1 Ordinary Least Squares Regression: The Multivariate

Size: px
Start display at page:

Download "1 Ordinary Least Squares Regression: The Multivariate"

Transcription

1 1 Ordinary Least Squares Regression The Multivariate Case Let Y Xβ+ where the dimensions of the matrices are as pointed out in the previous lecture. The Least Square regression method involves minimizing the sum of squaresofresiduals. Forany β, Y X β Intermsofthevector ˆ,squaredsumofresiduals as where standsfortranspose. ( Y Xβ ( Y Xβ ( ( Y β X. Y Xβ ( n Y Y Y Xβ β X Y + β i1 2 i can be written LetusexplorewhatthedimensionofY Xβis? Thedimensionofthismatrix is(1xnx(nxkx(kx1(1x1.thereforethisisamatrixwithjustone elementandthereforeequaltoitstransposeβ X Y.Sowecanwrite Y Y 2β X Y + β (1 The Ordinary Least Square Estimator β OLS ( minimizes the squared sum of residual. Note that β OLS OLS is the vector β1, β OLS 2,..., β OLS. So k first order conditions(foc have to be true β 1 β 2 ˆ β k OLS. Thisiswritten,inmatrixnotation,as 1 β. k

2 Now, note that ( β1 βx Y, β 2,..., β k X Y. NowwhatisthedimensionofX Y (kxnx(nx1(kx1.soitsavector withkrows. Letsdenotethisvectorby(a 1,a 2,...,a k.then ( a 1 β1 βx Y, β 2,..., β k a 2 β 1 a 1 + β 2 a β k a k i1 a k Therefore, X Y β i1 β 1 i1 β 2 i1 a 1 a 2 a k X Y β k Ingeneral A A.Similarly, Vβ (V +V β.ifv issymmetric V V ;hence Vβ 2Vβ. So β 2X X β DifferentiationwithrespecttoβandsettingtheFOCat β OLS β 2X Y +2 OLS (2 Equation(2 represents k equations. These are called Normal Equations. SinceX hasfullcolumnrankandx X issquare, X X hasaninverse. To seethis, letusdenotecolumnsofx bythevectorsx 1,x 2,...,x k. Eachvector x i containsthenrowsofdataforvariablei.therefore X ( x 1 x 2... x k Note that linear independence of X (full column rank means that there does notexistscalarsa i i1,..,ksuchthata 1 x 1 +a 2 x 2 +..a k x k 2

3 Nowsupposetothecontrary,X X wasnotinvertiblesinceasquarematix is invertible if it has linearly independent columns, it must be that the columns ofx X arenotlinearlyindependent. WhatarethecolumnsofX X? X X x 1 x 2 x k ( x1 x 2... x k x 1x 1 x 1x 2... x 1x k x 2x 1 x 2x 2... x 2x k x k x 1 x k x 2... x k x k Ifthecolumnsarelinearlydependent,itmustbethat x 1x 1 x 1x 2 x 1x k c 1 x 2x 1 +c x 2x c x 2x k k x k x 1 x k x 2 x k x k Now consider the first row Collecting terms Sincex 1isnotzero,thisimplies c 1 x 1 x 1+c 2 x 1 x c k x 1 x k x 1(c 1 x 1 +c 2 x c k x k (c 1 x 1 +c 2 x c k x k butthatisacontradictionofthelinearindependenceofx.therefore(x X 1 existsandthe linearly idependence of X (assumption2of full columnrank k guarantees that. Asanasidenotethat x 2 i1 x i1 x i2... x i1 x ik i1 i1 i1 n X X x i2 x i1 x 2 i2... x i2 x ik i1 i1 i1 n x ik x i1 x ik x i2... i1 i1 Equation(2 can be rearranged as OLS X Y i1 x 2 ik 3

4 andsince(x X 1 exists OLS β (X X 1 X Y 1.1 Algebric Properties of the OLS estimator Notation1 1. X To see this, recall 2X Y +2 OLS which implies But So by construction of OLS that is or X (Y X βols Y Xβ OLS ˆ X x 1 x 2 x k x k ˆ x 1 x 2 i1 i1 i1 x i1 i x i2 i x ik i This would imply that the covariance between each variable and the residuals iszerobyconstruction. Thisisnotthesameastheorthogonalityofthexand the error term. 4

5 2 i ifoneofthevariablesis1(thatis,ifyourunaregressionwith i1 an intercept term Notice that if you run a regression with a intercept(also sometimes called theconstanttermterm,thisimpliesx i1 1forallobservationsi.Since therefore x i1i i1 i (3 i1 Equation(3isONLYtrueinwhentheregressionhasaninterceptterm! 3 The regression hyperplane passes through the mean value of all the variable. Since then, i i1 (y i β 1 x i2β2... x ikβk i1 y i nβ 1 + β n 2 x i β n k i1 i1 i1 x ik y β1 + β 2 x β k xk 5

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Asymptotic Theory. L. Magee revised January 21, 2013

Asymptotic Theory. L. Magee revised January 21, 2013 Asymptotic Theory L. Magee revised January 21, 2013 1 Convergence 1.1 Definitions Let a n to refer to a random variable that is a function of n random variables. Convergence in Probability The scalar a

More information

INTRODUCTION TO VECTOR AND MATRIX DIFFERENTIATION

INTRODUCTION TO VECTOR AND MATRIX DIFFERENTIATION Econometrics 2, Fall 2004 Heino Bohn Nielsen Octoer 2, 2004 INTRODUCTION TO VECTOR AND MATRIX DIFFERENTIATION Astract: This note expands on appendix A7 in Vereek (2004) on matrix differentiation We first

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research Linear models Linear models are computationally convenient and remain widely used in applied econometric research Our main focus in these lectures will be on single equation linear models of the form y

More information

Introduction to Econometrics Midterm Examination Fall 2005 Answer Key

Introduction to Econometrics Midterm Examination Fall 2005 Answer Key Introduction to Econometrics Midterm Examination Fall 2005 Answer Key Please answer all of the questions and show your work Clearly indicate your final answer to each question If you think a question is

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 1 Ridge Regression Ridge regression and the Lasso are two forms of regularized

More information

Regression: Ordinary Least Squares

Regression: Ordinary Least Squares Regression: Ordinary Least Squares Mark Hendricks Autumn 2017 FINM Intro: Regression Outline Regression OLS Mathematics Linear Projection Hendricks, Autumn 2017 FINM Intro: Regression: Lecture 2/32 Regression

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

STA 302f16 Assignment Five 1

STA 302f16 Assignment Five 1 STA 30f16 Assignment Five 1 Except for Problem??, these problems are preparation for the quiz in tutorial on Thursday October 0th, and are not to be handed in As usual, at times you may be asked to prove

More information

Lecture 6: Geometry of OLS Estimation of Linear Regession

Lecture 6: Geometry of OLS Estimation of Linear Regession Lecture 6: Geometry of OLS Estimation of Linear Regession Xuexin Wang WISE Oct 2013 1 / 22 Matrix Algebra An n m matrix A is a rectangular array that consists of nm elements arranged in n rows and m columns

More information

MIT Spring 2015

MIT Spring 2015 Regression Analysis MIT 18.472 Dr. Kempthorne Spring 2015 1 Outline Regression Analysis 1 Regression Analysis 2 Multiple Linear Regression: Setup Data Set n cases i = 1, 2,..., n 1 Response (dependent)

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

7. The Multivariate Normal Distribution

7. The Multivariate Normal Distribution of 5 7/6/2009 5:56 AM Virtual Laboratories > 5. Special Distributions > 2 3 4 5 6 7 8 9 0 2 3 4 5 7. The Multivariate Normal Distribution The Bivariate Normal Distribution Definition Suppose that U and

More information

Lecture 16 Solving GLMs via IRWLS

Lecture 16 Solving GLMs via IRWLS Lecture 16 Solving GLMs via IRWLS 09 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Notes problem set 5 posted; due next class problem set 6, November 18th Goals for today fixed PCA example

More information

Regression #2. Econ 671. Purdue University. Justin L. Tobias (Purdue) Regression #2 1 / 24

Regression #2. Econ 671. Purdue University. Justin L. Tobias (Purdue) Regression #2 1 / 24 Regression #2 Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #2 1 / 24 Estimation In this lecture, we address estimation of the linear regression model. There are many objective functions

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture IDF relationship Procedure for creating

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Simple Linear Regression Model & Introduction to. OLS Estimation

Simple Linear Regression Model & Introduction to. OLS Estimation Inside ECOOMICS Introduction to Econometrics Simple Linear Regression Model & Introduction to Introduction OLS Estimation We are interested in a model that explains a variable y in terms of other variables

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression

ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression Lecture 11 May 10, 2005 Multivariant Regression A multi-variant relation between a dependent variable y and several independent variables

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 9: LINEAR REGRESSION SEAN GERRISH AND CHONG WANG 1. WAYS OF ORGANIZING MODELS In probabilistic modeling, there are several ways of organizing models:

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015

MS&E 226. In-Class Midterm Examination Solutions Small Data October 20, 2015 MS&E 226 In-Class Midterm Examination Solutions Small Data October 20, 2015 PROBLEM 1. Alice uses ordinary least squares to fit a linear regression model on a dataset containing outcome data Y and covariates

More information

Ridge Regression. Flachs, Munkholt og Skotte. May 4, 2009

Ridge Regression. Flachs, Munkholt og Skotte. May 4, 2009 Ridge Regression Flachs, Munkholt og Skotte May 4, 2009 As in usual regression we consider a pair of random variables (X, Y ) with values in R p R and assume that for some (β 0, β) R +p it holds that E(Y

More information

ECON 5350 Class Notes Functional Form and Structural Change

ECON 5350 Class Notes Functional Form and Structural Change ECON 5350 Class Notes Functional Form and Structural Change 1 Introduction Although OLS is considered a linear estimator, it does not mean that the relationship between Y and X needs to be linear. In this

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Ordinary Least Squares Regression

Ordinary Least Squares Regression Ordinary Least Squares Regression Goals for this unit More on notation and terminology OLS scalar versus matrix derivation Some Preliminaries In this class we will be learning to analyze Cross Section

More information

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013 18.S096 Problem Set 3 Fall 013 Regression Analysis Due Date: 10/8/013 he Projection( Hat ) Matrix and Case Influence/Leverage Recall the setup for a linear regression model y = Xβ + ɛ where y and ɛ are

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Xiuming Zhang zhangxiuming@u.nus.edu A*STAR-NUS Clinical Imaging Research Center October, 015 Summary This report derives

More information

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10 Midterm 1 NAME: RULES: You will be given the entire period (1PM-3:10PM) to complete the test. You can use one 3x5 notecard for formulas. There are no calculators nor those fancy cellular phones nor groupwork

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Regression based methods, 1st part: Introduction (Sec.

More information

INTRODUCTORY ECONOMETRICS

INTRODUCTORY ECONOMETRICS INTRODUCTORY ECONOMETRICS Lesson 2b Dr Javier Fernández etpfemaj@ehu.es Dpt. of Econometrics & Statistics UPV EHU c J Fernández (EA3-UPV/EHU), February 21, 2009 Introductory Econometrics - p. 1/192 GLRM:

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Lecture 8: Instrumental Variables Estimation

Lecture 8: Instrumental Variables Estimation Lecture Notes on Advanced Econometrics Lecture 8: Instrumental Variables Estimation Endogenous Variables Consider a population model: y α y + β + β x + β x +... + β x + u i i i i k ik i Takashi Yamano

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. #07 Jordan Canonical Form Cayley Hamilton Theorem (Refer Slide Time:

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

Total Least Squares Approach in Regression Methods

Total Least Squares Approach in Regression Methods WDS'08 Proceedings of Contributed Papers, Part I, 88 93, 2008. ISBN 978-80-7378-065-4 MATFYZPRESS Total Least Squares Approach in Regression Methods M. Pešta Charles University, Faculty of Mathematics

More information

Lecture 9 SLR in Matrix Form

Lecture 9 SLR in Matrix Form Lecture 9 SLR in Matrix Form STAT 51 Spring 011 Background Reading KNNL: Chapter 5 9-1 Topic Overview Matrix Equations for SLR Don t focus so much on the matrix arithmetic as on the form of the equations.

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Multivariate Linear Models

Multivariate Linear Models Multivariate Linear Models Stanley Sawyer Washington University November 7, 2001 1. Introduction. Suppose that we have n observations, each of which has d components. For example, we may have d measurements

More information

POL 213: Research Methods

POL 213: Research Methods Brad 1 1 Department of Political Science University of California, Davis April 15, 2008 Some Matrix Basics What is a matrix? A rectangular array of elements arranged in rows and columns. 55 900 0 67 1112

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 Answer the questions in the spaces provided on the question sheets. You must show your work to get credit for your answers. There will

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Linear Regression with one Regressor

Linear Regression with one Regressor 1 Linear Regression with one Regressor Covering Chapters 4.1 and 4.2. We ve seen the California test score data before. Now we will try to estimate the marginal effect of STR on SCORE. To motivate these

More information

Matrix Operations: Determinant

Matrix Operations: Determinant Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

STA 2101/442 Assignment Four 1

STA 2101/442 Assignment Four 1 STA 2101/442 Assignment Four 1 One version of the general linear model with fixed effects is y = Xβ + ɛ, where X is an n p matrix of known constants with n > p and the columns of X linearly independent.

More information

The Linear Regression Model

The Linear Regression Model The Linear Regression Model Carlo Favero Favero () The Linear Regression Model 1 / 67 OLS To illustrate how estimation can be performed to derive conditional expectations, consider the following general

More information

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u Interval estimation and hypothesis tests So far our focus has been on estimation of the parameter vector β in the linear model y i = β 1 x 1i + β 2 x 2i +... + β K x Ki + u i = x iβ + u i for i = 1, 2,...,

More information

HOW IS GENERALIZED LEAST SQUARES RELATED TO WITHIN AND BETWEEN ESTIMATORS IN UNBALANCED PANEL DATA?

HOW IS GENERALIZED LEAST SQUARES RELATED TO WITHIN AND BETWEEN ESTIMATORS IN UNBALANCED PANEL DATA? HOW IS GENERALIZED LEAST SQUARES RELATED TO WITHIN AND BETWEEN ESTIMATORS IN UNBALANCED PANEL DATA? ERIK BIØRN Department of Economics University of Oslo P.O. Box 1095 Blindern 0317 Oslo Norway E-mail:

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

We can relax the assumption that observations are independent over i = firms or plants which operate in the same industries/sectors

We can relax the assumption that observations are independent over i = firms or plants which operate in the same industries/sectors Cluster-robust inference We can relax the assumption that observations are independent over i = 1, 2,..., n in various limited ways One example with cross-section data occurs when the individual units

More information

The General Linear Model. Monday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison

The General Linear Model. Monday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison The General Linear Model Monday, Lecture 2 Jeanette Mumford University of Wisconsin - Madison How we re approaching the GLM Regression for behavioral data Without using matrices Understand least squares

More information

Generalized Method of Moments: I. Chapter 9, R. Davidson and J.G. MacKinnon, Econometric Theory and Methods, 2004, Oxford.

Generalized Method of Moments: I. Chapter 9, R. Davidson and J.G. MacKinnon, Econometric Theory and Methods, 2004, Oxford. Generalized Method of Moments: I References Chapter 9, R. Davidson and J.G. MacKinnon, Econometric heory and Methods, 2004, Oxford. Chapter 5, B. E. Hansen, Econometrics, 2006. http://www.ssc.wisc.edu/~bhansen/notes/notes.htm

More information

Reference: Davidson and MacKinnon Ch 2. In particular page

Reference: Davidson and MacKinnon Ch 2. In particular page RNy, econ460 autumn 03 Lecture note Reference: Davidson and MacKinnon Ch. In particular page 57-8. Projection matrices The matrix M I X(X X) X () is often called the residual maker. That nickname is easy

More information

2 Lecture Defining Optimization with Equality Constraints

2 Lecture Defining Optimization with Equality Constraints 2 Lecture 2 2.1 Defining Optimization with Equality Constraints So far we have been concentrating on an arbitrary set. Because of this, we could of course incorporate constrains directly into the set.

More information

WEIGHTED LEAST SQUARES. Model Assumptions for Weighted Least Squares: Recall: We can fit least squares estimates just assuming a linear mean function.

WEIGHTED LEAST SQUARES. Model Assumptions for Weighted Least Squares: Recall: We can fit least squares estimates just assuming a linear mean function. 1 2 WEIGHTED LEAST SQUARES Recall: We can fit least squares estimates just assuming a linear mean function. Without the constant variance assumption, we can still conclude that the coefficient estimators

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 8

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 8 EECS 6A Designing Information Devices and Systems I Spring 8 Lecture Notes Note 8 8 Subspace In previous lecture notes, we introduced the concept of a vector space and the notion of basis and dimension

More information

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices Lecture 3: Simple Linear Regression in Matrix Format To move beyond simple regression we need to use matrix algebra We ll start by re-expressing simple linear regression in matrix form Linear algebra is

More information

Linear Decision Boundaries

Linear Decision Boundaries Linear Decision Boundaries A basic approach to classification is to find a decision boundary in the space of the predictor variables. The decision boundary is often a curve formed by a regression model:

More information

AMS-207: Bayesian Statistics

AMS-207: Bayesian Statistics Linear Regression How does a quantity y, vary as a function of another quantity, or vector of quantities x? We are interested in p(y θ, x) under a model in which n observations (x i, y i ) are exchangeable.

More information

Financial Econometrics

Financial Econometrics Material : solution Class : Teacher(s) : zacharias psaradakis, marian vavra Example 1.1: Consider the linear regression model y Xβ + u, (1) where y is a (n 1) vector of observations on the dependent variable,

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review ORIE 4741 September 1, 2017 Linear Algebra Review September 1, 2017 1 / 33 Outline 1 Linear Independence and Dependence 2 Matrix Rank 3 Invertible Matrices 4 Norms 5 Projection Matrix

More information

1. The OLS Estimator. 1.1 Population model and notation

1. The OLS Estimator. 1.1 Population model and notation 1. The OLS Estimator OLS stands for Ordinary Least Squares. There are 6 assumptions ordinarily made, and the method of fitting a line through data is by least-squares. OLS is a common estimation methodology

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima Applied Statistics Lecturer: Serena Arima Hypothesis testing for the linear model Under the Gauss-Markov assumptions and the normality of the error terms, we saw that β N(β, σ 2 (X X ) 1 ) and hence s

More information

Lecture 13: Simple Linear Regression in Matrix Format

Lecture 13: Simple Linear Regression in Matrix Format See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 13: Simple Linear Regression in Matrix Format 36-401, Section B, Fall 2015 13 October 2015 Contents 1 Least Squares in Matrix

More information

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects Contents 1 Review of Residuals 2 Detecting Outliers 3 Influential Observations 4 Multicollinearity and its Effects W. Zhou (Colorado State University) STAT 540 July 6th, 2015 1 / 32 Model Diagnostics:

More information

Regression #4: Properties of OLS Estimator (Part 2)

Regression #4: Properties of OLS Estimator (Part 2) Regression #4: Properties of OLS Estimator (Part 2) Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #4 1 / 24 Introduction In this lecture, we continue investigating properties associated

More information

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4]. Lecture Notes: Rank of a Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Linear Independence Definition 1. Let r 1, r 2,..., r m

More information

Lecture 13. Simple Linear Regression

Lecture 13. Simple Linear Regression 1 / 27 Lecture 13 Simple Linear Regression October 28, 2010 2 / 27 Lesson Plan 1. Ordinary Least Squares 2. Interpretation 3 / 27 Motivation Suppose we want to approximate the value of Y with a linear

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18)

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) MichaelR.Roberts Department of Economics and Department of Statistics University of California

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

Previously Monte Carlo Integration

Previously Monte Carlo Integration Previously Simulation, sampling Monte Carlo Simulations Inverse cdf method Rejection sampling Today: sampling cont., Bayesian inference via sampling Eigenvalues and Eigenvectors Markov processes, PageRank

More information

MIXED MODELS THE GENERAL MIXED MODEL

MIXED MODELS THE GENERAL MIXED MODEL MIXED MODELS This chapter introduces best linear unbiased prediction (BLUP), a general method for predicting random effects, while Chapter 27 is concerned with the estimation of variances by restricted

More information

Multiple Regression Model: I

Multiple Regression Model: I Multiple Regression Model: I Suppose the data are generated according to y i 1 x i1 2 x i2 K x ik u i i 1...n Define y 1 x 11 x 1K 1 u 1 y y n X x n1 x nk K u u n So y n, X nxk, K, u n Rks: In many applications,

More information

Properties of the least squares estimates

Properties of the least squares estimates Properties of the least squares estimates 2019-01-18 Warmup Let a and b be scalar constants, and X be a scalar random variable. Fill in the blanks E ax + b) = Var ax + b) = Goal Recall that the least squares

More information

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression

Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression 1/37 The linear regression model Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression Ken Rice Department of Biostatistics University of Washington 2/37 The linear regression model

More information

Analisi Statistica per le Imprese

Analisi Statistica per le Imprese , Analisi Statistica per le Imprese Dip. di Economia Politica e Statistica 4.3. 1 / 33 You should be able to:, Underst model building using multiple regression analysis Apply multiple regression analysis

More information