A Note on Item Restscore Association in Rasch Models

Size: px
Start display at page:

Download "A Note on Item Restscore Association in Rasch Models"

Transcription

1 Brief Report A Note on Item Restscore Association in Rasch Models Applied Psychological Measurement 35(7) ª The Author(s) 2011 Reprints and permission: sagepub.com/journalspermissions.nav DOI: / Svend Kreiner 1 Keywords Rasch model, item analysis, IRT model fit To rule out the need for a two-parameter item response theory (IRT) model during item analysis by Rasch models, it is important to check the Rasch model s assumption that all items have the same item discrimination. Biserial and polyserial correlation coefficients measuring the association between items and restscores are often used in an informal way for this purpose, with the expectation that correlations will be stronger for items with a high degree of item discrimination and weaker for items where item discrimination is low. Assessment of these coefficients is subjective and often difficult because Rasch models are nonlinear models that do not require biserial and polyserial correlations to be constant across items. To make assessment easier and less uncertain, we propose an alternative way to measure the association between item scores and restscores under the Rasch model and show how to assess the significance of the difference between observed and expected associations. Let Y i be an item score and S = Pk Y i the total score on all items. The restscore without Y i is R i i=1 ¼ S Y i.asy i and R i are discrete ordinal variables, we measure the marginal association between Y i and R i by Goodman and Kruskal s (1954) g. The distribution of g depends on the marginal probabilities p yr ¼ P(Y i ¼ y, R i ¼ r). The sufficiency of S in the Rasch model implies that p yr is given by p yr = Ð P(Y i = y, R i) = rjs = r + y)p(s = r + yjy)f (y) dy = P(Y i = y, R i = rjs = r + y) R P(S = r + yjy)f (y) dy = P(Y i = y, R i = rjs = r + y)p(s = r + y), ð1þ where f(y) is the density of y. In Formula 1, P(Y i ¼ y S ¼ s) depends on the item parameters but not on y because S is sufficient (see Andersen, 1995, Formulas and for details on this distribution). The distribution of S depends on the distribution of y, but assumptions concerning f(y) are not 1 University of Copenhagen, Denmark Corresponding Author: Svend Kreiner, Department of Biostatistics, University of Copenhagen, Oster Farimagsgade 5, B, P.O. Box 2099, Copenhagen K, Denmark s.kreiner@biostat.ku.dk

2 558 Applied Psychological Measurement 35(7) Table 1. Observed and Expected Association Among Responses to Item 3 and the Restscore Summarizing Responses to Other Items Restscore Walking outside in poor weather Total (a) Observed Cannot do it without getting tired Can do it without getting tired Total (b) Expected Cannot do it without getting tired Can do it without getting tired Total Note: Observed g ¼ 0.994; Expected g ¼ 0.948; SE ¼ required because P(S ¼ s) can be consistently estimated by data. From this and Formula 1 it follows that consistent estimates of p yr under the Rasch model are easily obtained as a function of estimates of item parameters and estimates of P(S ¼ r + y). Goodman and Kruskal s g is similar to Kendall s rank correlation. Let n yr be the number of persons with Y i = y and R i = r, andletc and D be the number of concordant and discordant pairs defined by pairwise comparison of persons outcomes on Y i and R i : C = P i < k, j < l n ijn kl and D = P i < k, j > l n ijn kl,(i,k) {0,1,..., max(y i )} {0,1,..., max(y i )} and (j,l) {0,1,..., max (R i )} {0,1,...,max(R i )}. The g coefficient is g = ðc DÞ ðc + DÞ : ð2þ The g coefficient is an estimate of the difference between two conditional probabilities: the conditional probability of concordance given either concordance or discordance and the conditional probability of discordance. To calculate the expected g, we first calculate the probabilities that pairwise comparison of persons results in either concordance or discordance, P C = 2 P i < k, j < l p ijp kl, P D = 2 P i < k, j > l p ijp kl, and then calculate E(g) = ð P C P D Þ ðp C + P D Þ : ð3þ It is well known that g is asymptotically normal with a standard error that is easy to calculate (see Agresti, 1984, Appendix C.3 for details). For this reason, it is straightforward to test whether ^g departs from Eð^g Þ. An Example Avlund, Kreiner, and Schultz-Larsen (1993) fitted a Rasch model to six dichotomous items measuring mobility in a population of 70-year-old Danes. There was no evidence of differential item functioning (DIF), and the conditional likelihood ratio test by Andersen (1973) comfortably accepted the model. Table 1 shows the observed and expected association between the third item ( Walking outside in poor weather ) and the restscore, summarizing responses to the other five items. The observed g is significantly larger than the expected (observed g ¼ 0.994, expected g ¼ 0.948, p <.00005).

3 Kreiner 559 Table 2. Assessment of Item Restscore Association for Six Mobility Items Items Conditional ML estimate of the item location Observed item restscore g Expected item restscore g SE p Walking indoors Walking outdoors in nice weather Walking outdoors in poor weather Managing stairs Getting outdoors Transfer from chair or bed to standing position Note: ML = maximum likelihood. Item responses were coded 0 ¼ cannot do it or cannot do it without getting tired,1 ¼ can do it. Benjamini and Hochberg (1995) accepts hypotheses with p values above.025 to control the false discovery rate at 5% of the multiple tests. The observed and expected g coefficients for all items are summarized in Table 2. The item restscore association was significantly stronger than expected by the Rasch model for two items and significantly weaker for two items. The fit of the Rasch model to item responses is therefore less than adequate. Large Sparse Tables The expected table of item restscore counts (Table 1) indicates a difficulty that will turn into a problem as the number of items and the number of response categories increase. The problem is that some of the cells of the item restscore table will have many cells with very small expected counts resulting in a large sparse table of observed counts where it is known that the asymptotic distributions of test statistics provide very bad approximations to exact distributions. For dichotomous items, a solution to this problem is provided by Besag and Clifford s (1989) algorithm for Markov chain Monte Carlo tests in the conditional distribution of test statistics given person scores and item margins. Another option is parametric bootstrapping from the conditional distribution of the item score and the restscore given S, which works for both dichotomous and polytomous items. Item Restscore Association in Log-Linear Rasch Models One convenient feature of the g coefficient as a measure of item restscore association in Rasch models is that it generalizes to loglinear Rasch models, where local dependence (LD) and DIF are permitted and where LD and DIF are uniform in the sense that they are defined by loglinear interaction parameters that do not depend on y (Kelderman, 1984; Kreiner & Christensen, 2002). In these models, the total score is also sufficient for y, and the derivation of the distribution of the g coefficients proceeds in the same way as under the Rasch models. Consider, for instance, a model where Y i and Y j are uniformly locally dependent. To derive the distribution of (Y i, R i ), we first find the marginal distribution of (Y i,y j, R ij ) where R ij ¼ S Y i Y j. This distribution is given by P(Y i ¼ y i, Y j ¼ y j, R ij ¼ r S ¼ r + y i + y j ) P(S ¼ r + y i + y j ), where the conditional distribution depends on item parameters and

4 560 Applied Psychological Measurement 35(7) Table 3. Reassessment of Item Restscore Association Under (a) A Log-Linear Rasch Model With LD and (b) After Elimination of the Third Item Log-linear Rasch model Rasch model without Item 3 Items Obs. g Exp. g p Obs. g Exp. g p Walking indoors Walking outdoors in nice weather Walking outdoors in poor weather Managing stairs Getting outdoors Transfer from chair or bed to standing position Note: LD ¼ local dependence; Obs. ¼ observed; Exp. ¼ expected. P(S ¼ s) can be estimated from data. Marginalizing over Y j finally gives P(Y i ¼ y i, R i ¼ r) ¼ y P(Y i ¼ y i,y j ¼ y, R ij ¼ r). Similar arguments apply for models with uniform DIF except that the marginal distribution of S has to be replaced by the joint distribution of S and the covariates causing DIF among some items. The Example Revisited The evidence against the Rasch model in Table 2 suggests that a two-parameter model is appropriate. In this example, this may not be warranted. Recall that positive local response dependence will cause some item characteristic curves to be steeper than expected by the Rasch model. In the mobility example, local response dependence among the second and third item ( Walking outside in good weather and Walking outside in poor weather ) is to be expected. There are several ways to address the issue of LD. One is to fit a log-linear Rasch model with an interaction between the two items. Another is purification by eliminating one of the two items. In this example, it is natural to eliminate the second of the two dependent items. Table 3 reports the item restscore associations for both models. The fit between observed and expected g coefficients is perfect for both models. Concluding Remarks The main purpose of an analysis of the item restscore association in Rasch models is to assess the fit of items to the model. When misfit is disclosed, there are at least two ways to proceed: by purification or by modeling. Purification is a stepwise procedure that eliminates items until only items that fit the Rasch model remains. If the number of items is large, this is often the recommended strategy. If the number of items is small and if an analysis of the content of items does not disagree with the notion of LD, it may be preferable to model departures from the Rasch model to save items. The example in this note illustrates such a case. Computer Programs The analysis of item restscore association in Rasch models and log-linear Rasch models was implemented in DIGRAM (Kreiner, 2003).

5 Kreiner 561 Declaration of Conflicting Interests The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Funding The author received no financial support for the research, authorship, and/or publication of this article. References Agresti, A. (1984). Analysis of ordinal categorical data. New York, NY: Wiley. Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments and applications (pp ). New York, NY: Springer. Avlund, K., Kreiner, S., & Schultz-Larsen, K. (1993). Construct validation and the Rasch model: Functional ability of healthy elderly people. Scandinavian Journal of Social Medicine, 21, Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical, 57, Besag, J., & Clifford, P. (1989). Generalized Monte Carlo Significance Tests. Biometrika, 76, Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, Kreiner, S. (2003). Introduction to DIGRAM and SCD (Research report 03/10). Department of Biostatistics, University of Copenhagen, Denmark. Kreiner, S., & Christensen, K. B. (2002). Graphical Rasch models. In M. Mesbah, F.C. Cole, & M. T. Lee (2002). Statistical methods for quality of life studies (pp ). Dordrecht, Netherlands: Kluwer Academic.

Local response dependence and the Rasch factor model

Local response dependence and the Rasch factor model Local response dependence and the Rasch factor model Dept. of Biostatistics, Univ. of Copenhagen Rasch6 Cape Town Uni-dimensional latent variable model X 1 TREATMENT δ T X 2 AGE δ A Θ X 3 X 4 Latent variable

More information

Pairwise Parameter Estimation in Rasch Models

Pairwise Parameter Estimation in Rasch Models Pairwise Parameter Estimation in Rasch Models Aeilko H. Zwinderman University of Leiden Rasch model item parameters can be estimated consistently with a pseudo-likelihood method based on comparing responses

More information

A coefficient of association between categorical variables with partial or tentative ordering of categories

A coefficient of association between categorical variables with partial or tentative ordering of categories A coefficient of association between categorical variables with partial or tentative ordering of categories Volkert Siersma Svend Kreiner University of Copenhagen, Denmark Goodman and Kruskal s γ coefficient

More information

Applied Psychological Measurement 2001; 25; 283

Applied Psychological Measurement 2001; 25; 283 Applied Psychological Measurement http://apm.sagepub.com The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models Jeroen K. Vermunt Applied

More information

Comparison between conditional and marginal maximum likelihood for a class of item response models

Comparison between conditional and marginal maximum likelihood for a class of item response models (1/24) Comparison between conditional and marginal maximum likelihood for a class of item response models Francesco Bartolucci, University of Perugia (IT) Silvia Bacci, University of Perugia (IT) Claudia

More information

Conditional maximum likelihood estimation in polytomous Rasch models using SAS

Conditional maximum likelihood estimation in polytomous Rasch models using SAS Conditional maximum likelihood estimation in polytomous Rasch models using SAS Karl Bang Christensen kach@sund.ku.dk Department of Biostatistics, University of Copenhagen November 29, 2012 Abstract IRT

More information

Links Between Binary and Multi-Category Logit Item Response Models and Quasi-Symmetric Loglinear Models

Links Between Binary and Multi-Category Logit Item Response Models and Quasi-Symmetric Loglinear Models Links Between Binary and Multi-Category Logit Item Response Models and Quasi-Symmetric Loglinear Models Alan Agresti Department of Statistics University of Florida Gainesville, Florida 32611-8545 July

More information

Basic IRT Concepts, Models, and Assumptions

Basic IRT Concepts, Models, and Assumptions Basic IRT Concepts, Models, and Assumptions Lecture #2 ICPSR Item Response Theory Workshop Lecture #2: 1of 64 Lecture #2 Overview Background of IRT and how it differs from CFA Creating a scale An introduction

More information

Anders Skrondal. Norwegian Institute of Public Health London School of Hygiene and Tropical Medicine. Based on joint work with Sophia Rabe-Hesketh

Anders Skrondal. Norwegian Institute of Public Health London School of Hygiene and Tropical Medicine. Based on joint work with Sophia Rabe-Hesketh Constructing Latent Variable Models using Composite Links Anders Skrondal Norwegian Institute of Public Health London School of Hygiene and Tropical Medicine Based on joint work with Sophia Rabe-Hesketh

More information

Correlations with Categorical Data

Correlations with Categorical Data Maximum Likelihood Estimation of Multiple Correlations and Canonical Correlations with Categorical Data Sik-Yum Lee The Chinese University of Hong Kong Wal-Yin Poon University of California, Los Angeles

More information

Monte Carlo Simulations for Rasch Model Tests

Monte Carlo Simulations for Rasch Model Tests Monte Carlo Simulations for Rasch Model Tests Patrick Mair Vienna University of Economics Thomas Ledl University of Vienna Abstract: Sources of deviation from model fit in Rasch models can be lack of unidimensionality,

More information

Quality of Life Analysis. Goodness of Fit Test and Latent Distribution Estimation in the Mixed Rasch Model

Quality of Life Analysis. Goodness of Fit Test and Latent Distribution Estimation in the Mixed Rasch Model Communications in Statistics Theory and Methods, 35: 921 935, 26 Copyright Taylor & Francis Group, LLC ISSN: 361-926 print/1532-415x online DOI: 1.18/36192551445 Quality of Life Analysis Goodness of Fit

More information

Latent Class Analysis for Models with Error of Measurement Using Log-Linear Models and An Application to Women s Liberation Data

Latent Class Analysis for Models with Error of Measurement Using Log-Linear Models and An Application to Women s Liberation Data Journal of Data Science 9(2011), 43-54 Latent Class Analysis for Models with Error of Measurement Using Log-Linear Models and An Application to Women s Liberation Data Haydar Demirhan Hacettepe University

More information

On the Use of Nonparametric ICC Estimation Techniques For Checking Parametric Model Fit

On the Use of Nonparametric ICC Estimation Techniques For Checking Parametric Model Fit On the Use of Nonparametric ICC Estimation Techniques For Checking Parametric Model Fit March 27, 2004 Young-Sun Lee Teachers College, Columbia University James A.Wollack University of Wisconsin Madison

More information

SEM for Categorical Outcomes

SEM for Categorical Outcomes This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Lecture 8: Summary Measures

Lecture 8: Summary Measures Lecture 8: Summary Measures Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 8:

More information

Whats beyond Concerto: An introduction to the R package catr. Session 4: Overview of polytomous IRT models

Whats beyond Concerto: An introduction to the R package catr. Session 4: Overview of polytomous IRT models Whats beyond Concerto: An introduction to the R package catr Session 4: Overview of polytomous IRT models The Psychometrics Centre, Cambridge, June 10th, 2014 2 Outline: 1. Introduction 2. General notations

More information

An Equivalency Test for Model Fit. Craig S. Wells. University of Massachusetts Amherst. James. A. Wollack. Ronald C. Serlin

An Equivalency Test for Model Fit. Craig S. Wells. University of Massachusetts Amherst. James. A. Wollack. Ronald C. Serlin Equivalency Test for Model Fit 1 Running head: EQUIVALENCY TEST FOR MODEL FIT An Equivalency Test for Model Fit Craig S. Wells University of Massachusetts Amherst James. A. Wollack Ronald C. Serlin University

More information

DISCUSSION PAPER 2016/46

DISCUSSION PAPER 2016/46 I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S ( I S B A ) DISCUSSION PAPER 2016/46 Bounds on Concordance-Based Validation Statistics

More information

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood Jonathan Gruhl March 18, 2010 1 Introduction Researchers commonly apply item response theory (IRT) models to binary and ordinal

More information

36-720: The Rasch Model

36-720: The Rasch Model 36-720: The Rasch Model Brian Junker October 15, 2007 Multivariate Binary Response Data Rasch Model Rasch Marginal Likelihood as a GLMM Rasch Marginal Likelihood as a Log-Linear Model Example For more

More information

Decomposition of Parsimonious Independence Model Using Pearson, Kendall and Spearman s Correlations for Two-Way Contingency Tables

Decomposition of Parsimonious Independence Model Using Pearson, Kendall and Spearman s Correlations for Two-Way Contingency Tables International Journal of Statistics and Probability; Vol. 7 No. 3; May 208 ISSN 927-7032 E-ISSN 927-7040 Published by Canadian Center of Science and Education Decomposition of Parsimonious Independence

More information

School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia 2

School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia 2 International Scholarly Research Network ISRN Computational Mathematics Volume 22, Article ID 39683, 8 pages doi:.542/22/39683 Research Article A Computational Study Assessing Maximum Likelihood and Noniterative

More information

Bayesian Nonparametric Rasch Modeling: Methods and Software

Bayesian Nonparametric Rasch Modeling: Methods and Software Bayesian Nonparametric Rasch Modeling: Methods and Software George Karabatsos University of Illinois-Chicago Keynote talk Friday May 2, 2014 (9:15-10am) Ohio River Valley Objective Measurement Seminar

More information

A Marginal Maximum Likelihood Procedure for an IRT Model with Single-Peaked Response Functions

A Marginal Maximum Likelihood Procedure for an IRT Model with Single-Peaked Response Functions A Marginal Maximum Likelihood Procedure for an IRT Model with Single-Peaked Response Functions Cees A.W. Glas Oksana B. Korobko University of Twente, the Netherlands OMD Progress Report 07-01. Cees A.W.

More information

Sections 2.3, 2.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1 / 21

Sections 2.3, 2.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1 / 21 Sections 2.3, 2.4 Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 21 2.3 Partial association in stratified 2 2 tables In describing a relationship

More information

Bayesian Methods for Testing Axioms of Measurement

Bayesian Methods for Testing Axioms of Measurement Bayesian Methods for Testing Axioms of Measurement George Karabatsos University of Illinois-Chicago University of Minnesota Quantitative/Psychometric Methods Area Department of Psychology April 3, 2015,

More information

Rater agreement - ordinal ratings. Karl Bang Christensen Dept. of Biostatistics, Univ. of Copenhagen NORDSTAT,

Rater agreement - ordinal ratings. Karl Bang Christensen Dept. of Biostatistics, Univ. of Copenhagen NORDSTAT, Rater agreement - ordinal ratings Karl Bang Christensen Dept. of Biostatistics, Univ. of Copenhagen NORDSTAT, 2012 http://biostat.ku.dk/~kach/ 1 Rater agreement - ordinal ratings Methods for analyzing

More information

Dimensionality Assessment: Additional Methods

Dimensionality Assessment: Additional Methods Dimensionality Assessment: Additional Methods In Chapter 3 we use a nonlinear factor analytic model for assessing dimensionality. In this appendix two additional approaches are presented. The first strategy

More information

ABSTRACT. Yunyun Dai, Doctor of Philosophy, Mixtures of item response theory models have been proposed as a technique to explore

ABSTRACT. Yunyun Dai, Doctor of Philosophy, Mixtures of item response theory models have been proposed as a technique to explore ABSTRACT Title of Document: A MIXTURE RASCH MODEL WITH A COVARIATE: A SIMULATION STUDY VIA BAYESIAN MARKOV CHAIN MONTE CARLO ESTIMATION Yunyun Dai, Doctor of Philosophy, 2009 Directed By: Professor, Robert

More information

Local Dependence Diagnostics in IRT Modeling of Binary Data

Local Dependence Diagnostics in IRT Modeling of Binary Data Local Dependence Diagnostics in IRT Modeling of Binary Data Educational and Psychological Measurement 73(2) 254 274 Ó The Author(s) 2012 Reprints and permission: sagepub.com/journalspermissions.nav DOI:

More information

Lecture 25: Models for Matched Pairs

Lecture 25: Models for Matched Pairs Lecture 25: Models for Matched Pairs Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture

More information

Understand the difference between symmetric and asymmetric measures

Understand the difference between symmetric and asymmetric measures Chapter 9 Measures of Strength of a Relationship Learning Objectives Understand the strength of association between two variables Explain an association from a table of joint frequencies Understand a proportional

More information

General structural model Part 2: Categorical variables and beyond. Psychology 588: Covariance structure and factor models

General structural model Part 2: Categorical variables and beyond. Psychology 588: Covariance structure and factor models General structural model Part 2: Categorical variables and beyond Psychology 588: Covariance structure and factor models Categorical variables 2 Conventional (linear) SEM assumes continuous observed variables

More information

A Markov chain Monte Carlo approach to confirmatory item factor analysis. Michael C. Edwards The Ohio State University

A Markov chain Monte Carlo approach to confirmatory item factor analysis. Michael C. Edwards The Ohio State University A Markov chain Monte Carlo approach to confirmatory item factor analysis Michael C. Edwards The Ohio State University An MCMC approach to CIFA Overview Motivating examples Intro to Item Response Theory

More information

COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS

COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS COMPOSITIONAL IDEAS IN THE BAYESIAN ANALYSIS OF CATEGORICAL DATA WITH APPLICATION TO DOSE FINDING CLINICAL TRIALS M. Gasparini and J. Eisele 2 Politecnico di Torino, Torino, Italy; mauro.gasparini@polito.it

More information

Correspondence Analysis of Longitudinal Data

Correspondence Analysis of Longitudinal Data Correspondence Analysis of Longitudinal Data Mark de Rooij* LEIDEN UNIVERSITY, LEIDEN, NETHERLANDS Peter van der G. M. Heijden UTRECHT UNIVERSITY, UTRECHT, NETHERLANDS *Corresponding author (rooijm@fsw.leidenuniv.nl)

More information

Looking at the Other Side of Bonferroni

Looking at the Other Side of Bonferroni Department of Biostatistics University of Washington 24 May 2012 Multiple Testing: Control the Type I Error Rate When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis

More information

Textbook Examples of. SPSS Procedure

Textbook Examples of. SPSS Procedure Textbook s of IBM SPSS Procedures Each SPSS procedure listed below has its own section in the textbook. These sections include a purpose statement that describes the statistical test, identification of

More information

Logistic Regression and Item Response Theory: Estimation Item and Ability Parameters by Using Logistic Regression in IRT.

Logistic Regression and Item Response Theory: Estimation Item and Ability Parameters by Using Logistic Regression in IRT. Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1998 Logistic Regression and Item Response Theory: Estimation Item and Ability Parameters by Using

More information

Measurement Invariance (MI) in CFA and Differential Item Functioning (DIF) in IRT/IFA

Measurement Invariance (MI) in CFA and Differential Item Functioning (DIF) in IRT/IFA Topics: Measurement Invariance (MI) in CFA and Differential Item Functioning (DIF) in IRT/IFA What are MI and DIF? Testing measurement invariance in CFA Testing differential item functioning in IRT/IFA

More information

PIRLS 2016 Achievement Scaling Methodology 1

PIRLS 2016 Achievement Scaling Methodology 1 CHAPTER 11 PIRLS 2016 Achievement Scaling Methodology 1 The PIRLS approach to scaling the achievement data, based on item response theory (IRT) scaling with marginal estimation, was developed originally

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Lecture 27. December 13, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Lecture 27. December 13, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

PART 1. Statistical Models and Methods COPYRIGHTED MATERIAL

PART 1. Statistical Models and Methods COPYRIGHTED MATERIAL PART 1 Statistical Models and Methods COPYRIGHTED MATERIAL Chapter 1 Unidimensionality, Agreement and Concordance Probability The evaluation and comparison of various methods often arise in medical research.

More information

A Simple, Graphical Procedure for Comparing Multiple Treatment Effects

A Simple, Graphical Procedure for Comparing Multiple Treatment Effects A Simple, Graphical Procedure for Comparing Multiple Treatment Effects Brennan S. Thompson and Matthew D. Webb May 15, 2015 > Abstract In this paper, we utilize a new graphical

More information

What is an Ordinal Latent Trait Model?

What is an Ordinal Latent Trait Model? What is an Ordinal Latent Trait Model? Gerhard Tutz Ludwig-Maximilians-Universität München Akademiestraße 1, 80799 München February 19, 2019 arxiv:1902.06303v1 [stat.me] 17 Feb 2019 Abstract Although various

More information

Generalized Linear Models for Non-Normal Data

Generalized Linear Models for Non-Normal Data Generalized Linear Models for Non-Normal Data Today s Class: 3 parts of a generalized model Models for binary outcomes Complications for generalized multivariate or multilevel models SPLH 861: Lecture

More information

Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests

Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests Statistical Methods for Particle Physics Lecture 1: parameter estimation, statistical tests http://benasque.org/2018tae/cgi-bin/talks/allprint.pl TAE 2018 Benasque, Spain 3-15 Sept 2018 Glen Cowan Physics

More information

Describing Contingency tables

Describing Contingency tables Today s topics: Describing Contingency tables 1. Probability structure for contingency tables (distributions, sensitivity/specificity, sampling schemes). 2. Comparing two proportions (relative risk, odds

More information

Chapter 16: Correlation

Chapter 16: Correlation Chapter 16: Correlation Correlations: Measuring and Describing Relationships A correlation is a statistical method used to measure and describe the relationship between two variables. A relationship exists

More information

Multiple Sample Categorical Data

Multiple Sample Categorical Data Multiple Sample Categorical Data paired and unpaired data, goodness-of-fit testing, testing for independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Lecture 25. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 25. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 25 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University November 24, 2015 1 2 3 4 5 6 7 8 9 10 11 1 Hypothesis s of homgeneity 2 Estimating risk

More information

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 28 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University December 3, 2015 1 2 3 4 5 1 Familywise error rates 2 procedure 3 Performance of with multiple

More information

Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation

Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation Dimitris Rizopoulos Department of Biostatistics, Erasmus University Medical Center, the Netherlands d.rizopoulos@erasmusmc.nl

More information

Models for Heterogeneous Choices

Models for Heterogeneous Choices APPENDIX B Models for Heterogeneous Choices Heteroskedastic Choice Models In the empirical chapters of the printed book we are interested in testing two different types of propositions about the beliefs

More information

Chapter 2: Describing Contingency Tables - II

Chapter 2: Describing Contingency Tables - II : Describing Contingency Tables - II Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu]

More information

Equating Tests Under The Nominal Response Model Frank B. Baker

Equating Tests Under The Nominal Response Model Frank B. Baker Equating Tests Under The Nominal Response Model Frank B. Baker University of Wisconsin Under item response theory, test equating involves finding the coefficients of a linear transformation of the metric

More information

An Overview of Methods in the Analysis of Dependent Ordered Categorical Data: Assumptions and Implications

An Overview of Methods in the Analysis of Dependent Ordered Categorical Data: Assumptions and Implications WORKING PAPER SERIES WORKING PAPER NO 7, 2008 Swedish Business School at Örebro An Overview of Methods in the Analysis of Dependent Ordered Categorical Data: Assumptions and Implications By Hans Högberg

More information

A class of latent marginal models for capture-recapture data with continuous covariates

A class of latent marginal models for capture-recapture data with continuous covariates A class of latent marginal models for capture-recapture data with continuous covariates F Bartolucci A Forcina Università di Urbino Università di Perugia FrancescoBartolucci@uniurbit forcina@statunipgit

More information

Introduction to Statistical Methods for High Energy Physics

Introduction to Statistical Methods for High Energy Physics Introduction to Statistical Methods for High Energy Physics 2011 CERN Summer Student Lectures Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Minimal basis for connected Markov chain over 3 3 K contingency tables with fixed two-dimensional marginals. Satoshi AOKI and Akimichi TAKEMURA

Minimal basis for connected Markov chain over 3 3 K contingency tables with fixed two-dimensional marginals. Satoshi AOKI and Akimichi TAKEMURA Minimal basis for connected Markov chain over 3 3 K contingency tables with fixed two-dimensional marginals Satoshi AOKI and Akimichi TAKEMURA Graduate School of Information Science and Technology University

More information

MARGINAL HOMOGENEITY MODEL FOR ORDERED CATEGORIES WITH OPEN ENDS IN SQUARE CONTINGENCY TABLES

MARGINAL HOMOGENEITY MODEL FOR ORDERED CATEGORIES WITH OPEN ENDS IN SQUARE CONTINGENCY TABLES REVSTAT Statistical Journal Volume 13, Number 3, November 2015, 233 243 MARGINAL HOMOGENEITY MODEL FOR ORDERED CATEGORIES WITH OPEN ENDS IN SQUARE CONTINGENCY TABLES Authors: Serpil Aktas Department of

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

An Overview of Item Response Theory. Michael C. Edwards, PhD

An Overview of Item Response Theory. Michael C. Edwards, PhD An Overview of Item Response Theory Michael C. Edwards, PhD Overview General overview of psychometrics Reliability and validity Different models and approaches Item response theory (IRT) Conceptual framework

More information

A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models

A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models Journal of Educational and Behavioral Statistics 2015, Vol. 40, No. 1, pp. 96 105 DOI: 10.3102/1076998614558122 # 2014 AERA. http://jebs.aera.net A Note on the Equivalence Between Observed and Expected

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Nonparametric tests for the Rasch model: explanation, development, and application of quasi-exact tests for small samples

Nonparametric tests for the Rasch model: explanation, development, and application of quasi-exact tests for small samples Nonparametric tests for the Rasch model: explanation, development, and application of quasi-exact tests for small samples Ingrid Koller 1* & Reinhold Hatzinger 2 1 Department of Psychological Basic Research

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38 BIO5312 Biostatistics Lecture 11: Multisample Hypothesis Testing II Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 11/8/2016 1/38 Outline In this lecture, we will continue to

More information

Log-linear multidimensional Rasch model for capture-recapture

Log-linear multidimensional Rasch model for capture-recapture Log-linear multidimensional Rasch model for capture-recapture Elvira Pelle, University of Milano-Bicocca, e.pelle@campus.unimib.it David J. Hessen, Utrecht University, D.J.Hessen@uu.nl Peter G.M. Van der

More information

NAG Library Chapter Introduction. G08 Nonparametric Statistics

NAG Library Chapter Introduction. G08 Nonparametric Statistics NAG Library Chapter Introduction G08 Nonparametric Statistics Contents 1 Scope of the Chapter.... 2 2 Background to the Problems... 2 2.1 Parametric and Nonparametric Hypothesis Testing... 2 2.2 Types

More information

Module 10: Analysis of Categorical Data Statistics (OA3102)

Module 10: Analysis of Categorical Data Statistics (OA3102) Module 10: Analysis of Categorical Data Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 14.1-14.7 Revision: 3-12 1 Goals for this

More information

Longitudinal analysis of ordinal data

Longitudinal analysis of ordinal data Longitudinal analysis of ordinal data A report on the external research project with ULg Anne-Françoise Donneau, Murielle Mauer June 30 th 2009 Generalized Estimating Equations (Liang and Zeger, 1986)

More information

Prediction of ordinal outcomes when the association between predictors and outcome diers between outcome levels

Prediction of ordinal outcomes when the association between predictors and outcome diers between outcome levels STATISTICS IN MEDICINE Statist. Med. 2005; 24:1357 1369 Published online 26 November 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2009 Prediction of ordinal outcomes when the

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

LOG-MULTIPLICATIVE ASSOCIATION MODELS AS LATENT VARIABLE MODELS FOR NOMINAL AND0OR ORDINAL DATA. Carolyn J. Anderson* Jeroen K.

LOG-MULTIPLICATIVE ASSOCIATION MODELS AS LATENT VARIABLE MODELS FOR NOMINAL AND0OR ORDINAL DATA. Carolyn J. Anderson* Jeroen K. 3 LOG-MULTIPLICATIVE ASSOCIATION MODELS AS LATENT VARIABLE MODELS FOR NOMINAL AND0OR ORDINAL DATA Carolyn J. Anderson* Jeroen K. Vermunt Associations between multiple discrete measures are often due to

More information

Test of Association between Two Ordinal Variables while Adjusting for Covariates

Test of Association between Two Ordinal Variables while Adjusting for Covariates Test of Association between Two Ordinal Variables while Adjusting for Covariates Chun Li, Bryan Shepherd Department of Biostatistics Vanderbilt University May 13, 2009 Examples Amblyopia http://www.medindia.net/

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Appendix: Modeling Approach

Appendix: Modeling Approach AFFECTIVE PRIMACY IN INTRAORGANIZATIONAL TASK NETWORKS Appendix: Modeling Approach There is now a significant and developing literature on Bayesian methods in social network analysis. See, for instance,

More information

Lecture 21: October 19

Lecture 21: October 19 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 21: October 19 21.1 Likelihood Ratio Test (LRT) To test composite versus composite hypotheses the general method is to use

More information

Mixtures of Rasch Models

Mixtures of Rasch Models Mixtures of Rasch Models Hannah Frick, Friedrich Leisch, Achim Zeileis, Carolin Strobl http://www.uibk.ac.at/statistics/ Introduction Rasch model for measuring latent traits Model assumption: Item parameters

More information

UCLA Department of Statistics Papers

UCLA Department of Statistics Papers UCLA Department of Statistics Papers Title Can Interval-level Scores be Obtained from Binary Responses? Permalink https://escholarship.org/uc/item/6vg0z0m0 Author Peter M. Bentler Publication Date 2011-10-25

More information

Goodness-of-Fit Tests for the Ordinal Response Models with Misspecified Links

Goodness-of-Fit Tests for the Ordinal Response Models with Misspecified Links Communications of the Korean Statistical Society 2009, Vol 16, No 4, 697 705 Goodness-of-Fit Tests for the Ordinal Response Models with Misspecified Links Kwang Mo Jeong a, Hyun Yung Lee 1, a a Department

More information

UNIT 4 RANK CORRELATION (Rho AND KENDALL RANK CORRELATION

UNIT 4 RANK CORRELATION (Rho AND KENDALL RANK CORRELATION UNIT 4 RANK CORRELATION (Rho AND KENDALL RANK CORRELATION Structure 4.0 Introduction 4.1 Objectives 4. Rank-Order s 4..1 Rank-order data 4.. Assumptions Underlying Pearson s r are Not Satisfied 4.3 Spearman

More information

Comparing IRT with Other Models

Comparing IRT with Other Models Comparing IRT with Other Models Lecture #14 ICPSR Item Response Theory Workshop Lecture #14: 1of 45 Lecture Overview The final set of slides will describe a parallel between IRT and another commonly used

More information

Modified Simes Critical Values Under Positive Dependence

Modified Simes Critical Values Under Positive Dependence Modified Simes Critical Values Under Positive Dependence Gengqian Cai, Sanat K. Sarkar Clinical Pharmacology Statistics & Programming, BDS, GlaxoSmithKline Statistics Department, Temple University, Philadelphia

More information

Package CMC. R topics documented: February 19, 2015

Package CMC. R topics documented: February 19, 2015 Type Package Title Cronbach-Mesbah Curve Version 1.0 Date 2010-03-13 Author Michela Cameletti and Valeria Caviezel Package CMC February 19, 2015 Maintainer Michela Cameletti

More information

On Reparametrization and the Gibbs Sampler

On Reparametrization and the Gibbs Sampler On Reparametrization and the Gibbs Sampler Jorge Carlos Román Department of Mathematics Vanderbilt University James P. Hobert Department of Statistics University of Florida March 2014 Brett Presnell Department

More information

Modeling Joint and Marginal Distributions in the Analysis of Categorical Panel Data

Modeling Joint and Marginal Distributions in the Analysis of Categorical Panel Data SOCIOLOGICAL Vermunt et al. / JOINT METHODS AND MARGINAL & RESEARCH DISTRIBUTIONS This article presents a unifying approach to the analysis of repeated univariate categorical (ordered) responses based

More information

Polytomous Item Explanatory IRT Models with Random Item Effects: An Application to Carbon Cycle Assessment Data

Polytomous Item Explanatory IRT Models with Random Item Effects: An Application to Carbon Cycle Assessment Data Polytomous Item Explanatory IRT Models with Random Item Effects: An Application to Carbon Cycle Assessment Data Jinho Kim and Mark Wilson University of California, Berkeley Presented on April 11, 2018

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Overview. Multidimensional Item Response Theory. Lecture #12 ICPSR Item Response Theory Workshop. Basics of MIRT Assumptions Models Applications

Overview. Multidimensional Item Response Theory. Lecture #12 ICPSR Item Response Theory Workshop. Basics of MIRT Assumptions Models Applications Multidimensional Item Response Theory Lecture #12 ICPSR Item Response Theory Workshop Lecture #12: 1of 33 Overview Basics of MIRT Assumptions Models Applications Guidance about estimating MIRT Lecture

More information

ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW

ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW SSC Annual Meeting, June 2015 Proceedings of the Survey Methods Section ANALYSIS OF ORDINAL SURVEY RESPONSES WITH DON T KNOW Xichen She and Changbao Wu 1 ABSTRACT Ordinal responses are frequently involved

More information

On the Construction of Adjacent Categories Latent Trait Models from Binary Variables, Motivating Processes and the Interpretation of Parameters

On the Construction of Adjacent Categories Latent Trait Models from Binary Variables, Motivating Processes and the Interpretation of Parameters Gerhard Tutz On the Construction of Adjacent Categories Latent Trait Models from Binary Variables, Motivating Processes and the Interpretation of Parameters Technical Report Number 218, 2018 Department

More information

Categorical Data Analysis Chapter 3

Categorical Data Analysis Chapter 3 Categorical Data Analysis Chapter 3 The actual coverage probability is usually a bit higher than the nominal level. Confidence intervals for association parameteres Consider the odds ratio in the 2x2 table,

More information

Development and Calibration of an Item Response Model. that Incorporates Response Time

Development and Calibration of an Item Response Model. that Incorporates Response Time Development and Calibration of an Item Response Model that Incorporates Response Time Tianyou Wang and Bradley A. Hanson ACT, Inc. Send correspondence to: Tianyou Wang ACT, Inc P.O. Box 168 Iowa City,

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

On a connection between the Bradley Terry model and the Cox proportional hazards model

On a connection between the Bradley Terry model and the Cox proportional hazards model Statistics & Probability Letters 76 (2006) 698 702 www.elsevier.com/locate/stapro On a connection between the Bradley Terry model and the Cox proportional hazards model Yuhua Su, Mai Zhou Department of

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information