛ ɛ n Qɛ x X X + ɛ Y X χ ɛ = 0 χ ɛ D = 2n + For the metric 2 we introduce the orthonormal basis {ê a }={ê ê n+ ê 2n+ } = 2n: ê = e ê n+ = e n+ ê 2n+ = S n A k dψ k with S = c/a n The -forms e and e n+ are defined by 8 The dual vector fields are given by ê = e ê n+ = e n+ + n x 2 Q U with 9 The spin connection is calculated as [] ψ n ê 2n+ = SA n ψ n S ˆω ν = ω ν ˆω n+ν = ω n+ν + δ ν ê 2n+ ˆω n+n+ν = ω n+n+ν x S ˆω 2n+ = ê n+ Q S ê 2n+ ˆω n+2n+ = ê x x x A similar calculation to the even-dimensional case yields the following Dirac equation n γ Q + X + + n x x 2 X 2x 2 x 2 Ψ x2 ν + n + γ 2n+ S n γ n+ Q n k x 2n k X 2x γ γ n+ + c ν ψ k + n x 2 X ψ n ψ n + 2 Ψ + mψ = 0 We use the representation of γ -matrices given by 4 together with γ 2n+ = σ 3 σ 3 σ 3 n ν x ν x 2 x2 ν γ ν γ n+ν Ψ

5 692 T Oota Y Yasui / Physics Letters B Thus the spinor field ˆΨ ɛ ɛ 2 ɛ n defined by Ψ ɛ ɛ 2 ɛ n x ψ = ˆΨ ɛ ɛ 2 ɛ n x exp satisfies the equation where n Q + i S ɛ ρ Ŷ = i n N k ψ k ɛ ρ + X + x 2 X 2 n n k x 2n k N k ɛ Ŷ X + 2x + 2 n ν ɛ + N n + m ˆΨ ɛ ɛ 2x c 2 ɛ n = 0 We find that the Dirac equation above allows a separation of variables ˆΨ ɛ ɛ 2 ɛ n x = Φ ɛ ɛ 2 ɛ n x χ ɛ x x with Φ ɛ ɛ 2 ɛ n defined by 9 Indeed 34 becomes n P n ν ɛ x ɛ x ɛ ν x ν + i c n ɛ ρ x ρ with the help of 24 Let us introduce the function where ˆQy = n j= 2 q j y j n x ɛ ɛ ν x ν ɛ + N n + m = 0 2x c q n = m q = i 2 n c q 2 = i c n N n ˆΨ ɛ ɛ ɛ ɛ + ɛ n Using the identities n n y 2 ν y y ν = n n y ν y ν y y ν = ν n n y n y ν we can confirm that the functions χ ɛ satisfy the ordinary differential equations 27 by the replacements Y Ŷ and Qɛ x ˆQɛ x We have shown the separation of variables of Dirac equations in general Kerr NUT de Sitter spacetimes An interesting problem is to investigate the origin of separability In the case of geodesic Hamilton Jacobi equations and Klein Gordon equations we know that the existence of separable coordinates comes from that of a rank-2 closed conformal Killing Yano tensor We can also construct the first order differential operators from the closed conformal Killing Yano tensor which commute with Dirac operators [2 4] However we have no clear answer of the separability of Dirac equations As another problem we can study eigenvalues of Dirac operators on Sasaki Einstein manifolds Indeed as shown in [5 7] the BPS limit of odd-dimensional Kerr NUT de Sitter metrics leads to Sasaki Einstein metrics Especially the five-dimensional metrics are important from the point of view of AdS/CFT correspondence 40 4

6 T Oota Y Yasui / Physics Letters B Acknowledgements We thank GW Gibbons for attracting our attention to Refs [2 4] This work is supported by the 2 COE program Construction of wide-angle mathematical basis focused on knots The work of YY is supported by the Grant-in Aid for Scientific Research Nos and from Japan Ministry of Education The work of TO is supported by the Grant-in Aid for Scientific Research Nos and from Japan Ministry of Education References [] W Chen H Lü CN Pope Class Quantum Grav hep-th/ [2] VP Frolov P Krtouš D Kubizňák JHEP hep-th/06245 [3] VP Frolov D Kubizňák Phys Rev Lett gr-qc/ [4] D Kubizňák VP Frolov Class Quantum Grav F gr-qc/06044 [5] DN Page D Kubizňák M Vasudevan P Krtouš Phys Rev Lett hep-th/06083 [6] P Krtouš D Kubizňák DN Page VP Frolov JHEP hep-th/ [7] P Krtouš D Kubizňák DN Page M Vasudevan hep-th/ [8] T Houri T Oota Y Yasui hep-th/ [9] T Houri T Oota Y Yasui Phys Lett B hep-th/ [0] S Chandrasekhar Proc R Soc London A [] N Hamamoto T Houri T Oota Y Yasui J Phys A F77 hep-th/06285 [2] GW Gibbons RH Rietdijk JW van Holten Nucl Phys B hep-th/93032 [3] M Tanimoto Nucl Phys B gr-qc/ [4] M Cariglia Class Quantum Grav hep-th/ [5] Y Hashimoto M Sakaguchi Y Yasui Phys Lett B hep-th/04074 [6] M Cvetič H Lü DN Page CN Pope Phys Rev Lett hep-th/ [7] M Cvetič H Lü DN Page CN Pope hep-th/

On Hidden Symmetries of d > 4 NHEK-N-AdS Geometry

On Hidden Symmetries of d > 4 NHEK-N-AdS Geometry Commun. Theor. Phys. 63 205) 3 35 Vol. 63 No. January 205 On Hidden ymmetries of d > 4 NHEK-N-Ad Geometry U Jie ) and YUE Rui-Hong ) Faculty of cience Ningbo University Ningbo 352 China Received eptember

More information

arxiv:gr-qc/ v1 11 Oct 1999

arxiv:gr-qc/ v1 11 Oct 1999 NIKHEF/99-026 Killing-Yano tensors, non-standard supersymmetries and an index theorem J.W. van Holten arxiv:gr-qc/9910035 v1 11 Oct 1999 Theoretical Physics Group, NIKHEF P.O. Box 41882, 1009 DB Amsterdam

More information

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics Brief course of lectures at 18th APCTP Winter School on Fundamental Physics Pohang, January 20 -- January 28, 2014 Motivations : (1) Extra-dimensions and string theory (2) Brane-world models (3) Black

More information

On the parameters of the Kerr-NUT-(anti-)de Sitter space-time

On the parameters of the Kerr-NUT-(anti-)de Sitter space-time Loughborough University Institutional Repository On the parameters of the Kerr-NUT-(anti-)de Sitter space-time This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

arxiv: v3 [gr-qc] 8 Feb 2016

arxiv: v3 [gr-qc] 8 Feb 2016 Spacetimes with a separable Klein Gordon equation in higher dimensions Ivan Kolář and Pavel Krtouš Institute of Theoretical Physics Faculty of Mathematics and Physics Charles University in Prague V Holešovičkách

More information

XVIII Int. Conference Geometry, Integrability and Quantization, Varna, June 3-8, 2016

XVIII Int. Conference Geometry, Integrability and Quantization, Varna, June 3-8, 2016 XVIII Int. Conference Geometry, Integrability and Quantization, Varna, June 3-8, 2016 Everything should be made as simple as possible, but not simpler. Albert Einstein Motivations : (1) Extra - dimensions

More information

arxiv: v1 [gr-qc] 28 Sep 2012

arxiv: v1 [gr-qc] 28 Sep 2012 arxiv:1209.6406v1 [gr-qc] 28 Sep 2012 Hidden Symmetries of the Dirac equation in curved space-time Marco Cariglia 1 1 Universidade Federal de Ouro Preto, ICEB, Departamento de Física. Campus Morro do Cruzeiro,

More information

Liouville integrability of Hamiltonian systems and spacetime symmetry

Liouville integrability of Hamiltonian systems and spacetime symmetry Seminar, Kobe U., April 22, 2015 Liouville integrability of Hamiltonian systems and spacetime symmetry Tsuyoshi Houri with D. Kubiznak (Perimeter Inst.), C. Warnick (Warwick U.) Y. Yasui (OCU Setsunan

More information

Massive Spinors and ds/cft Correspondence

Massive Spinors and ds/cft Correspondence Massive Spinors and ds/cft Correspondence Farhang Loran arxiv:hep-th/00135v3 16 Jun 00 Department of Physics, Isfahan University of Technology IUT) Isfahan, Iran, Institute for Studies in Theoretical Physics

More information

Konstantin E. Osetrin. Tomsk State Pedagogical University

Konstantin E. Osetrin. Tomsk State Pedagogical University Space-time models with dust and cosmological constant, that allow integrating the Hamilton-Jacobi test particle equation by separation of variables method. Konstantin E. Osetrin Tomsk State Pedagogical

More information

arxiv:hep-th/ v3 25 Sep 2006

arxiv:hep-th/ v3 25 Sep 2006 OCU-PHYS 46 AP-GR 33 Kaluza-Klein Multi-Black Holes in Five-Dimensional arxiv:hep-th/0605030v3 5 Sep 006 Einstein-Maxwell Theory Hideki Ishihara, Masashi Kimura, Ken Matsuno, and Shinya Tomizawa Department

More information

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela

AdS spacetimes and Kaluza-Klein consistency. Oscar Varela AdS spacetimes and Kaluza-Klein consistency Oscar Varela based on work with Jerome Gauntlett and Eoin Ó Colgáin hep-th/0611219, 0707.2315, 0711.xxxx CALTECH 16 November 2007 Outline 1 Consistent KK reductions

More information

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Complete integrability of geodesic motion in Sasaki-Einstein toric spaces Mihai Visinescu Department of Theoretical Physics National Institute for Physics and Nuclear Engineering Horia Hulubei Bucharest,

More information

Classification of dynamical intersecting brane solutions

Classification of dynamical intersecting brane solutions Classification of dynamical intersecting brane solutions Kunihito Uzawa Osaka City University (H. Kodama, K. Uzawa; JHEP 0602:2006 [arxiv: hep-th/0512104] ) (P. Binetruy, M. Sasaki, K. Uzawa, arxiv:0712.3615,

More information

Introduction Finding the explicit form of Killing spinors on curved spaces can be an involved task. Often, one merely uses integrability conditions to

Introduction Finding the explicit form of Killing spinors on curved spaces can be an involved task. Often, one merely uses integrability conditions to CTP TAMU-22/98 LPTENS-98/22 SU-ITP-98/3 hep-th/98055 May 998 A Construction of Killing Spinors on S n H. Lu y, C.N. Pope z and J. Rahmfeld 2 y Laboratoire de Physique Theorique de l' Ecole Normale Superieure

More information

Nongeneric SUSY in hot NUT Kerr Newman Kasuya spacetime

Nongeneric SUSY in hot NUT Kerr Newman Kasuya spacetime Physics Letters B 549 (2002) 344 351 www.elsevier.com/locate/npe Nongeneric SUSY in hot NUT Kerr Newman Kasuya spacetime M. Hossain Ali Department of Mathematics, Rajshahi University, Rajshahi 6205, Bangladesh

More information

Chapters of Advanced General Relativity

Chapters of Advanced General Relativity Chapters of Advanced General Relativity Notes for the Amsterdam-Brussels-Geneva-Paris doctoral school 2014 & 2016 In preparation Glenn Barnich Physique Théorique et Mathématique Université Libre de Bruxelles

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

Holographic Entanglement Entropy, SUSY & Calibrations

Holographic Entanglement Entropy, SUSY & Calibrations Holographic Entanglement Entropy, SUSY & Calibrations Eoin Ó Colgáin 1, 1 Asia Pacific Center for Theoretical Physics, Postech, Pohang 37673, Korea Abstract. Holographic calculations of entanglement entropy

More information

arxiv: v1 [math-ph] 5 Nov 2014

arxiv: v1 [math-ph] 5 Nov 2014 Hidden Symmetries of Dynamics in Classical and Quantum Physics Marco Cariglia, DEFIS, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG - Brasil (Dated: September 4,

More information

N = 2 superparticle near horizon of extreme Kerr Newman-AdS-dS black hole

N = 2 superparticle near horizon of extreme Kerr Newman-AdS-dS black hole LMP-TPU 3/11 N = superparticle near horizon of extreme Kerr Newman-AdS-dS black hole arxiv:1103.1047v [hep-th 3 May 011 Anton Galajinsky and Kirill Orekhov Laboratory of Mathematical Physics, Tomsk Polytechnic

More information

arxiv:hep-th/ v2 24 Sep 1998

arxiv:hep-th/ v2 24 Sep 1998 Nut Charge, Anti-de Sitter Space and Entropy S.W. Hawking, C.J. Hunter and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011

TWISTORS AND THE OCTONIONS Penrose 80. Nigel Hitchin. Oxford July 21st 2011 TWISTORS AND THE OCTONIONS Penrose 80 Nigel Hitchin Oxford July 21st 2011 8th August 1931 8th August 1931 1851... an oblong arrangement of terms consisting, suppose, of lines and columns. This will not

More information

Mass and thermodynamics of Kaluza Klein black holes with squashed horizons

Mass and thermodynamics of Kaluza Klein black holes with squashed horizons Physics Letters B 639 (006 354 361 www.elsevier.com/locate/physletb Mass and thermodynamics of Kaluza Klein black holes with squashed horizons Rong-Gen Cai ac Li-Ming Cao ab Nobuyoshi Ohta c1 a Institute

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Domain Walls from Anti-de Sitter Spacetime

Domain Walls from Anti-de Sitter Spacetime CTP TAMU-26/96 SISSA 109/96/EP hep-th/9607164 Domain Walls from Anti-de Sitter Spacetime H. Lü (1,2),C.N.Pope (1,2) and P.K. Townsend (3) (1) Center for Theoretical Physics, Texas A&M University, College

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

Do Killing-Yano tensors form a Lie algebra?

Do Killing-Yano tensors form a Lie algebra? University of Massachusetts Amherst From the SelectedWorks of David Kastor 2007 Do Killing-Yano tensors form a Lie algebra? David Kastor, University of Massachusetts - Amherst Sourya Ray Jenny Traschen

More information

arxiv: v2 [gr-qc] 7 Jan 2019

arxiv: v2 [gr-qc] 7 Jan 2019 Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory arxiv:1810.03411v2 [gr-qc] 7 Jan 2019 Metin Gürses 1, and Bayram Tekin 2, 1 Department of Mathematics, Faculty of Sciences Bilkent

More information

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Mayeul Arminjon 1,2 and Frank Reifler 3 1 CNRS (Section of Theoretical Physics) 2 Lab. Soils, Solids,

More information

2. Lie groups as manifolds. SU(2) and the three-sphere. * version 1.4 *

2. Lie groups as manifolds. SU(2) and the three-sphere. * version 1.4 * . Lie groups as manifolds. SU() and the three-sphere. * version 1.4 * Matthew Foster September 1, 017 Contents.1 The Haar measure 1. The group manifold for SU(): S 3 3.3 Left- and right- group translations

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

DUAL METRICS FOR A CLASS OF RADIATIVE SPACE TIMES

DUAL METRICS FOR A CLASS OF RADIATIVE SPACE TIMES Modern Physics Letters A, Vol. 16, No. 3 (2001) 135 142 c World Scientific Publishing Company DUAL METRICS FOR A CLASS OF RADIATIVE SPACE TIMES D. BĂLEANU Department of Mathematics and Computer Sciences,

More information

A Brief Introduction to Relativistic Quantum Mechanics

A Brief Introduction to Relativistic Quantum Mechanics A Brief Introduction to Relativistic Quantum Mechanics Hsin-Chia Cheng, U.C. Davis 1 Introduction In Physics 215AB, you learned non-relativistic quantum mechanics, e.g., Schrödinger equation, E = p2 2m

More information

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor

Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor EJTP 6, No. 22 (2009) 189 196 Electronic Journal of Theoretical Physics Path Integral Quantization of the Electromagnetic Field Coupled to A Spinor Walaa. I. Eshraim and Nasser. I. Farahat Department of

More information

arxiv:math/ v1 [math.dg] 16 Mar 2003

arxiv:math/ v1 [math.dg] 16 Mar 2003 arxiv:math/0303191v1 [math.dg] 16 Mar 2003 Gravitational Instantons, Confocal Quadrics and Separability of the Schrödinger and Hamilton-Jacobi equations. G. W. Gibbons C.M.S, Cambridge University, Wilberforce

More information

The de Sitter group representations: old results and new questions a

The de Sitter group representations: old results and new questions a . The de Sitter group representations: old results and new questions a Jean-Pierre Gazeau Astroparticules et Cosmologie (APC), Université Paris Diderot-Paris 7 2010, September 2 ESF in Vila Lanna, Prague

More information

General-relativistic quantum theory of the electron

General-relativistic quantum theory of the electron Allgemein-relativistische Quantentheorie des Elektrons, Zeit. f. Phys. 50 (98), 336-36. General-relativistic quantum theory of the electron By H. Tetrode in Amsterdam (Received on 9 June 98) Translated

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 10. The Dirac equation. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 10 The Dirac equation WS2010/11: Introduction to Nuclear and Particle Physics The Dirac equation The Dirac equation is a relativistic quantum mechanical wave equation formulated by British physicist

More information

arxiv: v2 [math-ph] 6 Dec 2017

arxiv: v2 [math-ph] 6 Dec 2017 arxiv:1705.09330v2 [math-ph] 6 Dec 2017 A note on the Duffin-Kemmer-Petiau equation in (1+1) space-time dimensions José T. Lunardi 1,2,a) 1) School of Physics and Astronomy, University of Glasgow G12 8QQ,

More information

arxiv:hep-th/ v2 14 Oct 1997

arxiv:hep-th/ v2 14 Oct 1997 T-duality and HKT manifolds arxiv:hep-th/9709048v2 14 Oct 1997 A. Opfermann Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK February

More information

Holographic Special Relativity:

Holographic Special Relativity: Holographic Special Relativity: Observer Space from Conformal Geometry Derek K. Wise University of Erlangen Based on 1305.3258 International Loop Quantum Gravity Seminar 15 October 2013 1 Holographic special

More information

arxiv: v1 [hep-th] 18 Apr 2007

arxiv: v1 [hep-th] 18 Apr 2007 USTC-ICTS-07-02 Probing α-vacua of Black Holes in LHC arxiv:0704.2298v1 [hep-th] 18 Apr 2007 Tower Wang Institute of Theoretical Physics, Chinese Academy of Sciences, P. O. Box 2735 Beijing 100080, China

More information

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Jens Boos jboos@perimeterinstitute.ca Perimeter Institute for Theoretical Physics Friday, Dec 4, 2015

More information

New Fundamental Wave Equation on Curved Space-Time and its Cosmological Applications

New Fundamental Wave Equation on Curved Space-Time and its Cosmological Applications New Fundamental Wave Equation on Curved Space-Time and its Cosmological Applications Z.E. Musielak, J.L. Fry and T. Chang Department of Physics University of Texas at Arlington Flat Space-Time with Minkowski

More information

Supergravity. Abstract

Supergravity. Abstract Selfdual backgrounds in N = 2 five-dimensional Chern-Simons Supergravity Máximo Bañados Departamento de Física, Universidad de Santiago de Chile, Casilla 307, Santiago 2, Chile mbanados@maxwell.fis.puc.cl

More information

An exotic class of Kaluza Klein models

An exotic class of Kaluza Klein models An exotic class of Kaluza Klein models arxiv:hep-th/9910093v1 1 Oct 1999 Matt Visser Physics Department, University of Southern California, Los Angeles, CA 90080-0484, USA 1 September 1985; L A TEX-ed

More information

Some half-bps solutions of M-theory

Some half-bps solutions of M-theory Preprint typeset in JHEP style - PAPER VERSION arxiv:hep-th/0506247v2 10 Feb 2006 Some half-bps solutions of M-theory Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681 Warszawa,

More information

SPACETIME FROM ENTANGLEMENT - journal club notes -

SPACETIME FROM ENTANGLEMENT - journal club notes - SPACETIME FROM ENTANGLEMENT - journal club notes - Chris Heinrich 1 Outline 1. Introduction Big picture: Want a quantum theory of gravity Best understanding of quantum gravity so far arises through AdS/CFT

More information

1. INTRODUCTION EQUATION

1. INTRODUCTION EQUATION International Journal of Theoretical and Applied Science (): -5() ISSN No. (Print) : 975-78 ISSN No. (Online) : 49-47 Quaternionic Formulation of Dirac Equation A.S. Rawat*, Seema Rawat** and O.P.S. Negi

More information

Higher dimensional Kerr-Schild spacetimes 1

Higher dimensional Kerr-Schild spacetimes 1 Higher dimensional Kerr-Schild spacetimes 1 Marcello Ortaggio Institute of Mathematics Academy of Sciences of the Czech Republic Bremen August 2008 1 Joint work with V. Pravda and A. Pravdová, arxiv:0808.2165

More information

arxiv: v1 [gr-qc] 11 Nov 2008

arxiv: v1 [gr-qc] 11 Nov 2008 Basic Gravitational Currents and Killing-Yano Forms Ö. Açık 1, Ü. Ertem 1, M. Önder 2, and A. Verçin 1 1 Department of Physics, Ankara University, Faculty of Sciences, 06100, Tandoğan-Ankara, Turkey 2

More information

Tutorial 5 Clifford Algebra and so(n)

Tutorial 5 Clifford Algebra and so(n) Tutorial 5 Clifford Algebra and so(n) 1 Definition of Clifford Algebra A set of N Hermitian matrices γ 1, γ,..., γ N obeying the anti-commutator γ i, γ j } = δ ij I (1) is the basis for an algebra called

More information

The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity

The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity arxiv:hep-th/9911167v2 6 Feb 2000 The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity G.W. Gibbons and S. Ichinose Laboratoire de Physique Théorique de l Ecole Normale Supérieure,

More information

Spinor Formulation of Relativistic Quantum Mechanics

Spinor Formulation of Relativistic Quantum Mechanics Chapter Spinor Formulation of Relativistic Quantum Mechanics. The Lorentz Transformation of the Dirac Bispinor We will provide in the following a new formulation of the Dirac equation in the chiral representation

More information

Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach

Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach P R A Y A S Students Journal of Physics c Indian Association of Physics Teachers Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach M. Sc., Physics Department, Utkal University, Bhubaneswar-751

More information

Non-Rotating BTZ Black Hole Area Spectrum from Quasi-normal Modes

Non-Rotating BTZ Black Hole Area Spectrum from Quasi-normal Modes Non-Rotating BTZ Black Hole Area Spectrum from Quasi-normal Modes arxiv:hep-th/0311221v2 17 Jan 2004 M.R. Setare Physics Dept. Inst. for Studies in Theo. Physics and Mathematics(IPM) P. O. Box 19395-5531,

More information

GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES. Marat Reyes. Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México

GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES. Marat Reyes. Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES Marat Reyes Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México LOOPS 07 MORELIA, MEXICO PLAN OF THE TALK INTRODUCTION:

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

Jose Luis Blázquez Salcedo

Jose Luis Blázquez Salcedo Jose Luis Blázquez Salcedo In collaboration with Jutta Kunz, Francisco Navarro Lérida, and Eugen Radu GR Spring School, March 2015, Brandenburg an der Havel 1. Introduction 2. General properties of EMCS-AdS

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time Loughborough University Institutional Repository Accelerating Kerr-Newman black holes in (anti- de Sitter space-time This item was submitted to Loughborough University's Institutional Repository by the/an

More information

Ricci flat spacetimes admitting higher rank Killing tensors

Ricci flat spacetimes admitting higher rank Killing tensors Ricci flat spacetimes admitting higher rank Killing tensors arxiv:1503.016v1 [gr-qc] 7 Mar 015 Marco Cariglia a and Anton Galajinsky b a DEFIS, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro,

More information

Purely magnetic vacuum solutions

Purely magnetic vacuum solutions Purely magnetic vacuum solutions Norbert Van den Bergh Faculty of Applied Sciences TW16, Gent University, Galglaan, 9000 Gent, Belgium 1. Introduction Using a +1 formalism based on a timelike congruence

More information

Electric Dipole Moment of Magnetic Monopole

Electric Dipole Moment of Magnetic Monopole 479 Progress of Theoretical Physics, Vol. 117, No. 3, March 27 Electric Dipole Moment of Magnetic Monopole Makoto Kobayashi High Energy Accelerator Research Organization (KEK, Tsukuba 35-81, Japan and

More information

. The Niels Bohr Institute University of Copenhagen... Killing-Yano tensors

. The Niels Bohr Institute University of Copenhagen... Killing-Yano tensors Independent project report. The Niels Bohr Institute University of Copenhagen.... Killing-Yano tensors August 13, 2014 Author: Dennis Hansen, Mail: xnw909@alumni.ku.dk. Supervisor: Niels Obers. Abstract

More information

Black holes in N = 8 supergravity

Black holes in N = 8 supergravity Black holes in N = 8 supergravity Eighth Crete Regional Meeting in String Theory, Nafplion David Chow University of Crete 9 July 2015 Introduction 4-dimensional N = 8 (maximal) supergravity: Low energy

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

Global and local problems with. Kerr s solution.

Global and local problems with. Kerr s solution. Global and local problems with Kerr s solution. Brandon Carter, Obs. Paris-Meudon, France, Presentation at Christchurch, N.Z., August, 2004. 1 Contents 1. Conclusions of Roy Kerr s PRL 11, 237 63. 2. Transformation

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

The Effect of Sources on the Inner Horizon of Black Holes

The Effect of Sources on the Inner Horizon of Black Holes arxiv:gr-qc/0010112v2 9 May 2001 The Effect of Sources on the Inner Horizon of Black Holes Ozay Gurtug and Mustafa Halilsoy Department of Physics, Eastern Mediterranean University G.Magusa, North Cyprus,

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Lie Algebra and Representation of SU(4)

Lie Algebra and Representation of SU(4) EJTP, No. 8 9 6 Electronic Journal of Theoretical Physics Lie Algebra and Representation of SU() Mahmoud A. A. Sbaih, Moeen KH. Srour, M. S. Hamada and H. M. Fayad Department of Physics, Al Aqsa University,

More information

CAUSAL SET APPROACH TO DISCRETE QUANTUM GRAVITY

CAUSAL SET APPROACH TO DISCRETE QUANTUM GRAVITY CAUSAL SET APPROACH TO DISCRETE QUANTUM GRAVITY S. Gudder Department of Mathematics University of Denver Denver, Colorado 80208, U.S.A. sgudder@du.edu Abstract We begin by describing a sequential growth

More information

How to recognize a conformally Kähler metric

How to recognize a conformally Kähler metric How to recognize a conformally Kähler metric Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:0901.2261, Mathematical Proceedings of

More information

From Dirac operator to supermanifolds and supersymmetries PAI DYGEST Meeting

From Dirac operator to supermanifolds and supersymmetries PAI DYGEST Meeting From Dirac operator to supermanifolds and supersymmetries PAI DYGEST Meeting Jean-Philippe Michel Département de Mathématiques, Université de Liège First aim Spinor dierential operators symplectic supermanifold

More information

Complex Spacetime Frame: Four-Vector Identities and Tensors

Complex Spacetime Frame: Four-Vector Identities and Tensors Advances in Pure Mathematics, 014, 4, 567-579 Published Online November 014 in SciRes. http://www.scirp.org/journal/apm http://dx.doi.org/10.436/apm.014.411065 Complex Spacetime Frame: Four-Vector Identities

More information

Dirac Equation. Chapter 1

Dirac Equation. Chapter 1 Chapter Dirac Equation This course will be devoted principally to an exposition of the dynamics of Abelian and non-abelian gauge theories. These form the basis of the Standard Model, that is, the theory

More information

Brane Gravity from Bulk Vector Field

Brane Gravity from Bulk Vector Field Brane Gravity from Bulk Vector Field Merab Gogberashvili Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia E-mail: gogber@hotmail.com September 7, 00 Abstract It is shown

More information

Non-gravitating waves

Non-gravitating waves Non-gravitating waves D C Robinson Mathematics Department King s College London Strand London WC2R 2LS United Kingdom email: david.c.robinson@kcl.ac.uk October 6, 2005 Abstract: It is pointed out that

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

Citation Osaka Journal of Mathematics. 40(3)

Citation Osaka Journal of Mathematics. 40(3) Title An elementary proof of Small's form PSL(,C and an analogue for Legend Author(s Kokubu, Masatoshi; Umehara, Masaaki Citation Osaka Journal of Mathematics. 40(3 Issue 003-09 Date Text Version publisher

More information

Comment on Solutions of the Duffin-Kemmer-Petiau equation for a pseudoscalar potential step in (1+1) dimensions

Comment on Solutions of the Duffin-Kemmer-Petiau equation for a pseudoscalar potential step in (1+1) dimensions arxiv:0904.2209v [hep-th] 4 Apr 2009 Comment on Solutions of the Duffin-Kemmer-Petiau equation for a pseudoscalar potential step in (+) dimensions T.R. Cardoso, L.B. Castro, and A.S. de Castro 2 UNESP

More information

Fermion on Curved Spaces, Symmetries, and Quantum Anomalies

Fermion on Curved Spaces, Symmetries, and Quantum Anomalies Symmetry, Integrability and Geometry: Methods and Applications Vol. 2 (2006), Paper 083, 16 pages Fermion on Curved Spaces, Symmetries, and Quantum Anomalies Mihai VISINESCU Department of Theoretical Physics,

More information

arxiv: v1 [gr-qc] 28 Sep 2014

arxiv: v1 [gr-qc] 28 Sep 2014 Asymptotically flat anisotropic space-time in 5 dimensions Manavendra Mahato 1, Ajay Pratap Singh 1, Department of Physics, Indian Institute of Technology, Indore M Block annexe, IET campus, Khandwa Road,

More information

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT 1 meson-nucleon coupling constant from the soft-wall AdS/QCD model Narmin Huseynova a,b1 and Shahin Mamedov a a Institute for Physical Problems, Baku State University, Z.Khalilov 3, Baku, AZ-1148, Azerbaijan

More information

msqm 2011/8/14 21:35 page 189 #197

msqm 2011/8/14 21:35 page 189 #197 msqm 2011/8/14 21:35 page 189 #197 Bibliography Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Edition, (Oxford University Press, London, 1958). Feynman, R. P. and A. P. Hibbs, Quantum Mechanics

More information

Self-dual conformal gravity

Self-dual conformal gravity Self-dual conformal gravity Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:1304.7772., Comm. Math. Phys. (2014). Dunajski (DAMTP, Cambridge)

More information

9 Symmetries of AdS 3

9 Symmetries of AdS 3 9 Symmetries of AdS 3 This section consists entirely of exercises. If you are not doing the exercises, then read through them anyway, since this material will be used later in the course. The main goal

More information

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY arxiv:gr-qc/9806038v1 8 Jun 1998 EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY METÍN GÜRSES Mathematics department, Bilkent University, 06533 Ankara-TURKEY E-mail: gurses@fen.bilkent.edu.tr

More information

arxiv:hep-th/ v2 27 Aug 1997

arxiv:hep-th/ v2 27 Aug 1997 INJE TP 97 1, hep th/9701116 Negative modes in the four dimensional stringy wormholes Jin Young Kim 1, H.W. Lee 2, and Y.S. Myung 2 1 Division of Basic Science, Dongseo University, Pusan 616 010, Korea

More information

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY Andrei Moroianu CNRS - Ecole Polytechnique Palaiseau Prague, September 1 st, 2004 joint work with Uwe Semmelmann Plan of the talk Algebraic preliminaries

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v2 23 Feb 2004 100871 Beijing, China Abstract In this paper, complex

More information

The spectral action for Dirac operators with torsion

The spectral action for Dirac operators with torsion The spectral action for Dirac operators with torsion Christoph A. Stephan joint work with Florian Hanisch & Frank Pfäffle Institut für athematik Universität Potsdam Tours, ai 2011 1 Torsion Geometry, Einstein-Cartan-Theory

More information