REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION

Size: px
Start display at page:

Download "REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION"

Transcription

1 REVIEW OF MAXIMUM LIKELIHOOD ESIMAION [] Maximum Likelihood Esimaor () Cases in which θ (unknown parameer) is scalar Noaional Clarificaion: From now on, we denoe he rue alue of θ as θ o hen, iew θ as a ariable Definiion: (Likelihood funcion) Le {x,, x } be a sample from a populaion I does no hae o be a random sample x is a scalar Le f(x,x,, x,θ o ) be he join densiy funcion of x,, x he funcional form of f is known, bu no θ o hen, L (θ) f(x,, x, θ) is called likelihood funcion L (θ) is a funcion of θ gien x,, x he funcional form of f is known, bu no θ o Definiion: (log-likelihood funcion) l (θ) = ln[f(x,, x,θ)] MLE-

2 Example: {x,, x }: a random sample from a populaion disribued wih f(x,θ o ) f(x,, x, θ o ) = f (, θ ) = L (θ) = f(x,, x, θ) = = = l (θ) = ( f ( x, )) x o f ( x, θ ) ln θ = Σ ln f (, θ ) x Definiion: (Maximum Likelihood Esimaor (MLE)) MLE θˆ MLE maximizes l (θ) gien daa poins x,, x Example: {x,, x } is a random sample from a populaion following a Poisson disribuion [ie, f(x,θ) = e -θ θ x /x! (suppressing subscrip o from θ)] Noe ha E(x) = ar(x) = θ o for Poisson disribuion l (θ) = Σ ln[f(x,θ)] = -θ + (ln(θ))σ x - Σ x! FOC of max: / θ = + Σx = 0 θ Soling his, θˆ MLE = Σ x = x MLE-

3 () Exension o he Cases wih Muliple Parameers Definiion: θ = [θ,θ,, θ p ] L (θ) = f(x,, x,θ) = f(x,, x, θ,, θ p ) l (θ) = ln[f(x,, x,θ) = ln[f(x,, x, θ,, θ p )] x could be a ecor If {x,, x } is a random sample from a populaion wih f(x,θ o ), = l (θ) = ( f ( x, )) ln θ = Σ ln f (, θ ) x Definiion: (MLE) MLE θˆ MLE maximizes l (θ) gien daa (ecor) poins x,, x ha is, θˆ MLE soles ( θ ) θ = ( θ ) / θ ( θ ) / θ = : ( θ ) / θ p 0 0 : 0 p Example: Le {x,, x } be a random sample from N(μ,σ ) [suppressing subscrip o ] Since {x,, x } is a random sample, E(x ) = μ o and ar(x ) = σ o Le θ = (μ,), where = σ MLE-3

4 ( x μ) f( x, θ ) = exp π / / ( x μ) = ( π ) ( ) exp ( x μ) ln[ f( x, θ)] = ln( π) ln( ) Σ( x μ) ( θ) = ln( π) ln( ) MLE soles FOC: ( θ ) Σ( x μ) () = Σ ( x μ)( ) = = 0; μ () From (): ( θ) Σ( x μ) = + = 0 Σ x (3) Σ( x μ) = 0 Σ x - μ = 0 μˆ MLE = = x Subsiuing (3) in o (): (4) - + Σ (x -μˆ MLE ) = 0 hus, ˆ MLE = Σ ( x x) ˆ ˆ μ x MLE θ = = MLE ˆ Σ( x x) MLE MLE-4

5 (3) Exension o Condiional densiy Definiion: Condiional densiy of y : f( y θ, x ), θ = [θ,θ,, θ p ] L θ = f y ( ) =Π ( θ, x ) o l (θ) = L( θ) =Σ = ln( f( y θ, x )) Example: Assume ha ( y, x i ) iid and f( y x )~ N( x β, ) f(y x,β,) = i i o f( y,, x ) exp ( y x ) π l ( β, ) =Σ ln f( y β,, x ) i β = β i i = ln( π) ln Σ( y x β) = ln( π ) ln ( y Xβ) ( y Xβ) herefore, we hae he following likelihood funcion of y FOC: (i) l (β,)/ β = -(/)[-X y + X Xβ] = 0 k (ii) l (β,)/ = -(/) + (/ )(y-xβ) (y-xβ) = 0 From (i), X y - X Xβ = 0 k From (ii), ˆ MLE = SSE/ βˆ MLE = (X X) - X y = βˆ hus, we can conclude ha ˆ β and s = SSE/(-k) are asympoically efficien MLE-5

6 [] Large Sample Properies of he ML esimaor Definiion: ) Le g(θ) = g(θ,, θ p ) be a scalar funcion of θ Le g j = g/ θ j hen, g g g = θ : g p ) Le w(θ) =(w (θ),, w m (θ)) be a m ecor of funcions of θ Le w ij = w i (θ)/ θ j hen, w w w p w w w = θ : : : wm wm w mp w( θ ) p 3) Le g(θ) be a scalar funcion of θ where g ij = g(θ)/ θ i θ j hen, m p g g g p g g g = θθ : : : gp gp g pp g( θ ) p Called Hessian marix of g(θ) p p MLE-6

7 Example : Le g(θ) = θ + θ + θ θ Find g(θ)/ θ g( θ ) = θ θ + θ θ θ + Example : Le θ + θ w( θ ) = θ+ θ w( θ ) θ θ = θ Example 3: Le g(θ) = θ + θ + θ θ Find he Hessian marix of g(θ) g( θ ) = θθ Some useful resuls: ) c : p, θ: p (c θ is a scalar) (c θ)/ θ = c ; (c θ)/ θ = c ) R: m p, θ: p (Rθ is m ) (Rθ)/ θ = R 3) A: p p symmeric, θ: p (θ Aθ) (θ Aθ)/ θ = Aθ (θ'aθ)/ θ = θ'a (θ Aθ)/ θ θ = A MLE-7

8 Definiion: (Hessian marix of log-likelihood funcion) H l l ( θ ) = = θθ θi θ j p p heorem: Le ˆ θ be MLE hen, under suiable regulariy condiions, ˆ θ is consisen, and, ˆ ( θ θo) d N0 p, plim H( θo) Furher, ˆ θ is asympoically efficien Implicaion: ˆ θ N(θ o, [-H (θ o )] - ) ˆ θ N(θ o, [-H ( ˆ θ )] - ) heorem: Le s( θ ) = ln f( y θ, x )/ θ Define B =Σ s ( θ ) s ( θ ) hen, = plim B( θo) = plim H( θ o ) Implicaion: ˆ θ N(θ o, [-H ( ˆ θ )] - ) N(θ o, (B ( ˆ θ )) - ) MLE-8

9 Example: {x,, x } is a random sample from N(μ o,σ o ) Le θ = [μ,] and =σ l = Σ ln( π ) ln( ) ( x μ) he firs deriaies: l( θ ) Σ( x μ) l( θ) = ; = + Σ ( x μ μ ) he second deriaies: l ( θ ) = Σ( ) = μμ ; l( θ ) Σ( x μ) = ; μ l ( θ ) 0 4 ( ) = + Σ ( ) ( ) x μ = Σ 3 x μ herefore, MLE-9

10 3 ( ) ( ) ( ) ( ) x H x x μ ν θ μ μ ν ν Σ = Σ Σ + 0 ˆ ˆ ( ) 0 ˆ ML ML ML H θ = Hence, ˆ 0 ˆ ˆ, ˆ ˆ 0 ML o ML o ML ML N μ μ θ = MLE-0

11 [3] esing Hypoheses Based on MLE General form of hypoheses: Le w(θ) = [w (θ),w (θ),, w m (θ)], where w j (θ) = w j (θ, θ,, θ p ) = a funcion of θ,, θ p H o : he rue θ (θ o ) saisfies he m resrciions, w(θ) = 0 m (m p) Definiion: (Resriced MLE) Le θ be he resriced ML esimaor which maximizes l (θ) s w(θ) = 0 Wald es: W w ˆ W ˆ Co ˆ W ˆ w ˆ = ( θ )'[ ( θ) ( θ) ( θ)] ( θ ) If ˆ θ is a (unresriced) ML esimaor, W = w ˆ W ˆ H ˆ W ˆ w ˆ θ ( θ )[ ( θ){ ( θ)} ( θ)] ( ) Noe: Can be compued wih any consisen esimaor ˆ θ and Co( ˆ θ ) Likelihood Raio es: (LR) LR = [l ( ˆ θ ) - l (θ )] Lagrangean Muliplier (LM) es Define s l ( θ ) ( θ ) = hen, LM = s (θ ) [-H (θ )] - s (θ ) θ MLE-

12 heorem: Under H o : w(θ) = 0, W, LR, LM d χ (m) Implicaion: Gien significance leel (α), find a criical alue from χ able Usually, α = 005 or α = 00 If W > c, rejec H o Oherwise, do no rejec H o Commens: ) Wald needs only ˆ θ ; LR needs boh ˆ θ and θ ; and LM needs θ only ) In general, W LR LM 3) W is no inarian o how o wrie resricions ha is, W for H o : θ = θ may no be equal o W for H o : θ /θ = Example: () {x,, x }: RS from N(μ o, o ) wih o known So, θ = μ H o : μ = 0 w(μ) = μ l (μ) = -(/)ln(π) - (/)ln( o ) - {/( o )}Σ (x -μ) s (μ) = (/ o )Σ (x -μ) H ( μ) = o MLE-

13 [Wald es] Unresriced MLE: FOC: l (μ)/ μ = (/)Σ (x -μ) = 0 ˆ μ = x W(μ) = W( ˆμ ) = -H ( ˆμ ) = / o [LR es] Resriced MLE: μ = 0 l ( ˆμ ) = -(/)ln(π) - (/)ln( o ) - {/( o )}Σ (x - x ) l (μ ) = -(/)ln(π) - (/)ln( o )- {/( o )}Σ x [LM es] s (μ ) = (/ o )Σ x = (/ o ) x ; -H (μ ) = / o Wih his informaion, can show ha W = LR = LM = x o () Boh μ and unknown: θ = (μ,) H o : μ = 0 w(θ) = μ W(θ) = w(θ)/ θ = [ μ/ μ, μ/ ] = [, 0] l (θ) = -(/)ln(π) - (/)ln() - {/()}Σ (x -μ) MLE-3

14 Σ( x μ) s (θ) = + Σ ( ) x μ ; Σ( x μ) ν H ( θ ) = Σ( x μ) Σ( x μ) + 3 ν ν Unresriced MLE: ˆ μ = x and ˆ ( ) = Σ x x Resriced MLE: μ = 0, bu need o compue l ( μ,) = -(/)ln(π) - (/)ln() - {/()}Σ (x -μ ) l (0,) = -(/)ln(π) - (/)ln() - {/()}Σ x FOC: l (0,)/ = -/() + (/( ))/Σ x = 0 = (/)Σx [Wald es] w( ˆ θ ) = ˆμ = x ; W( ˆ θ ) = ( 0 ); -H ( ˆ θ ) = ˆ 0 0 ˆ W = w( ˆ θ ) [W( ˆ θ ){-H ( ˆ θ )} - W( ˆ θ ) ] - w( ˆ θ ) = x ˆ MLE-4

15 [LR es] l ( ˆ θ ) = -(/)ln(π) - (/)ln( ˆ ) - {/( ˆ )}Σ(x - x ) l (θ ) = -(/)ln(π) - (/)ln( ) - {/( )}Σx [LM es] s x Σx x ( θ ) = = = ; + Σ 0 x + Σx ν H( θml) = Σx ν ν LM = x s ( θ)[ H( θ)] s( θ) = x MLE-5

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Recent Developments in the Unit Root Problem for Moving Averages

Recent Developments in the Unit Root Problem for Moving Averages Recen Developmens in he Uni Roo Problem for Moving Averages Richard A. Davis Colorado Sae Universiy Mei-Ching Chen Chaoyang Insiue of echnology homas Miosch Universiy of Groningen Non-inverible MA() Model

More information

Answers to QUIZ

Answers to QUIZ 18441 Answers o QUIZ 1 18441 1 Le P be he proporion of voers who will voe Yes Suppose he prior probabiliy disribuion of P is given by Pr(P < p) p for 0 < p < 1 You ake a poll by choosing nine voers a random,

More information

U( θ, θ), U(θ 1/2, θ + 1/2) and Cauchy (θ) are not exponential families. (The proofs are not easy and require measure theory. See the references.

U( θ, θ), U(θ 1/2, θ + 1/2) and Cauchy (θ) are not exponential families. (The proofs are not easy and require measure theory. See the references. Lecure 5 Exponenial Families Exponenial families, also called Koopman-Darmois families, include a quie number of well known disribuions. Many nice properies enjoyed by exponenial families allow us o provide

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

The General Linear Test in the Ridge Regression

The General Linear Test in the Ridge Regression ommunicaions for Saisical Applicaions Mehods 2014, Vol. 21, No. 4, 297 307 DOI: hp://dx.doi.org/10.5351/sam.2014.21.4.297 Prin ISSN 2287-7843 / Online ISSN 2383-4757 The General Linear Tes in he Ridge

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

STAD57 Time Series Analysis. Lecture 14

STAD57 Time Series Analysis. Lecture 14 STAD57 Time Series Analysis Lecure 14 1 Maximum Likelihood AR(p) Esimaion Insead of Yule-Walker (MM) for AR(p) model, can use Maximum Likelihood (ML) esimaion Likelihood is join densiy of daa {x 1,,x n

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models 5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models General form of nonlinear or linear regression models: y = h(x,β) + ε, ε iid N(0,σ ). Assume ha he x and ε sochasically independen. his assumpion

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Lecture 4. Classical Linear Regression Model: Overview

Lecture 4. Classical Linear Regression Model: Overview Lecure 4 Classical Linear Regression Model: Overview Regression Regression is probably he single mos imporan ool a he economerician s disposal. Bu wha is regression analysis? I is concerned wih describing

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

Part III: Chap. 2.5,2.6 & 12

Part III: Chap. 2.5,2.6 & 12 Survival Analysis Mah 434 Fall 2011 Par III: Chap. 2.5,2.6 & 12 Jimin Ding Mah Dep. www.mah.wusl.edu/ jmding/mah434/index.hml Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 1/14 Jimin Ding,

More information

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATES IN DIFFUSION AND FRACTIONAL-BROWNIAN MODELS

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATES IN DIFFUSION AND FRACTIONAL-BROWNIAN MODELS eor Imov r. a Maem. Sais. heor. Probabiliy and Mah. Sais. Vip. 68, 3 S 94-9(4)6-3 Aricle elecronically published on May 4, 4 PROPERIES OF MAXIMUM LIKELIHOOD ESIMAES IN DIFFUSION AND FRACIONAL-BROWNIAN

More information

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum.

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum. January 01 Final Exam Quesions: Mark W. Wason (Poins/Minues are given in Parenheses) (15) 1. Suppose ha y follows he saionary AR(1) process y = y 1 +, where = 0.5 and ~ iid(0,1). Le x = (y + y 1 )/. (11)

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd Maemaisk saisik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY WEDNESDAY THE 9 h OF JANUARY 23 2 pm 7 pm Examinaor : Timo Koski, el 79 7 34, email: jkoski@khse Tillåna hjälpmedel

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

Fréchet derivatives and Gâteaux derivatives

Fréchet derivatives and Gâteaux derivatives Fréche derivaives and Gâeaux derivaives Jordan Bell jordan.bell@gmail.com Deparmen of Mahemaics, Universiy of Torono April 3, 2014 1 Inroducion In his noe all vecor spaces are real. If X and Y are normed

More information

CHERNOFF DISTANCE AND AFFINITY FOR TRUNCATED DISTRIBUTIONS *

CHERNOFF DISTANCE AND AFFINITY FOR TRUNCATED DISTRIBUTIONS * haper 5 HERNOFF DISTANE AND AFFINITY FOR TRUNATED DISTRIBUTIONS * 5. Inroducion In he case of disribuions ha saisfy he regulariy condiions, he ramer- Rao inequaliy holds and he maximum likelihood esimaor

More information

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests ECONOMICS 35* -- NOTE 8 M.G. Abbo ECON 35* -- NOTE 8 Hypohesis Tesing in he Classical Normal Linear Regression Model. Componens of Hypohesis Tess. A esable hypohesis, which consiss of wo pars: Par : a

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

A New Unit Root Test against Asymmetric ESTAR Nonlinearity with Smooth Breaks

A New Unit Root Test against Asymmetric ESTAR Nonlinearity with Smooth Breaks Iran. Econ. Rev. Vol., No., 08. pp. 5-6 A New Uni Roo es agains Asymmeric ESAR Nonlineariy wih Smooh Breaks Omid Ranjbar*, sangyao Chang, Zahra (Mila) Elmi 3, Chien-Chiang Lee 4 Received: December 7, 06

More information

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency)

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency) Foundaions of Saisical Inference Julien Beresycki Lecure 2 - Sufficiency, Facorizaion, Minimal sufficiency Deparmen of Saisics Universiy of Oxford MT 2016 Julien Beresycki (Universiy of Oxford BS2a MT

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

Optimality Conditions for Unconstrained Problems

Optimality Conditions for Unconstrained Problems 62 CHAPTER 6 Opimaliy Condiions for Unconsrained Problems 1 Unconsrained Opimizaion 11 Exisence Consider he problem of minimizing he funcion f : R n R where f is coninuous on all of R n : P min f(x) x

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

IPRC Discussion Paper Series No.15

IPRC Discussion Paper Series No.15 IPRC Discussion Paper Series No.5 Evaluaion of he 6 revision of he medical paymen sysem in Japan by he Box-Cox ransformaion model and he Hausman es -An analysis of he lengh of he hospial say for caarac

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE

Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE Eric Zivot Winter 013 1 Wald, LR and LM statistics based on generalized method of moments estimation Let 1 be an iid sample

More information

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework 4 (Sas 62, Winer 217) Due Tuesday Feb 14, in class Quesions are derived from problems in Sochasic Processes by S. Ross. 1. Le A() and Y () denoe respecively he age and excess a. Find: (a) P{Y

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow KEY Mah 334 Miderm III Fall 28 secions and 3 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

Supplementary Material

Supplementary Material Dynamic Global Games of Regime Change: Learning, Mulipliciy and iming of Aacks Supplemenary Maerial George-Marios Angeleos MI and NBER Chrisian Hellwig UCLA Alessandro Pavan Norhwesern Universiy Ocober

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions Business School, Brunel Universiy MSc. EC5501/5509 Modelling Financial Decisions and Markes/Inroducion o Quaniaive Mehods Prof. Menelaos Karanasos (Room SS269, el. 01895265284) Lecure Noes 6 1. Diagnosic

More information

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Inernaional Journal of Social Science and Economic Research Volume:02 Issue:0 ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Chung-ki Min Professor

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Kalman filtering for maximum likelihood estimation given corrupted observations.

Kalman filtering for maximum likelihood estimation given corrupted observations. alman filering maimum likelihood esimaion given corruped observaions... Holmes Naional Marine isheries Service Inroducion he alman filer is used o eend likelihood esimaion o cases wih hidden saes such

More information

TESTING FOR REGIME SWITCHING

TESTING FOR REGIME SWITCHING TESTING FOR REGIME SWITCHING JIN SEO CHO School of Economics and Finance Vicoria Universiy of Wellingon PO Box 600, Wellingon, 6001, New Zealand Email: JinSeo.Cho@vuw.ac.nz and HALBERT WHITE Deparmen of

More information

Differential Geometry: Revisiting Curvatures

Differential Geometry: Revisiting Curvatures Differenial Geomery: Reisiing Curaures Curaure and Graphs Recall: hus, up o a roaion in he x-y plane, we hae: f 1 ( x, y) x y he alues 1 and are he principal curaures a p and he corresponding direcions

More information

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1)

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1) Chaper 11 Heeroskedasiciy 11.1 The Naure of Heeroskedasiciy In Chaper 3 we inroduced he linear model y = β+β x (11.1.1) 1 o explain household expendiure on food (y) as a funcion of household income (x).

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Stochastic models and their distributions

Stochastic models and their distributions Sochasic models and heir disribuions Couning cusomers Suppose ha n cusomers arrive a a grocery a imes, say T 1,, T n, each of which akes any real number in he inerval (, ) equally likely The values T 1,,

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Heteroskedasticity Autocorrelation Robust Inference in Time. Series Regressions with Missing Data

Heteroskedasticity Autocorrelation Robust Inference in Time. Series Regressions with Missing Data Heeroskedasiciy Auocorrelaion Robus Inference in ime Series Regressions wih Missing Daa Seung-Hwa Rho imohy J. Vogelsang Louisiana Sae Universiy Michigan Sae Universiy Absrac In his paper we invesigae

More information

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix Wha Ties Reurn Volailiies o Price Valuaions and Fundamenals? On-Line Appendix Alexander David Haskayne School of Business, Universiy of Calgary Piero Veronesi Universiy of Chicago Booh School of Business,

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Lecture 18 GMM:IV, Nonlinear Models

Lecture 18 GMM:IV, Nonlinear Models Lecure 8 :IV, Nonlinear Models Le Z, be an rx funcion of a kx paraeer vecor, r > k, and a rando vecor Z, such ha he r populaion oen condiions also called esiain equaions EZ, hold for all, where is he rue

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

556: MATHEMATICAL STATISTICS I

556: MATHEMATICAL STATISTICS I 556: MATHEMATICAL STATISTICS I INEQUALITIES 5.1 Concenraion and Tail Probabiliy Inequaliies Lemma (CHEBYCHEV S LEMMA) c > 0, If X is a random variable, hen for non-negaive funcion h, and P X [h(x) c] E

More information

Operators related to the Jacobi setting, for all admissible parameter values

Operators related to the Jacobi setting, for all admissible parameter values Operaors relaed o he Jacobi seing, for all admissible parameer values Peer Sjögren Universiy of Gohenburg Join work wih A. Nowak and T. Szarek Alba, June 2013 () 1 / 18 Le Pn α,β be he classical Jacobi

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Statistical Distributions

Statistical Distributions Saisical Disribuions 1 Discree Disribuions 1 The uniform disribuion A random variable (rv) X has a uniform disribuion on he n-elemen se A = {x 1,x 2,,x n } if P (X = x) =1/n whenever x is in he se A The

More information

Online Appendix for "Customer Recognition in. Experience versus Inspection Good Markets"

Online Appendix for Customer Recognition in. Experience versus Inspection Good Markets Online Appendix for "Cusomer Recogniion in Experience versus Inspecion Good Markes" Bing Jing Cheong Kong Graduae School of Business Beijing, 0078, People s Republic of China, bjing@ckgsbeducn November

More information

M-estimation in regression models for censored data

M-estimation in regression models for censored data Journal of Saisical Planning and Inference 37 (2007) 3894 3903 www.elsevier.com/locae/jspi M-esimaion in regression models for censored daa Zhezhen Jin Deparmen of Biosaisics, Mailman School of Public

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

The Strong Law of Large Numbers

The Strong Law of Large Numbers Lecure 9 The Srong Law of Large Numbers Reading: Grimme-Sirzaker 7.2; David Williams Probabiliy wih Maringales 7.2 Furher reading: Grimme-Sirzaker 7.1, 7.3-7.5 Wih he Convergence Theorem (Theorem 54) and

More information

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2. THE BERNOULLI NUMBERS The Bernoulli numbers are defined here by he exponenial generaing funcion ( e The firs one is easy o compue: (2 and (3 B 0 lim 0 e lim, 0 e ( d B lim 0 d e +e e lim 0 (e 2 lim 0 2(e

More information

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990),

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990), SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F Trench SIAM J Marix Anal Appl 11 (1990), 601-611 Absrac Le T n = ( i j ) n i,j=1 (n 3) be a real symmeric

More information

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation. Mah 36. Rumbos Spring 1 1 Soluions o Assignmen #6 1. Suppose he growh of a populaion is governed by he differenial equaion where k is a posiive consan. d d = k (a Explain why his model predics ha he populaion

More information