APPM 4360/5360 Homework Assignment #6 Solutions Spring 2018

Size: px
Start display at page:

Download "APPM 4360/5360 Homework Assignment #6 Solutions Spring 2018"

Transcription

1 APPM 436/536 Homework Assignment #6 Solutions Spring 8 Problem # ( points: onsider f (zlog z ; z r e iθ. Discuss/explain the analytic continuation of the function from R R R3 where r > and θ is in the regions: R: π/ θ π/; R: π/3 θ π/3; R3: π/ θ π. In particular, does f (r,θ π/4 f (r,θ 7π/4? Explain. Solution: f (zlog z log z. We have to find such branches of log z, f (z in R, f (z in R and f 3 (z in R3 that an analytic function f (z can be defined in R R R3 by f (z, f (z f (z, f 3 (z, z R z R z R3 This is possible if f (z f (z in R R and f (z f 3 (z in R R3. First, we have to choose f (z as a branch analytic in R. Define f (zlog z for <r <, π θ π (this is the principal branch of log z with the branch cut on (,]. Then the range [ π,π] of θ covers the interval [π/3,π/3]. So we can take f (z f (z (the analytic continuation from R to R is trivial. Now f 3 (z must be analytic in R3 and f 3 (z f (z for π/ θ π/3. Such function is f 3 (zlog z for <r <, θ π (this is the principal branch of log z with the branch cut on [,+. We check that f ( π/4 f ( π/4(logr iπ/4logr iπ/ and f (7π/4 f 3 (7π/4(logr + 7iπ/4logr + 7iπ/. Thus, f (r e iπ/4 f (r e 7iπ/4. Problem # (3 points: Evaluate the integral I f (zd z, πi where is the unit circle centered at the origin, for the following f (z: z (a f (z z 3, < a< + a3 log(z b (b f (z, a>, b>, principal branch z+ /a (c tan(z Solution: (a There are singular points at z a, ae iπ/3, and ae iπ/3 ; all of these are inside the unit circle, so I Res(f ; a+res(f ; ae iπ/3 +Res(f ; ae iπ/3 a ( a ae iπ/3 ( a ae iπ/3 + ae iπ/3 + (ae iπ/3 + a(ae iπ/3 ae iπ/3 + ae iπ/3 + (ae iπ/3 + a(ae iπ/3 ae iπ/3 a(+cos(π/3 + + eiπ/3 (e iπ/3 + e iπ/3 (e iπ/3 + i a sin(π/3(+cos(π/3 i sin(π/3 + 3a 6i a sin(π/3.

2 (b This f has a branch point at z b, make the cut on [b,+ and, for the principal branch, when z x > b, log(z b log x b. Then z /a is a simple pole inside. Since we are integrating over the unit circle, I Res(f ; /alog( /a bln (ab+ a + iπ. (c The singular points are those where cos(z, i.e. z z k π/4+πk/, k Z. Two such points, z ±π/4 are inside. Using that tan(z sin((z k+ u cos((z k + u sin(z kcos(u cos(u sin(z k sin(u sin(u we get (u /+... u (u 3 /6+... ( (u /+...(+(u /6+... u u + u , I Res(f ;π/4+res(f ; π/4. Or, shorter, using residue formula, I Res(f ;π/4+res(f ; π/4 sin(z cos (z + sin(z zπ/4 cos (z z π/4. Problem #3 ( points: Let be the unit circle centered at the origin. Evaluate the integral I f (zd z, πi for the following f (z in two ways: (i enclosing the singular points inside and (ii enclosing the singular points outside (by including the point at infinity. Do you get the same result in both cases? f (z z + z 3 Solution: (i Since z is inside, I Res(f ;. (ii Here, I Res(f (z; z Res(t f (t ; t Res((+ t /t; t. Problem #4 (5 points: Determine the type of singular point each of the following functions have at infinity. z N (a, a>, N > M positive integers. z M +a (b log(z+ a, a> (c sin z Solution: (a z N, a>, N > M positive integers: let z /t, then z M +a z N z M + a t M t N (+ at M, which has a pole of order N M at t of strength, so pole of order N M and strength.

3 (b log(z+ a, a> : log(z+ alog z+ log+log(+ a/(z, so z is a logarithmic branch point. (c sin z: sin z n ( n z n+ /(n+! so z is essential singularity. Problem #5 ( points: Assume that f and g are analytic outside a circle of radius R centered at the origin and lim f (z and lim zg (z, z z where and are constants. Show that πi Solution: Since f and g are analytic outside, πi g (ze f (z d z e. g (ze f (z d z Res(g (ze f (z ;. To find the residue, we deduce the following: Since f (z as z, e f (z e. Since zg (z as z, g (z as z and g (ze f (z as z since e is finite. If h(z as z, then Res(h(z; lim z zh(z. Thus, as we wanted to show. Res(g (ze f (z ; lim z zg (ze f (z e, Problem #6 (5 points: Evaluate the following real integral: (a Solution: (a x + α (x + β d x, α>, β> x + α (x + β d x, α>, β> Since integrand is an even function, x + α (x + β d x x + α (x + β d x. Since integrand is a rational function with degree of denominatordegree of numerator+, we close the contour by large semicircle in the upper half-plane and use residues: ( πi x + α (x + β d x πi Res(f (z;iβ d z + α πi d z (z+ iβ ziβ z (z+ iβ (z + α (z+ iβ 3 ( πi iβ + α β 4iβ 3 3 ziβ π(α + β 4β 3.

4 Problem #7 (45 points: Evaluate the following real integrals: (a (b (c Solution: (a I (b I x sin xd x x + a, a> x coskx x + 4x+ 5 d x, k > coskx cosmx x + a d x, a>, k, m real x sin xd x x + a, a>. onsider ze i z d z J f (zd z z + a, Then, by Jordan lemma, I Im(lim R J. Since so I πe a. x coskx x d x, k >. One can verify that + 4x+ 5 [ R,R] {Re iθ, θ π} J πi Res(f (z;i aπi i ae a i a iπe a, x + 4x+ 5(x+ +i(x+ i. onsider ze i kz d z J f (zd z z + 4z+ 5, [ R,R] {Re iθ, θ π} Then, by Jordan lemma, I Re(lim R J. Since J πi Res(f (z; +i so k( +i ( +iei πi π( +ie i k k, i I πe k ( cos(k+sin(k. (c coskx cosmx x + a d x, a>, k, m real. Recall the identity coskx cosmx cos((k+mx+cos((k mx. Using this, we have coskx cosmx x + a d x Re ( e i (k+mx x + a d x+ e i (k mx x + a d x [Re(I (k+ m+re(i (k m] 4

5 where For s>, consider e i sx I (s x + a d x e i sz d z J + f (zd z z + a, [ R,R] {Re iθ, θ π} Then, by Jordan lemma, I (slim R J +. Now J + πi ( Res(f (z;i a ( e sa πi i a πe sa a I (s. For s<, consider e i sz d z J f (zd z z + a, [ R,R] {Re iθ, θ π} Then, by Jordan lemma, I (slim R J. Now Thus, in general, I (sπe s a /a and J πi ( Res(f (z; i a ( e sa sa πe πi i a a I (s. coskx cosmx x + a d x π a (e k+m a + e k m a. Problem #8 (5 points: Show that coshπx d x sec ( a, a <π. Use a rectangular contour with corners at±r and±r+ i. Solution: Let be the rectangular contour and n, n,...,4 are its sides in counterclockwise order, [ R,R]. Then I coshπx d x lim R coshπx d x lim f (xd x. R Inside, the integrand f (z is analytic except points where coshπz, i.e. z i /. Thus f (zd z πi Res(f (z;i / On the other hand, πi cosh az πsinhπz cos(a/. zi / lim f (zd z lim f (zd z, R R 4 5

6 because a < π. Besides, Thus, so I sec(a/ and lim f (zd z lim R 3 R lim R R R R R cosh a(x+ i coshπ(x+ i d x coshi a+ sinh ax sinhi a d x coshπx coshiπ cos a lim R R R d x I cos a. coshπx f (zd z cos(a/ I + I cos a I cos (a/, coshπx d x I sec(a/. Problem #9 (5 points: onsider a rectangular contour with corners at b± i R and b+ ±ir. Use this contour to show that b+i R e az lim R πi sinπz d z π(+e a, where <b<, Ima <π. b i R Solution: Let be the clockwise rectangular contour and n, n,...,4 are its sides in clockwise order, [b i R,b+ i R]. Then b+i R e az I lim R πi sinπz d z lim f (zd z, R πi b i R where f (z e az sinπz. Inside, the integrand f (z is analytic except points where sinπz, i.e. only z. Thus f (zd z πi Res(f (z; e az πi πcosπz i e a. z On the other hand, because Ima < π. Besides, lim f (zd z lim f (zd z, R R 4 R a(b++i y e lim f (zd z lim R 3 R R sinπ(b+ +i y i d y Thus, and I π(+e a. R e a a(b+i y e lim R R sinπ(b+ i ycosπ i d y e a I. (+e a I i e a πi e a π Problem # (5 points: Use a sector contour with radius R as in figure 4..6, centered at the origin with angle θ π 5, to find, for a>, d x x 5 + a 5 π 5a 4 sin π. 5 6

7 Solution: ontour x + + L ; on x, z x, x R; on, z Re iθ, θ π 5 ; on L, z r e πi /5, r R. Then d x I x 5 + a 5 lim f (zd z, R x lim R f (zd z lim L R f (zd z π/5 R e πi /5 dr r 5 + a 5 eπi /5 I, Rdθ R 5 a 5 R, and, since the only s.p. inside is z ae iπ/5, f (zd z πi Res(f (z; ae iπ/5 πi 5a 4 e 4iπ/5. Thus, so I ( e πi /5 I πi 5a 4 e 4iπ/5, πi 5a 4 e 4iπ/5 ( e πi /5 πi 5a 4 (i sin(π/5 π 5a 4 sin(π/5. Extra-redit Problem # ( points: onsider a rectangular contour with corners at (±R, and (±R, a. Show that R R e z d z e x d x e (x+i a d x+j R, R R where J R a e (R+i y i d y a e ( R+i y i d y Show lim R J R, whereupon we have e (x+i a d x e x d x π, and consequently, deduce that e x cosax d x πe a. Solution: Let be the counterclockwise rectangular contour and n, n,...,4 are its sides in counterclockwise order, [ R,+R]. Then R e z d z e x d x, e z d z 3 e z d z 4 e z d z R R a a R e (R+i y i d y, e (x+i a d x e ( R+i y i d y R R a e (x+i a d x, e ( R+i y i d y, and, by auchy theorem, e z d z, which shows the first point. We have J R a e (R+i y i d y + ( a e R e y d y+ a 7 a e y d y e ( R+i y i d y R,

8 which proves that e (x+i a d x e x d x π. Finally, e (x+i a d x e a e x e i ax d x e a e x cosax d x, the last equality because the integral of imaginary (odd part is zero. 8

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that Let fz be the principal branch of z 4i. a Find fi. Solution. fi = exp4i Logi = exp4iπ/2 = e 2π. b Show that fz fz 2 fz z 2 fz fz 2 = λfz z 2 for all z, z 2 0, where λ =, e 8π or e 8π. Proof. We have =

More information

Residues and Contour Integration Problems

Residues and Contour Integration Problems Residues and ontour Integration Problems lassify the singularity of fz at the indicated point.. fz = cotz at z =. Ans. Simple pole. Solution. The test for a simple pole at z = is that lim z z cotz exists

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi )

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi ) MATH 16 HOMEWORK 4 SOLUTIONS 1 Show directly from the definition that sin(z) = ezi e zi i sin(z) = sin z cos z = (ezi e zi ) i (e zi + e zi ) = sin z cos z Write the following complex numbers in standard

More information

APPM 4360/5360 Homework Assignment #7 Solutions Spring 2016

APPM 4360/5360 Homework Assignment #7 Solutions Spring 2016 APPM 436/536 Homework Assignment #7 Solutions Spring 6 Problem # ( points: Evlute the following rel integrl by residue integrtion: x 3 sinkx x 4 4, k rel, 4 > Solution: Since the integrnd is even function,

More information

Evaluation of integrals

Evaluation of integrals Evaluation of certain contour integrals: Type I Type I: Integrals of the form 2π F (cos θ, sin θ) dθ If we take z = e iθ, then cos θ = 1 (z + 1 ), sin θ = 1 (z 1 dz ) and dθ = 2 z 2i z iz. Substituting

More information

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014 Math 3 - Spring 4 Solutions to Assignment # Completion Date: Thursday June, 4 Question. [p 67, #] Use residues to evaluate the improper integral x + ). Ans: π/4. Solution: Let fz) = below. + z ), and for

More information

Complex varibles:contour integration examples

Complex varibles:contour integration examples omple varibles:ontour integration eamples 1 Problem 1 onsider the problem d 2 + 1 If we take the substitution = tan θ then d = sec 2 θdθ, which leads to dθ = π sec 2 θ tan 2 θ + 1 dθ Net we consider the

More information

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z MTH30 Spring 07 HW Assignment 7: From [B4]: hap. 6: Sec. 77, #3, 7; Sec. 79, #, (a); Sec. 8, #, 3, 5, Sec. 83, #5,,. The due date for this assignment is 04/5/7. Sec. 77, #3. In the example in Sec. 76,

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 02 omplex Variables Final Exam May, 207 :0pm-5:0pm, Skurla Hall, Room 06 Exam Instructions: You have hour & 50 minutes to complete the exam. There are a total of problems.

More information

Complex Homework Summer 2014

Complex Homework Summer 2014 omplex Homework Summer 24 Based on Brown hurchill 7th Edition June 2, 24 ontents hw, omplex Arithmetic, onjugates, Polar Form 2 2 hw2 nth roots, Domains, Functions 2 3 hw3 Images, Transformations 3 4 hw4

More information

Solution for Final Review Problems 1

Solution for Final Review Problems 1 Solution for Final Review Problems Final time and location: Dec. Gymnasium, Rows 23, 25 5, 2, Wednesday, 9-2am, Main ) Let fz) be the principal branch of z i. a) Find f + i). b) Show that fz )fz 2 ) λfz

More information

MAT389 Fall 2016, Problem Set 11

MAT389 Fall 2016, Problem Set 11 MAT389 Fall 216, Problem Set 11 Improper integrals 11.1 In each of the following cases, establish the convergence of the given integral and calculate its value. i) x 2 x 2 + 1) 2 ii) x x 2 + 1)x 2 + 2x

More information

The Calculus of Residues

The Calculus of Residues hapter 7 The alculus of Residues If fz) has a pole of order m at z = z, it can be written as Eq. 6.7), or fz) = φz) = a z z ) + a z z ) +... + a m z z ) m, 7.) where φz) is analytic in the neighborhood

More information

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε. 6. Residue calculus Let z 0 be an isolated singularity of f(z), then there exists a certain deleted neighborhood N ε = {z : 0 < z z 0 < ε} such that f is analytic everywhere inside N ε. We define Res(f,

More information

Exercises involving contour integrals and trig integrals

Exercises involving contour integrals and trig integrals 8::9::9:7 c M K Warby MA364 Complex variable methods applications Exercises involving contour integrals trig integrals Let = = { e it : π t π }, { e it π : t 3π } with the direction of both arcs corresponding

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

Syllabus: for Complex variables

Syllabus: for Complex variables EE-2020, Spring 2009 p. 1/42 Syllabus: for omplex variables 1. Midterm, (4/27). 2. Introduction to Numerical PDE (4/30): [Ref.num]. 3. omplex variables: [Textbook]h.13-h.18. omplex numbers and functions,

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Mathematics 350: Problems to Study Solutions

Mathematics 350: Problems to Study Solutions Mathematics 350: Problems to Study Solutions April 25, 206. A Laurent series for cot(z centered at z 0 i converges in the annulus {z : < z i < R}. What is the largest possible value of R? Solution: The

More information

Second Midterm Exam Name: Practice Problems March 10, 2015

Second Midterm Exam Name: Practice Problems March 10, 2015 Math 160 1. Treibergs Second Midterm Exam Name: Practice Problems March 10, 015 1. Determine the singular points of the function and state why the function is analytic everywhere else: z 1 fz) = z + 1)z

More information

4.1 Exponential and Logarithmic Functions

4.1 Exponential and Logarithmic Functions . Exponential and Logarithmic Functions Joseph Heavner Honors Complex Analysis Continued) Chapter July, 05 3.) Find the derivative of f ) e i e i. d d e i e i) d d ei ) d d e i ) e i d d i) e i d d i)

More information

Homework #11 Solutions

Homework #11 Solutions Homework # Solutions Math 8, Fall 03 Instructor: Dr. Doreen De Leon HW #a Find the singularities and determine if they are isolated for. f cos cos has one singularity, 0 0. and g is entire. cos is analytic

More information

Midterm Examination #2

Midterm Examination #2 Anthony Austin MATH 47 April, 9 AMDG Midterm Examination #. The integrand has poles of order whenever 4, which occurs when is equal to i, i,, or. Since a R, a >, the only one of these poles that lies inside

More information

n } is convergent, lim n in+1

n } is convergent, lim n in+1 hapter 3 Series y residuos redit: This notes are 00% from chapter 6 of the book entitled A First ourse in omplex Analysis with Applications of Dennis G. Zill and Patrick D. Shanahan (2003) [2]. auchy s

More information

13 Definite integrals

13 Definite integrals 3 Definite integrals Read: Boas h. 4. 3. Laurent series: Def.: Laurent series (LS). If f() is analytic in a region R, then converges in R, with a n = πi f() = a n ( ) n + n= n= f() ; b ( ) n+ n = πi b

More information

EE2 Mathematics : Complex Variables

EE2 Mathematics : Complex Variables EE Mathematics : omplex Variables J. D. Gibbon (Professor J. D Gibbon 1, Dept of Mathematics) j.d.gibbon@ic.ac.uk http://www.imperial.ac.uk/ jdg These notes are not identical word-for-word with my lectures

More information

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki Page 48, Problem. Complex Analysis for Applications, Math 3/, Home Work Solutions-II Masamichi Takesaki Γ Γ Γ 0 Page 9, Problem. If two contours Γ 0 and Γ are respectively shrunkable to single points in

More information

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. hapter 3 The Residue Theorem Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on. - Winston hurchill 3. The Residue Theorem We will find that many

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Math 417 Midterm Exam Solutions Friday, July 9, 2010

Math 417 Midterm Exam Solutions Friday, July 9, 2010 Math 417 Midterm Exam Solutions Friday, July 9, 010 Solve any 4 of Problems 1 6 and 1 of Problems 7 8. Write your solutions in the booklet provided. If you attempt more than 5 problems, you must clearly

More information

lim when the limit on the right exists, the improper integral is said to converge to that limit.

lim when the limit on the right exists, the improper integral is said to converge to that limit. hapter 7 Applications of esidues - evaluation of definite and improper integrals occurring in real analysis and applied math - finding inverse Laplace transform by the methods of summing residues. 6. Evaluation

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH A REVIEW OF RESIDUES AND INTEGRATION A PROEDURAL APPROAH ANDREW ARHIBALD 1. Introduction When working with complex functions, it is best to understand exactly how they work. Of course, complex functions

More information

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 460: Complex Analysis MWF am, Fulton Hall 45 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book:.4.,.4.0,.4.-.4.6, 4.., 4..,

More information

Math 312 Fall 2013 Final Exam Solutions (2 + i)(i + 1) = (i 1)(i + 1) = 2i i2 + i. i 2 1

Math 312 Fall 2013 Final Exam Solutions (2 + i)(i + 1) = (i 1)(i + 1) = 2i i2 + i. i 2 1 . (a) We have 2 + i i Math 32 Fall 203 Final Exam Solutions (2 + i)(i + ) (i )(i + ) 2i + 2 + i2 + i i 2 3i + 2 2 3 2 i.. (b) Note that + i 2e iπ/4 so that Arg( + i) π/4. This implies 2 log 2 + π 4 i..

More information

Complex varibles:contour integration examples. cos(ax) x

Complex varibles:contour integration examples. cos(ax) x 1 Problem 1: sinx/x omplex varibles:ontour integration examples Integration of sin x/x from to is an interesting problem 1.1 Method 1 In the first method let us consider e iax x dx = cos(ax) dx+i x sin(ax)

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M K Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1 This question was in the class test in 016/7 and was worth 5 marks a) Let z +

More information

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 10 SOLUTIONS. f(z) = a n. h(z) := a n+m (z a) n. f(z) = h(z) + (z a) m n. =: e h(z) F (z).

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 10 SOLUTIONS. f(z) = a n. h(z) := a n+m (z a) n. f(z) = h(z) + (z a) m n. =: e h(z) F (z). MATH 85: COMPLEX ANALYSIS FALL 29/ PROBLEM SET SOLUTIONS. (a) Show that if f has a pole or an essential singularity at a, then e f has an essential singularity at a. Solution. If f has a pole of order

More information

Math 421 Midterm 2 review questions

Math 421 Midterm 2 review questions Math 42 Midterm 2 review questions Paul Hacking November 7, 205 () Let U be an open set and f : U a continuous function. Let be a smooth curve contained in U, with endpoints α and β, oriented from α to

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 28 Complex Analysis Module: 6:

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

PROBLEM SET 3 FYS3140

PROBLEM SET 3 FYS3140 PROBLEM SET FYS40 Problem. (Cauchy s theorem and integral formula) Cauchy s integral formula f(a) = πi z a dz πi f(a) a in z a dz = 0 otherwise we solve the following problems by comparing the integrals

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

SOLUTION SET IV FOR FALL z 2 1

SOLUTION SET IV FOR FALL z 2 1 SOLUTION SET IV FOR 8.75 FALL 4.. Residues... Functions of a Complex Variable In the following, I use the notation Res zz f(z) Res(z ) Res[f(z), z ], where Res is the residue of f(z) at (the isolated singularity)

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 32 Complex Variables Final Exam May, 27 3:3pm-5:3pm, Skurla Hall, Room 6 Exam Instructions: You have hour & 5 minutes to complete the exam. There are a total of problems.

More information

18.04 Practice problems exam 1, Spring 2018 Solutions

18.04 Practice problems exam 1, Spring 2018 Solutions 8.4 Practice problems exam, Spring 8 Solutions Problem. omplex arithmetic (a) Find the real and imaginary part of z + z. (b) Solve z 4 i =. (c) Find all possible values of i. (d) Express cos(4x) in terms

More information

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u =

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u = Homework -5 Solutions Problems (a) z = + 0i, (b) z = 7 + 24i 2 f(z) = u(x, y) + iv(x, y) with u(x, y) = e 2y cos(2x) and v(x, y) = e 2y sin(2x) u (a) To show f(z) is analytic, explicitly evaluate partials,,

More information

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers.

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers. Complex Analysis Sketches of Solutions to Selected Exercises Homework 2..a ( 2 i) i( 2i) = 2 i i + i 2 2 = 2 i i 2 = 2i 2..b (2, 3)( 2, ) = (2( 2) ( 3), 2() + ( 3)( 2)) = (, 8) 2.2.a Re(iz) = Re(i(x +

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on omplex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) omplex Analysis 1 / 18 omplex Analysis Module: 6: Residue

More information

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity EE27 Tutorial 7 omplex Numbers, omplex Functions, Limits and ontinuity Exercise 1. These are elementary exercises designed as a self-test for you to determine if you if have the necessary pre-requisite

More information

Ma 416: Complex Variables Solutions to Homework Assignment 6

Ma 416: Complex Variables Solutions to Homework Assignment 6 Ma 46: omplex Variables Solutions to Homework Assignment 6 Prof. Wickerhauser Due Thursday, October th, 2 Read R. P. Boas, nvitation to omplex Analysis, hapter 2, sections 9A.. Evaluate the definite integral

More information

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz MATH 47 Homework 4 Instructor: D. abrera Due July 7. Find all values of each expression below. a) i) i b) cos i) c) sin ) Solution: a) Here we use the formula z c = e c log z i) i = e i log i) The modulus

More information

Suggested Homework Solutions

Suggested Homework Solutions Suggested Homework Solutions Chapter Fourteen Section #9: Real and Imaginary parts of /z: z = x + iy = x + iy x iy ( ) x iy = x #9: Real and Imaginary parts of ln z: + i ( y ) ln z = ln(re iθ ) = ln r

More information

Problem Set 7 Solution Set

Problem Set 7 Solution Set Problem Set 7 Solution Set Anthony Varilly Math 3: Complex Analysis, Fall 22 Let P (z be a polynomial Prove there exists a real positive number ɛ with the following property: for all non-zero complex numbers

More information

Physics 2400 Midterm I Sample March 2017

Physics 2400 Midterm I Sample March 2017 Physics 4 Midterm I Sample March 17 Question: 1 3 4 5 Total Points: 1 1 1 1 6 Gamma function. Leibniz s rule. 1. (1 points) Find positive x that minimizes the value of the following integral I(x) = x+1

More information

CHAPTER 10. Contour Integration. Dr. Pulak Sahoo

CHAPTER 10. Contour Integration. Dr. Pulak Sahoo HAPTER ontour Integration BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University of Kalyani West Bengal, Inia E-mail : sahoopulak@gmail.com Moule-: ontour Integration-I Introuction

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

David A. Stephens Department of Mathematics and Statistics McGill University. October 28, 2006

David A. Stephens Department of Mathematics and Statistics McGill University. October 28, 2006 556: MATHEMATICAL STATISTICS I COMPUTING THE HYPEBOLIC SECANT DISTIBUTION CHAACTEISTIC FUNCTION David A. Stephens Department of Mathematics and Statistics McGill University October 8, 6 Abstract We give

More information

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao Outline Chapter 6: Residue Theory Li, Yongzhao State Key Laboratory of Integrated Services Networks, Xidian University June 7, 2009 Introduction The Residue Theorem In the previous chapters, we have seen

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

Taylor and Laurent Series

Taylor and Laurent Series Chapter 4 Taylor and Laurent Series 4.. Taylor Series 4... Taylor Series for Holomorphic Functions. In Real Analysis, the Taylor series of a given function f : R R is given by: f (x + f (x (x x + f (x

More information

Summation of series: Sommerfeld-Watson transformation

Summation of series: Sommerfeld-Watson transformation Summation of series: Sommerfeld-Watson transformation PHYS400, Department of Physics, University of Connecticut http://www.phys.uconn.edu/phys400/ Last modified: March 6, 05 Contour integration can be

More information

x y x 2 2 x y x x y x U x y x y

x y x 2 2 x y x x y x U x y x y Lecture 7 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for hapter 4 4: 8 Solution: We want to learn about the analyticity properties of the function

More information

MA 201 Complex Analysis Lecture 6: Elementary functions

MA 201 Complex Analysis Lecture 6: Elementary functions MA 201 Complex Analysis : The Exponential Function Recall: Euler s Formula: For y R, e iy = cos y + i sin y and for any x, y R, e x+y = e x e y. Definition: If z = x + iy, then e z or exp(z) is defined

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

ONLINE EXAMINATIONS [Mid 2 - M3] 1. the Machaurin's series for log (1+z)=

ONLINE EXAMINATIONS [Mid 2 - M3] 1. the Machaurin's series for log (1+z)= http://www.prsolutions.in ONLINE EXAMINATIONS [Mid 2 - M3] 1. the Machaurin's series for log (1+z)= 2. 3. Expand cosz into a Taylor's series about the point z= cosz= cosz= cosz= cosz= 4. Expand the function

More information

Problems for MATH-6300 Complex Analysis

Problems for MATH-6300 Complex Analysis Problems for MATH-63 Complex Analysis Gregor Kovačič December, 7 This list will change as the semester goes on. Please make sure you always have the newest version of it.. Prove the following Theorem For

More information

PSI Lectures on Complex Analysis

PSI Lectures on Complex Analysis PSI Lectures on Complex Analysis Tibra Ali August 14, 14 Lecture 4 1 Evaluating integrals using the residue theorem ecall the residue theorem. If f (z) has singularities at z 1, z,..., z k which are enclosed

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS ABDUL HASSEN AND HIEU D. NGUYEN Abstract. This paper investigates a generalization the classical Hurwitz zeta function. It is shown that many of the properties

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

MATH COMPLEX ANALYSIS. Contents

MATH COMPLEX ANALYSIS. Contents MATH 3964 - OMPLEX ANALYSIS ANDREW TULLOH AND GILES GARDAM ontents 1. ontour Integration and auchy s Theorem 2 1.1. Analytic functions 2 1.2. ontour integration 3 1.3. auchy s theorem and extensions 3

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

cauchy s integral theorem: examples

cauchy s integral theorem: examples Physics 4 Spring 17 cauchy s integral theorem: examples lecture notes, spring semester 17 http://www.phys.uconn.edu/ rozman/courses/p4_17s/ Last modified: April 6, 17 Cauchy s theorem states that if f

More information

1 Res z k+1 (z c), 0 =

1 Res z k+1 (z c), 0 = 32. COMPLEX ANALYSIS FOR APPLICATIONS Mock Final examination. (Monday June 7..am 2.pm) You may consult your handwritten notes, the book by Gamelin, and the solutions and handouts provided during the Quarter.

More information

SOLUTIONS MANUAL FOR. Advanced Engineering Mathematics with MATLAB Third Edition. Dean G. Duffy

SOLUTIONS MANUAL FOR. Advanced Engineering Mathematics with MATLAB Third Edition. Dean G. Duffy SOLUTIONS MANUAL FOR Advanced Engineering Mathematics with MATLAB Third Edition by Dean G. Duffy SOLUTIONS MANUAL FOR Advanced Engineering Mathematics with MATLAB Third Edition by Dean G. Duffy Taylor

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

4.5 The Open and Inverse Mapping Theorem

4.5 The Open and Inverse Mapping Theorem 4.5 The Open and Inverse Mapping Theorem Theorem 4.5.1. [Open Mapping Theorem] Let f be analytic in an open set U such that f is not constant in any open disc. Then f(u) = {f() : U} is open. Lemma 4.5.1.

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Chapter 11. Cauchy s Integral Formula

Chapter 11. Cauchy s Integral Formula hapter 11 auchy s Integral Formula If I were founding a university I would begin with a smoking room; next a dormitory; and then a decent reading room and a library. After that, if I still had more money

More information

Chapter 3 Elementary Functions

Chapter 3 Elementary Functions Chapter 3 Elementary Functions In this chapter, we will consier elementary functions of a complex variable. We will introuce complex exponential, trigonometric, hyperbolic, an logarithmic functions. 23.

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 43 George Voutsadakis (LSSU) Complex Analysis October 204 / 58 Outline Consequences

More information

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b Comple Analysis Parametric interval Curve 0 t z(t) ) 0 t α 0 t ( t α z α ( ) t a a t a+α 0 t a α z α 0 t a α z = z(t) γ a t b z = z( t) γ b t a = (γ, γ,..., γ n, γ n ) a t b = ( γ n, γ n,..., γ, γ ) b

More information

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C THE RESIDUE THEOREM ontents 1. The Residue Formula 1 2. Applications and corollaries of the residue formula 2 3. ontour integration over more general curves 5 4. Defining the logarithm 7 Now that we have

More information

CERTAIN INTEGRALS ARISING FROM RAMANUJAN S NOTEBOOKS

CERTAIN INTEGRALS ARISING FROM RAMANUJAN S NOTEBOOKS CERTAIN INTEGRALS ARISING FROM RAMANUJAN S NOTEBOOKS BRUCE C. BERNDT AND ARMIN STRAUB Abstract. In his third noteboo, Ramanujan claims that log x dx + π 2 x 2 dx. + 1 In a following cryptic line, which

More information

FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS

FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS HUNDUMA LEGESSE GELETA, ABDULKADIR HASSEN Both authors would like to dedicate this in fond memory of Marvin Knopp. Knop was the most humble and exemplary teacher

More information

Chapter 30 MSMYP1 Further Complex Variable Theory

Chapter 30 MSMYP1 Further Complex Variable Theory Chapter 30 MSMYP Further Complex Variable Theory (30.) Multifunctions A multifunction is a function that may take many values at the same point. Clearly such functions are problematic for an analytic study,

More information

North MaharashtraUniversity ; Jalgaon.

North MaharashtraUniversity ; Jalgaon. North MaharashtraUniversity ; Jalgaon. Question Bank S.Y.B.Sc. Mathematics (Sem II) MTH. Functions of a omplex Variable. Authors ; Prof. M.D.Suryawanshi (o-ordinator) Head, Department of Mathematics, S.S.V.P.S.

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

EE2007: Engineering Mathematics II Complex Analysis

EE2007: Engineering Mathematics II Complex Analysis EE2007: Engineering Mathematics II omplex Analysis Ling KV School of EEE, NTU ekvling@ntu.edu.sg V4.2: Ling KV, August 6, 2006 V4.1: Ling KV, Jul 2005 EE2007 V4.0: Ling KV, Jan 2005, EE2007 V3.1: Ling

More information

Lecture #30: Laurent Series and Residue Theory

Lecture #30: Laurent Series and Residue Theory Mathematics 312 (Fall 2013) November 21, 2012 Prof. Michael Kodron Lecture #30: Laurent Series and Residue Theory A first look at residue theory as an application of Laurent series One important application

More information

Selected Solutions To Problems in Complex Analysis

Selected Solutions To Problems in Complex Analysis Selected Solutions To Problems in Complex Analysis E. Chernysh November 3, 6 Contents Page 8 Problem................................... Problem 4................................... Problem 5...................................

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information