Chapter 30: Quantum Physics

Size: px
Start display at page:

Download "Chapter 30: Quantum Physics"

Transcription

1 Answrs to Evn-Numbrd Concptual Qustions. I nrgy is quantizd, as suggstd by Planck, t amount o nrgy or vn a singl ig-rquncy poton can b arbitrarily larg. T init nrgy in a blackbody simply can t produc suc ig-rquncy potons, and tror t ininit nrgy implid by t ultraviolt catastrop cannot occur. In classical pysics, any amount o nrgy can b in t orm o ig-rquncy ligt t nrgy dos not av to b supplid in discrt, larg lumps as in Planck s tory. Tror, classical pysics implis tat all rquncis o ligt av t sam amount o nrgy, no mattr ow ig t rquncy. Tis is wat lads to t catastrop. 4. Planck s tory o blackbody radiation implis a on-to-on rlationsip btwn t absolut tmpratur o a blackbody and t rquncy o ligt at t pak o its radiatd nrgy spctrum. Tis rlationsip is givn by Win s displacmnt law (quation 30-1). Tror, by masuring t pak in t radiatd nrgy rom a star, w can tll its tmpratur. In broad trms, a blu star is vry ot, a rd star muc lss so, and a yllowis star lik our Sun is intrmdiat in tmpratur. 6. A monocromatic sourc o ligt mans litrally tat it mits ligt o a singl color. Tis mans tat all t potons mittd by t sourc av t sam rquncy, and nc ty also av t sam nrgy. 8. (a) A poton rom a grn ligt sourc always as lss nrgy tan a poton rom a blu ligt sourc. (b) A poton rom a grn ligt sourc always as mor nrgy tan a poton rom a rd ligt sourc. T rason or ts rsults is tat t nrgy o a poton dpnds linarly on t rquncy o ligt; tat is, E = ƒ. 10. Classically, it sould b possibl to jct lctrons wit ligt o any rquncy all tat is rquird is to incras t intnsity o t bam o ligt suicintly. T act tat tis is not t cas mans tat t classical pictur is incorrct. In addition, t act tat tr is a lowst rquncy tat will jct lctrons implis tat t nrgy o t poton is proportional to its rquncy, in agrmnt wit E = ƒ. 1. Ys. An lctron and a proton av t sam d Brogli wavlngt p i ty av t sam momntum. Solutions to Problms and Concptual Exrciss. Pictur t Problm: T star Btlgus mits a pak rquncy tat is proportional to its surac tmpratur. Stratgy: Solv Win s Displacmnt Law (quation 30-1) or t tmpratur o Btlgus. Solution: Solv quation 30-1 or t tmpratur: pak s K Hz T s K T 3100 K Insigt: Btlgus, lik all rd-giant stars, as a coolr surac tmpratur tan our own Sun. T irst printing o t tird dition txt ad incorrctly listd t pak rquncy as Hz, wic would corrspond to an incorrct surac tmpratur o 560 K, muc closr to t 5800 K surac tmpratur o our Sun. 30 1

2 4. Pictur t Problm: T initial Big Bang can b considrd as a blackbody radiator wos pak rquncy is a unction o its tmpratur. Stratgy: Solv Win s Displacmnt Law (quation 30-1) or t pak rquncy. Us quation 14-1 to calculat t wavlngt, wr t wav spd is t spd o ligt Solution: 1. (a) Calculat t pak rquncy: pak s K T s K.7 K Hz. (b) Calculat t wavlngt: m/s Hz c 1.9 mm Insigt: Tis wavlngt alls in t microwav portion o t lctromagntic spctrum (s Captr 5). 6. Pictur t Problm: A blackbody mits radiation according to Win s Displacmnt Law. Stratgy: Us quation 30-1 to calculat t ratio o t pak rquncis or tmpraturs o 0.0 K and 40.0 K. Rpat or t Klvin tmpraturs tat corrspond to 0.0C and 40.0C. Solution: 1. (a) Calculat t ratio o pak rquncis or 0.0 K and 40.0 K:. (b) Calculat t ratio o pak rquncis or 0.0C and 40.0C: s K T pak, K pak, s K T 0.0 K 10 T s K pak, C pak, s K T C 0 Insigt: Doubling t tmpratur in Klvin actually doubls t avrag kintic nrgy o t molculs. Howvr, in tis cas doubling t tmpratur in Clsius only corrsponds to a sligt (6.8%) incras in t Klvin tmpratur. 30

3 8. Pictur t Problm: An incandscnt ligt bulb oprats at a coolr tmpratur tan a alogn bulb. Tror, t blackbody radiation rom t two ligt bulbs will av dirnt pak rquncis. Stratgy: According to Win s Displacmnt Law, a ottr bulb will mit ligt wit a igr pak rquncy. Bcaus t alogn bulb is ottr, it will mit a igr pak rquncy tan t incandscnt bulb. Us Win s Displacmnt Law (quation 30-1) to calculat bot o t pak rquncis and calculat tir ratio. Solution: 1. (a) Bcaus pak T, t alogn bulb as t igr pak rquncy.. (b) Calculat t ratio o t pak rquncis: al std s K Tal 3400 K s K Tstd 900 K (c) Calculat t pak rquncis o t two bulbs: al std 4. T alogn bulb producs a pak rquncy tat is closr to s K 3400 K.0 10 Hz s K 900 K Hz Hz tan t standard incandscnt bulb. Insigt: Bcaus t alogn bulb producs a pak rquncy closr to t snsitiv rquncis o t uman y, mor o t radiation rom t alogn bulb is visibl, making it appar brigtr or t sam powr output. 10. Pictur t Problm: T imag sows two oxygn atoms oscillating back and ort, similar to a mass on a spring. T imag also sows t vnly spacd nrgy lvls o t oscillation. Stratgy: Us quation to calculat t priod o oscillation or t two atoms. Calculat t rquncy, using quation 13-1, rom t invrs o t priod. Multiply t priod by Planck s constant to calculat t spacing o t nrgy lvls. Solution: 1. (a) St t rquncy qual to t invrs o t priod: m T k 1 1 k N/m T m kg Hz (b) Multiply t rquncy by Planck s constant: E ( J s)( Hz) J 13 Insigt: Oxygn molculs in t atmospr absorb ligt wavs wit a rquncy Hz, and t nrgy rom t ligt is convrtd into t oscillations o t atoms. 1. Pictur t Problm: A sourc o rd ligt as a igr wattag tan a sourc o grn ligt. Stratgy: Us t xprssion or poton nrgy (quation 30-4) to answr t concptual qustion. Solution: 1. (a) T nrgy o potons mittd by t rd sourc is lss tan t nrgy o potons mittd by t grn sourc, rgardlss o t wattag o t sourc. Tis conclusion ollows rom t rlation E = and t act tat grn ligt as a igr rquncy tan rd ligt.. (b) T bst xplanation is II. T rd-sourc potons av lss nrgy tan t grn-sourc potons bcaus ty av a lowr rquncy. T wattag o t sourc dosn t mattr. Statmnts I and III ar ac als. Insigt: A igr wattag sourc in gnral producs mor potons tan dos a lowr wattag sourc, but t nrgy o ac poton is dtrmind by t rquncy, not t powr o t sourc. 14. Pictur t Problm: Ligt o a particular wavlngt dos not jct lctrons rom t surac o a givn mtal. Stratgy: Us t concpts tat dscrib t potolctric ct to answr t qustion. Solution: 1. (a) To jct lctrons rom tis mtal rquirs potons wit gratr nrgy, wic mans tat t rquncy o t ligt must b incrasd. I t rquncy o t ligt is incrasd, its wavlngt must b dcrasd. 30 3

4 . (b) T bst xplanation is II. T nrgy o a poton is proportional to its rquncy; tat is, invrsly proportional to its wavlngt. To incras t nrgy o t potons so ty can jct lctrons, on must dcras tir wavlngt. Statmnt I rronously assrts tat incrasing t wavlngt will incras t nrgy. Insigt: Incrasing t intnsity o t irst ligt sourc will av no ct, bcaus tat would only dirct mor potons to t mtal surac, non o wic av suicint nrgy to jct an lctron Pictur t Problm: UV potons av an nrgy o J. Tis nrgy corrsponds to a spciic rquncy and wavlngt. Stratgy: Solv quation 30-4 or t rquncy o t poton. Insrt t rquncy into quation 14-1 to calculat t wavlngt. 19 E J 14 Solution: 1. Calculat t rquncy: Hz J s m/s 14 c. Calculat t wavlngt rom t rquncy: 310 nm 0.31 m Hz Insigt: As xpctd, tis rquncy and wavlngt li in t UV spctrum (s Captr 5). 18. Pictur t Problm: A lium atom is ionizd wn it absorbs t nrgy rom a 50.4-nm poton. Stratgy: St t nrgy o t poton (rom quations 30-4 and 14-1) qual to t ionization potntial o lium. Solution: Rplac t rquncy in quation 30-4 wit t spd o ligt dividd by t wavlngt: J s m/s c E m J Insigt: Potons wit wavlngts longr tan 50.4 nm cannot compltly ioniz t lium atom bcaus ty av too littl nrgy. Wn potons wit wavlngts tat ar sortr tan 50.4 nm intract wit t lium atom, ty will bot ioniz t atom and giv xtra kintic nrgy to t mittd lctrons. 0. Pictur t Problm: As potons intract wit silvr, som o t nrgy o t poton rs an lctron rom t silvr atom. T rmaindr o t nrgy bcoms kintic nrgy o t lctron. Stratgy: Solv quation 30-7 or t work unction o silvr. Solution: Calculat t work unction: K W max W0 Kmax J s Hz J 19 = J 14 Insigt: In ordr or a poton to jct an lctron rom silvr, it must av a rquncy gratr tan Hz. At tis rquncy, all o t nrgy o t poton gos into t work unction and t jctd lctron as no kintic nrgy.. Pictur t Problm: Eac poton contains a quantizd amount o nrgy, dtrmind by t poton wavlngt. T total nrgy o.5 J is obtaind by t addition o many potons. Stratgy: Calculat t nrgy o a singl poton rom its wavlngt using quations 30-4 and Divid t total nrgy by t nrgy o t singl poton to calculat t numbr o potons. Solution: 1. (a) Us quations 30-4 and 14-1 to writ t nrgy o a singl poton:. Divid t total nrgy by t nrgy o a singl 350-nm poton: c E n E E m.5 J total total potons Epoton c J s m/s 30 4

5 3. (b) Divid t total nrgy by t nrgy o a 750-nm poton: m.5 J n J s m/s potons Insigt: Mor rd potons tan UV potons ar rquird in ordr to produc t sam amount o nrgy. 4. Pictur t Problm: Two radio stations broadcast at t sam powr lvl, but station A broadcasts at a lowr rquncy tan station B. Stratgy: T rat o poton mission is t powr lvl dividd by t nrgy o a singl poton. Not tat t nrgy o ac poton is proportional to its rquncy (quation 30-4). Solution: 1. (a) T rat o mittd potons is dtrmind by t ratio o t mittd powr to t nrgy o a poton. Tis ratio is invrsly proportional to t rquncy o t mittd potons. Tror, t station wit t lowr rquncy as t igst rat o poton mission, and station A mits mor potons pr scond tan station B.. (b) Bcaus t nrgy pr poton is dirctly proportional to t rquncy o t poton, t station tat broadcasts at t igr rquncy mits t igr nrgy potons. So, station B mits igr nrgy potons tan station A. Insigt: In tis xampl, station A mits potons/s 8 tat ac av an nrgy o J potons/s tat ac av an nrgy o Station B mits J. 30 5

6 6. Pictur t Problm: T ligt rom t lasr can b considrd as t mission o many potons o t sam wavlngt. T powr output is t product o t poton mission rat and t nrgy o ac poton. Stratgy: Divid t mittd powr by t nrgy o ac poton (quation 30-4) to calculat t rat o poton mission, and tn ind t rquncy using quation Solution: 1. (a) Calculat t P P P P n rat o poton mission: E c/ c. Insrt t givn wavlngt and powr: 3. Calculat t rquncy rom quation 14-1: m W J s m/s n 8 m c s m Hz potons/s Insigt: T larg numbr o potons in a lasr bam can caus prmannt damag to t rtina bor you can blink, wic is wy you sould nvr look into a lasr! 8. Pictur t Problm: A poton o wavlngt 64 nm will jct an lctron rom a coppr surac. T rsulting lctron, owvr, as no kintic nrgy. Stratgy: St t work unction o coppr qual to t nrgy o t poton, givn by quations 30-4 and Solution: Calculat t work unction o coppr: J s m/s c W m J Insigt: Elctrons jctd rom coppr by potons wit wavlngts lss tan 64 nm will av kintic nrgy. Potons largr tan 64 nm cannot jct lctrons rom coppr. 30. Pictur t Problm: Wn a poton is absorbd by a mtal, its nrgy is split into t nrgy ndd to jct t lctron and t kintic nrgy o t lctron. T nrgy o t poton is invrsly proportional to its wavlngt. Stratgy: Us quations 30-7 and 14-1 to writ an xprssion o t kintic nrgy o t lctron in trms o t wavlngt o t poton. c Solution: 1. (a) Bcaus K, max W0 W0 a sortr wavlngt implis a largr kintic nrgy. So, t bam wit wavlngt B producs potolctrons wit gratr kintic nrgy tan t bam wit wavlngt. A. (b) Calculat t kintic nrgy o t potolctron wn struck by poton A: 3. Calculat t kintic nrgy o t potolctron wn struck by poton B: K K J s m/s 6010 m J/V 1.9 V 0.1 V max,a J s m/s m J/V 1.9 V 1.1 V max,b 9 19 Insigt: T cuto wavlngt tat will jct an lctron rom csium is 654 nm. Bcaus poton A as a wavlngt sligtly smallr tan t cuto, t rsulting potolctron as a small kintic nrgy. 3. Pictur t Problm: Wn wit ligt is incidnt upon t potassium, t potons wit nrgis gratr tan t work unction o potassium will jct lctrons. T gratr t poton nrgy, t gratr t kintic nrgy o t jctd lctron. Stratgy: Bcaus t poton nrgy is proportional to t rquncy, t potons wit t gratst rquncy will jct lctrons wit t maximum kintic nrgy. Insrt t maximum rquncy into quation 30-7 to calculat t maximum kintic nrgy o t potolctrons. Tn us quation 30-6 to calculat t cuto rquncy. All potons wit smallr rquncis will not jct lctrons. 30 6

7 Solution: 1. (a) Us quation 30-7 to ind max :. (b) Calculat t cuto rquncy: 3. Writ t rquncy rang or wic no lctrons ar mittd: K J s Hz Kmax W J/V.4 V 1.03 V W.4 V J/V Hz J s Hz Hz 14 Insigt: Potons tat ar incidnt upon a potassium surac and tat av rquncis gratr tan Hz will mit potolctrons wit kintic nrgis ranging rom zro to 1.03 V. 34. Pictur t Problm: Wn potons o t givn rquncy ar incidnt on t two mtals, som o t nrgy o t poton will jct t lctron rom t surac (work unction) and t rmaindr o t nrgy will bcom kintic nrgy o t lctron. Stratgy: Us quation 30-4 to calculat t nrgy o t poton. Tn insrt tat nrgy togtr wit t work unction o ac mtal into quation 30-5 to calculat t maximum kintic nrgy. Solution: 1. (a) Bcaus K, max W 0 t potolctrons mittd by t mtal wit t smallr work unction will av t gratr kintic nrgy. T lctrons jctd rom t iron surac will av t gratr maximum kintic nrgy bcaus iron as a smallr work unction tan platinum.. (b) Calculat t poton nrgy: J s Hz 3. Calculat t maximum kintic nrgy or lctrons potojctd rom platinum: 4. Calculat t maximum kintic nrgy or potolctrons jctd rom iron: Insigt: T cuto rquncy or platinum is E 7.79 V J/V Kmax, Pt EW V 6.35 V 1.44 V Kmax, F 7.79 V 4.50 V 3.9 V Hz and or iron is Hz. Potons wit rquncis btwn ts two valus will jct potolctrons rom t iron, but not rom t platinum. 36. Pictur t Problm: T larg pupil in an owl s y allows or mor potons pr scond to ntr t y tan t numbr o potons tat would ntr t uman y. In addition, t rtina o t owl is mor snsitiv to wr potons tan t uman y. Stratgy: Multiply t minimum intnsity o ligt by t ara o t owl s pupil to dtrmin t powr absorbd by t owl s y. Divid tis powr by t nrgy pr poton to dtrmin t minimum poton lux tat t owl can dtct. Solution: 1. Calculat t powr absorbd P IA Ir W/m m W in t owl s y at minimum intnsity:. Calculat t nrgy pr poton: E 17 P W J s Hz J 3. Divid t powr by t nrgy: n 61 potons/s 19 E J Insigt: I t uman y wr snsitiv to 61 potons/s, t smallr pupil o t uman y would rquir a minimum 13 ligt intnsity o W/m. 38. Pictur t Problm: T potons in a microwav av a givn momntum and wavlngt. 30 7

8 Stratgy: Us quation to calculat t wavlngt o t microwavs. Solution: 1. (a) Solv quation or t wavlngt: 13 cm p J s kg m/s. (b) T wavlngt is muc largr tan t siz o t ols in t mtal scrn. Insigt: Bcaus t ols ar smallr tan t microwavs, t microwavs rlct o t scrn and rmain insid t microwav ovn. Howvr, visibl ligt, wic as a muc smallr wavlngt, can xit troug t ols and allow you to s t ood cooking. 40. Pictur t Problm: A poton and an lctron av t sam momntum. T lctron s momntum is dtrmind by its spd and mass. T poton s momntum is dtrmind by its wavlngt. Stratgy: Calculat t momntum o t lctron using quation 9-1. T rlativistic ormula (quation 9-5) is not ncssary bcaus t spd is muc lowr tan t spd o ligt. St t lctron and poton momnta qual and us quation to calculat t poton wavlngt p mv kg 100 m/s kg m/s Solution: 1. Find t momntum o t lctron: J s. Calculat t wavlngt o t poton: 610 nm 0.61 m 7 p kg m/s Insigt: Tis wavlngt corrsponds to visibl, grn ligt. 4. Pictur t Problm: A ydrogn atom tat is initially at rst mits a 1-nm poton. T atom rcoils in t dirction opposit to t propagation o t poton. Stratgy: Bor t mission t ydrogn atom was at rst. T poton and t ydrogn atom tn av qual but opposit momnta. Us quation to calculat t momntum o t poton. St it qual to t momntum o t ydrogn atom and us quation 9-1 to calculat t rcoil spd o t ydrogn atom J s 7 Solution 1: Calculat t momntum o t poton: puv kg m/s m. Solv or t rcoil spd: puv ph mv 7 puv kg m/s v 3.5 m/s 7 m kg Insigt: Not tat t spd o t ydrogn atom is invrsly proportional to t wavlngt o t poton. I t atom ad mittd a poton wit wavlngt 61 nm, t rcoil spd would doubl to 6.5 m/s. 44. Pictur t Problm: A rd poton and a blu poton ac carry momntum in proportion to tir rquncis. Stratgy: Calculat t momnta o t two potons using quation Solution: 1. (a) Bcaus, blu rd and sinc p, blu rd c p p. A poton o blu ligt as t gratr momntum J s4.010 Hz 8. (b) Calculat p rd : prd kg m/s 8 c m/s 3. Calculat p blu : p J s Hz blu m/s kg m/s Insigt: Bcaus t rquncy o t blu poton is about doubl t rquncy o t rd poton, t momntum o t blu poton is about doubl t momntum o t rd poton. 46. Pictur t Problm: As a bam o potons is absorbd by a black surac, t momntum o t potons is absorbd by t surac, and a corrsponding orc is xrtd on t surac. Stratgy: Calculat t rat o poton production by dividing t powr o t lasr bam by t nrgy in ac poton (rom quations 30-4 and 14-1). Calculat t cang in momntum by using quation or t poton momntum. 30 8

9 Multiply t poton rat by t momntum cang to obtain t nt orc on t black surac. Solution: 1. (a) Calculat t nrgy in ac poton:. Divid t powr by t nrgy pr poton: 3. (b) Calculat t momntum cang wn ac poton is stoppd: 4. (c) Multiply t momntum cang by t poton rat: J s m/s c E poton m P n E J p p p 0 p W potons/s i i J s m J kg m/s potons/s kg m/s F np N Insigt: Tis orc, vn toug it is small, as applications in usion rsarc, wr it is usd to conin ydrogn pllts. It is also mployd by an optical twzrs, a lasr dvic tat allows a rsarcr to manipulat vry tiny objcts wil looking at tm troug a microscop. 30 9

10 48. Pictur t Problm: In a Compton scattring xprimnt, t scattrd lctron is obsrvd to mov in t sam dirction as t incidnt X-ray poton. Stratgy: Us t principls tat govrn t Compton ct to answr t concptual qustion. Solution: Suppos t initial poton movs in t positiv x dirction. Tis mans tat t initial y componnt o momntum is zro. Atr t collision, w ar told tat t lctron movs in t positiv x dirction it as no y componnt o momntum. Tror, t scattrd poton must also av zro y componnt o momntum, wic mans it will propagat in itr t positiv x dirction or t ngativ x dirction. I it wr to propagat in t positiv x dirction, t scattring angl would b 0 and t Compton ormula (quation 30-15) indicats t poton will transr no momntum to t lctron. W rjct tat solution bcaus it implis t lctron dos not scattr at all, and w conclud tat t scattring angl o t poton is 180. Insigt: Insrting θ = 180 into quation sows tat t wavlngt o t scattrd poton will incras by t mc.46 pm 4.85 pm. amount 50. Pictur t Problm: T wavlngt o a poton incrass atr it scattrs o an lctron and travls at an angl θ rom its initial dirction. Stratgy: Us t Compton scattring quation (quation 30-15) to ind or ac o t scattring angls. A rcurring valu in similar 1 Compton scattring problms is mc.4610 m.46 pm. Solution: 1. Insrt valus or 1cos t constants in quation 30-15: mc. (a) Insrt 30 : 3. (b) Insrt 90 : 4. (c) Insrt 180 :.46 pm1cos.46 pm 1 cos pm.46 pm 1 cos pm.46 pm 1cos pm Insigt: T maximum cang in wavlngt is 4.85 pm bcaus t maximum scattring angl is Pictur t Problm: T smallst cang in wavlngt in a Compton scattring is zro, wn t poton continus to travl straigt orward. T gratst cang in wavlngt is wn t poton is scattrd dirctly backward. A cang in wavlngt o on-ourt o t maximum will occur at an angl θ btwn t minimum and maximum. Stratgy: St t scattring angl θ in quation to 180 to ind t maximum cang in wavlngt. Tn solv quation or t scattring angl, wn t cang in wavlngt is qual to on-quartr o t maximum. A 1 rcurring valu in similar Compton scattring problms is mc.4610 m.46 pm. max mc mc mc st max max 1cos 1cos mc cos 1 60 Solution: 1. Calculat t maximum cang in wavlngt: 1 cos 1 cos180. St t cang in wavlngt qual to a quartr o t maximum and solv or t scattring angl: Insigt: Tis angl is on-tird o t maximum angl. I t angl wr two-tirds o t maximum, or 10, t cang in wavlngt would b 3 4 max

11 54. Pictur t Problm: A poton o wavlngt 0.40 nm scattrs o a r lctron at rst at an angl o 105. Stratgy: Calculat t initial momntum o t poton using quation Tn us quation to calculat t inal wavlngt o t poton. Insrt t inal wavlngt into quation to calculat t inal momntum. A rcurring valu in similar Compton scattring 1 problms is mc.4610 m nm. Solution: 1. (a) Calculat t initial momntum: p J s i 9 i m kg m/s. (b) Solv quation or t inal wavlngt: i 1cos mc i 1cos mc 0.40 nm nm 1 cos nm 3. (c) Calculat t inal momntum: p J s m kg m/s Insigt: T inal momntum o t lctron can b calculatd rom t vctor cang in t momntum o t poton. 4 T inal lctron momntum is kg m/s at an angl o =

12 56. Pictur t Problm: An X-ray scattrs 180 o an lctron or o a lium atom. As a rsult o t scattring, som o t nrgy o t X-ray is transrrd to t particl, and t wavlngt o t X-ray is incrasd. Stratgy: Us quation to calculat t cang in wavlngt, wr θ = 180. For t scattring o o t lium atom, rplac t mass o t lctron wit t mass o lium. 1 Solution: 1. (a) Bcaus and H m m m, t cang in wavlngt o t X-ray is gratr or t lctron.. (b) Calculat t cang in wavlngt or scattring o o t lctron: 3. Calculat t cang in wavlngt or scattring o o t lium atom: J s1cos180 1cos 4.85 pm kg m/s lctron 31 8 mc J s1cos180 1cos m kg m/s H 7 8 mhc Insigt: Bcaus t lium atom as muc mor mass tan t lctron, t lium atom rquirs lss kintic nrgy to carry away t sam momntum, as suc t poton dos not nd to transr as muc nrgy to t lium atom. 58. Pictur t Problm: T imag sows a poton wit an initial wavlngt o 0.55 nm scattring o an lctron. T wavlngt o t scattrd poton is 3.33 pm longr tan t initial wavlngt. As a rsult o t collision, t lctron scattrs at an angl rom t positiv x-axis. Stratgy: Us quation to calculat t magnitud o t initial and inal momntum o t poton. Calculat t scattring angl o t poton using quation Us t scattring angl to calculat t orizontal and vrtical componnts o t momntum o t scattrd X-ray poton. Us consrvation o momntum to calculat t componnts o t lctron s momntum. Finally, us ts componnts to calculat t angl tat t lctron scattrs. A rcurring valu in similar Compton scattring 1 problms is mc.4610 m.46 pm. Solution: 1. Calculat t initial momntum o t poton: J s pi 0.55 nm i kg m/s. Calculat t inal momntum o t poton: p i J s 0.55 nm nm kg m/s 3. Calculat t scattring angl o t poton: 4. Calculat t orizontal and vrtical componnts o t inal poton momntum: 1cos mc 1 mc pm cos 1 cos pm p p x, y, 4 p cos kg m/s cos kg m/s kg m/s 4 p sin kg m/s sin Calculat t orizontal componnt o t lctron p p p i x,,x 4 5 momntum: p,x pi px, kg m/s kg m/s kg m/s 30 1

13 6. Calculat t vrtical componnt o t lctron momntum: 7. Calculat t angl at wic t lctron rcoils: Insigt: T momntum o t rcoiling lctron is p 0 p y,, y y, p, y p kg m/s kg m/s 4 p 1,y kg m/s tan tan 34 4 p,x kg m/s 4 p, x p, y.0910 kg m/s and its kintic nrgy is 14.9 V

14 60. Pictur t Problm: T d Brogli wavlngt o a particl cangs wn itr its momntum or its kintic nrgy is doubld. Stratgy: Us t d Brogli wavlngt quation (quation 30-16) to answr t concptual qustion. Solution: 1. (a) Bcaus t d Brogli wavlngt is p, it ollows tat doubling t momntum alvs t wavlngt. Tror, t wavlngt cangs by a multiplicativ actor o 1.. Doubling t kintic nrgy mans tat t momntum incrass by a actor o. As a rsult, t d Brogli wavlngt cangs by a multiplicativ actor o 1. Insigt: In ac cas t d Brogli wavlngt o t particl dcrass as t spd incrass. 6. Pictur t Problm: T d Brogli wavlngt o a nutron is invrsly proportional to its momntum. Stratgy: Rplac t momntum in t d Brogli wavlngt quation (quation 30-16) wit quation 9-1. Solv t rsulting quation or t nutron vlocity. Solution: 1. Combin quations and 9-1:. Solv or t nutron vlocity: p mv J s v 1.40 km/s m m kg Insigt: Wn t wavlngt o t nutron is qual to t intratomic spacing, t nutron bam will diract and produc a maximum at an angl o 60 rom t normal

15 64. Pictur t Problm: T d Brogli wavlngt o an lctron is rlatd to bot t momntum and t kintic nrgy o an lctron. Stratgy: Writ t kintic nrgy (quation 7-6) o t lctron in trms o t momntum (quation 9-1). Tn us quation to writ t momntum in trms o t d Brogli wavlngt. Solution: 1. Writ t kintic nrgy in trms o t d Brogli wavlngt:. Insrt t wavlngt: K 1 mv p m m m mv J s K kg m J Insigt: In tis problm w usd t classical quations or t kintic nrgy and t momntum. Tis assumption can 6 b cckd solving quation or t spd. T rsulting v m/s 0.016c is small noug tat rlativistic cts can b nglctd. 66. Pictur t Problm: Bcaus t proton is signiicantly mor massiv tan an lctron, it will av a gratr momntum wn t proton and lctron av t sam spd. T d Brogli wavlngt is invrsly proportional to t particl momntum. Stratgy: Calculat t ratio o t d Brogli wavlngts using quation 30-16, wr t momntum is t mass tims vlocity. Solution: 1. (a) Bcaus mvand m, m p or idntical spds, an lctron as a longr d Brogli wavlngt tan a proton.. (b) Calculat t ratio o wavlngts: mv m 7 p kg 31 p mv p m kg Insigt: In tis problm w assumd a classical spd so tat w could us t classical momntum quation. Howvr, bcaus t rlativistic actor dpnds only upon t spd, t ratio o t wavlngts would still b 1840 at rlativistic spds

16 68. Pictur t Problm: Wn a prson walks troug a doorway, w typically do not s t prson diract. Howvr, i t prson s d Brogli wavlngt wr on t ordr o t door widt, t diraction would b obsrvabl. Stratgy: Solv quation or t spd o a prson wos d Brogli wavlngt quals t widt o t door. For part (b), divid on millimtr by t vlocity to dtrmin t tim lapsd. Solution: 1. (a) Solv q or t prson s spd: p mv J s v m 0.76 m 65 kg m/s x m 31. (b) Calculat t tim to travl 1.0 mm: t s 35 v m/s 14 Insigt: Tis tim is about.0 10 tims longr tan t ag o t univrs. T doorway would not xist long noug to obsrv t diraction! In rality, t prson is rally a collction o many particls (atoms), ac o wic is moving rapidly in trmal motion and as a d Brogli wavlngt tat is smallr tan an atom. It would b impossibl to slow down vry atom in t prson s body to a spd as small as tat ound in part (a). 70. Pictur t Problm: According to t Hisnbrg uncrtainty principl, t product o t uncrtainty in position and uncrtainty in momntum must b gratr tan Planck s constant dividd by. Stratgy: T 5.0% uncrtainty in spd mans tat t magnitud o t momntum (mass tims spd) o t lctron and t basball ar also uncrtain by 5.0%. T minimum uncrtainty in position is givn by quation Solution: 1. Solv t uncrtainty principl y or t uncrtainty in position: py. St p mv: y 3. Calculat t uncrtainty or t basball: 4. Calculat t uncrtainty or t lctron: y 0.050mvy J s ybasball kg 41 m/s J s lctron 31 y kg 41 m/s m 57 m Insigt: T minimum uncrtainty in t position o t basball is smallr tan an atom by a actor o Howvr, t minimum uncrtainty in t position o t lctron is masurabl, rougly t ticknss o a uman air. 7. Pictur t Problm: Wn t position o a cart is masurd wit a spciic accuracy, t Hisnbrg uncrtainty principl rquirs tat t momntum must also av a minimum uncrtainty. Stratgy: Writ t momntum in quation in trms o t mass and uncrtainty in vlocity and solv t inquality or t uncrtainty in vlocity. Solution: 1. Writ quation wit py m vy: pyy mvyy. Solv or t uncrtainty in t vlocity: J s vy my 0.6 kg 0.00 m m/s Insigt: At tis spd it would tak t cart ovr a billion yars to mov t diamtr o a proton! T uncrtainty 30 16

17 principl is not signiicant or larg objcts. 74. Pictur t Problm: Wn t nrgy is masurd to witin a givn uncrtainty, t tim cannot b known to witin a gratr uncrtainty tan is stipulatd by t Hisnbrg uncrtainty principl. Stratgy: Solv quation 30-0 or t minimum uncrtainty in t tim. Solution: Calculat t minimum uncrtainty in tim: Et t V J/V J s min 19 Emax s Insigt: As t nrgy is masurd wit gratr prcision, t tim at wic t particl ad tat givn nrgy is known wit lss crtainty. It is impossibl to simultanously masur bot nrgy and tim wit arbitrary crtainty. 76. Pictur t Problm: T litim o t particl limits t tim ovr wic an nrgy masurmnt can b takn. T Hisnbrg uncrtainty principl corrlats tis maximum uncrtainty in t tim masurmnt wit a minimum uncrtainty in t nrgy masurmnt. Stratgy: Solv quation 30-0 or t minimum uncrtainty in t particl s nrgy. Solution: Calculat t minimum uncrtainty in nrgy: Et E J s min 10 tmax.510 s J Insigt: Bcaus t minimum uncrtainty in nrgy is invrsly proportional to t man litim o t particl, particls wit smallr litims will ncssarily av gratr uncrtaintis in nrgy

18 78. Pictur t Problm: Wn a proton s location is known to witin an uncrtainty o 0.15 nm, it will av a minimum uncrtainty in momntum as rquird by t uncrtainty principl. Tat minimum uncrtainty rquirs t proton to av a nonzro kintic nrgy. Stratgy: Us quation to calculat t minimum uncrtainty p in t momntum, and tn us p = p to ind t kintic nrgy o t proton according to t kintic nrgy quation ( K p m). Solution: 1. (a) Solv quation or t minimum uncrtainty in momntum:. (b) Calculat t minimum kintic nrgy: px J s pmin 9 x m kg m/s kg m/s p K m kg J/V 0.9 mv Insigt: Wn w compar t rsults o tis problm wit problm 77 (wic concrnd an lctron conind wit t sam x), w s tat t uncrtainty in momntum or t lctron and proton ar t sam. T minimum kintic nrgy o t lctron, owvr, is 1840 tims gratr tan t minimum kintic nrgy o t proton. 80. Pictur t Problm: You prorm an xprimnt on t potolctric ct using ligt wit a rquncy ig noug to jct lctrons. T intnsity o t ligt is incrasd wil t rquncy is ld constant. Stratgy: Rcall t principls tat govrn t potolctric ct wn answring t concptual qustions. Not tat incrasing t intnsity wil olding t rquncy constant simply mans tat mor potons (ac wit t sam original nrgy) strik t mtal surac pr scond. Solution: 1. (a) Bcaus t nrgis o t potons stay t sam wn t rquncy is ld constant, t maximum kintic nrgy o an jctd lctron will stay t sam.. (b) Bcaus t nrgis o t potons stay t sam wn t rquncy is ld constant, t maximum kintic nrgy o an jctd lctron and tror its minimum d Brogli wavlngt will stay t sam. 3. (c) Bcaus t numbr o potons will incras wn t intnsity o t ligt is incrasd, t numbr o lctrons jctd pr scond will incras. 4. (d) Bcaus t numbr o potons will incras wn t intnsity o t ligt is incrasd, t numbr o lctrons jctd pr scond and tror t currnt in t pototub will incras. Insigt: T maximum kintic nrgy o an jctd lctron will incras only i t rquncy o t ligt is incrasd. 8. Pictur t Problm: An lctron tat is acclratd rom rst troug a potntial dirnc V 0 as a d Brogli wavlngt 0. Stratgy: Us t xprssions p (quation 30-16), K p m (Concptual Cckpoint 9-3), and K U qv (quation 0-) to answr t concptual qustion. Solution: To doubl t lctron s wavlngt w must alv its momntum. Tis mans, in turn, tat w must dcras its kintic nrgy by a actor o our (rcall tat K = p /m). T kintic nrgy is linarly proportional to t potntial dirnc. Tror, t lctron sould b acclratd rom rst troug t potntial dirnc V 0 /4. Insigt: W can also com to tis conclusion using a ratio: V K q K p m p V0 V V0 K0 q K0 p0 m p

19 84. Pictur t Problm: In ordr to construct a potocll tat works on visibl ligt, t nrgy rom a poton in t visibl spctrum must b suicint to jct an lctron rom t mtal. Stratgy: Us quations 30-6 and 14-1 to calculat t maximum wavlngt tat a poton can av so tat it is abl to jct lctrons rom ac mtal. Compar t rsults wit t sortst wavlngt o visibl ligt (400 nm). Solution: 1. Dtrmin t max rquird to jct lctrons rom ac mtal surac: 34 8 W J/V c c J s m/s 140 V nm max 19 0 W0 W0 140 V nm. Calculat t max or aluminum: max 90 nm 4.8 V 140 V nm 3. Calculat t max or lad: max 9 nm 4.5 V 140 V nm 4. Calculat t max or csium: max 579 nm.14 V 5. O t tr matrials, csium is t only matrial tat will jct lctrons rom visibl ligt. Insigt: Rd ligt will not jct lctrons rom t surac bcaus t maximum wavlngt or csium is 579 nm, wic is in t yllow portion o t spctrum. T potocll will work or visibl ligt o wavlngts btwn 579 nm (yllow) and 400 nm (violt). 86. Pictur t Problm: T lngt o a pndulum dtrmins t rquncy at wic it oscillats. T nrgy o a typical pndulum oscillation can b considrd as a multipl o t quantum oscillation. Stratgy: Calculat t rquncy o t oscillation using quations 13-1 and Multiply t rquncy by Planck s constant and t quantum numbr n to calculat t nrgy o t oscillation. St t nrgy qual to t kintic nrgy and solv or t vlocity. Solution: 1. (a) Calculat t oscillation rquncy:. (b) St t oscillation nrgy qual to t kintic nrgy and 1 1 g m/s 0.56 Hz T L 0.78 m E n mv solv or t spd: n J s 0.56 Hz 1 v m 0.15 kg. m/s Insigt: T n = 1 quantum stat corrsponds to t minimum nrgy stat or tis pndulum oscillator. T maximum spd o t pndulum bob in tis stat would b m/s. 88. Pictur t Problm: As ic absorbs potons o ligt, t nrgy is convrtd into at and mlts t ic. Stratgy: Us quation 30-4 to calculat t nrgy o on poton. Divid t nrgy ndd to mlt 1.0-kg o ic ( Q ml) by t nrgy o on poton to calculat t numbr o potons ndd. To calculat t numbr o ic molculs tat on poton will mlt, divid t numbr o ic molculs in on kilogram by t numbr o potons to mlt t kilogram o ic. T numbr o watr molculs is qual to Avogadro s numbr tims 1 kilogram dividd by t atomic mass o watr (18 g/mol). Solution: 1. (a) Calculat E t nrgy in on poton:. Divid t at by t poton nrgy: poton J s Hz J 1.0 kg80.0 kcal/kg4186 J/kcal ml N E poton potons J 30 19

20 3. (b) Divid t numbr o molculs by t numbr o potons: NAm M N NAm NM molculs/mol1.0 kg potons0.018 kg/mol 40 molculs/poton Insigt: Wn a poton is absorbd by a watr molcul, t intrmolcular bonds tat attac t molcul to t otr molculs in t lattic can b brokn. T molcul will tn av suicint rmaining kintic nrgy tat it can collid wit 39 otr molculs and brak tir bonds as wll. 30 0

21 90. Pictur t Problm: As watr absorbs microwav potons, t nrgy is convrtd into at and raiss t tmpratur o t watr. Stratgy: Us quations 30-4 and 14-1 to calculat t nrgy o ac poton. Us quation to ind t nrgy rquird to at t watr, and divid tis nrgy by t nrgy o on poton in ordr to calculat t numbr o potons ndd to at t watr. Solution: 1. Calculat t poton nrgy: E poton J s m/s c 0.1 m. Calculat t at addd to t watr: Q mct 0.05 kg4186 J/kg C90.0C 0.0C 3. Divid t at by t nrgy pr poton: J 4 Q J N E J poton potons J Insigt: I a magniying glass tat is 3.00 incs in diamtr capturs t ntir solar spctrum on a day in wic t solar intnsity is 1000 W/m, it would tak 3.66 ours to cang t tmpratur o t sam mass o watr by t sam amount. 9. Pictur t Problm: T d Brogli wavlngt o t lctron and t wavlngt o t poton ar bot invrsly proportional to tir momnta. Stratgy: Us quation to calculat t d Brogli wavlngt o t lctron, wr t momntum is givn by quation 9-1. Calculat t wavlngt o t poton using quation 30-11, stting t momntum o t poton qual to t momntum o t lctron. Solution: 1. (a) Find t d Brogli wavlngt: J s p m v kg.710 m/s 0.7 nm. (b) Calculat t wavlngt o t poton: 0.7 nm p p Insigt: Any objct (lctron, poton, proton, prson, tc.) wit t sam momntum will av t sam wavlngt. 94. Pictur t Problm: Ligt o a givn rquncy and nrgy will jct lctrons rom t surac o t mtal. Part o t nrgy rom t poton ovrcoms t work unction o t mtal. T rmaindr o t nrgy gos into t kintic nrgy o t lctron. 1 Stratgy: (a) It is not ncssary to us rlativistic mcanics bcaus v << c. Substitut mv or max K max in t quation Kmax c W0 and solv or W. Tn calculat t cuto rquncy using 0 0 W0. Solution: 1. (b) Solv q.30-7 or t work unction:. (b) Us quation 30-6 to calculat t cuto rquncy: c Kmax W0 c c 1 W0 Kmax mvmax J s m/s m kg m/s W J 1 V J.01 V W J s J Hz

22 Insigt: Tis cuto rquncy alls in t orang part o t visibl spctrum. Tror, ssntially t ntir visibl spctrum (xcpt rd ligt) will jct lctrons rom t mtal. 30

23 96. Pictur t Problm: As t atoms mrg rom an ovn, tir most probabl spd is proportional to tir most probabl momntum, wic is invrsly proportional to tir most probabl wavlngt. Stratgy: Writ t most probabl wavlngt o t atoms in trms o t momntum using quation and quation 9-1. Solv t rsulting quation or t most probabl spd. Solution: 1. Writ quation in trms o t vlocity: mp p mv mkt mp mp J/K450 K. Solv or t most probabl spd: 5kT vmp 7 m kg Insigt: T most probabl spd incrass in proportion to t squar root o t Klvin tmpratur km/s 98. Pictur t Problm: Hlium atoms in a jar at room tmpratur and atmospric prssur ar otn considrd to bav lik point particls. Quantum cts btwn t particls ar gnrally ignord. Tis problm tsts t assumption tat quantum cts ar small or t intraction btwn lium atoms. Stratgy: Us quation 17-1 to calculat t kintic nrgy o t lium atoms. Writ t kintic nrgy in trms o t momntum. Tn using quation writ t momntum in trms o t wavlngt. Solv t rsulting quation or t avrag d Brogli wavlngt o t atoms. Solv t idal gas law (quation 17-) or t volum pr atom, and tn tak t cub root o t volum pr atom to calculat t avrag sparation distanc. Solution: 1. (a) Writ t kintic nrgy p in trms o and st it qual to 3 kt : K. Solv or t wavlngt st 3 av kt m m m J s av 3mkT kg J/K K in trms o t tmpratur: 3. (b) Us t idal gas law to calculat t volum occupid pr atom: nm PV NkT V kt J/K95.15 K m 5 N P Pa 4. Tak t cub root o t volum to V davg m 3.44 nm calculat t avrag sparation: N Insigt: T d Brogli wavlngt o t lium atom is 47 tims smallr tan t sparation distanc btwn atoms. Tror, quantum cts ar not a signiicant actor in dtrmining t bavior o t atoms in tis lium gas Pictur t Problm: Wn a poton is absorbd by t surac o a mtal it will jct an lctron. T kintic nrgy o t jctd lctron will qual t dirnc btwn t poton nrgy and t work unction o t mtal. Wn potons o t sam rquncy ar incidnt on two mtals o dirnt work unctions, t jctd lctrons will av dirnt maximum kintic nrgis. Stratgy: Solv quation 30-7 or t work unction. Tn subtract t two work unctions to sow tat t dirnc in kintic nrgis o t jctd lctrons is qual to t dirnc in work unctions or any incidnt rquncy. Solution: 1. (a) T dirnc in maximum kintic nrgy obsrvd rom t two suracs is du to t dirnc in t work unctions o t two matrials. Bcaus t maximum kintic nrgy dpnds linarly upon t work unction, and bcaus t work unction dos not dpnd upon t rquncy o t ligt, t dirnc in maximum kintic nrgy will stay t sam.. (b) Solv quation 30-8 Kmax W0 or t work unction: W K 0 max

24 3. Subtract t work unctions o t two mtals: W W K K 0B 0A max,b max,a J Kmax,A Kmax,B 1.5 V J/V Insigt: As long as bot work unctions ar blow 3.41 V, t ligt will jct lctrons rom bot suracs wos kintic nrgis dir by1.5 V. I on o t work unctions wr gratr tan 3.41 V, tat surac would not jct potolctrons. 10. Pictur t Problm: Wn potons o dirnt wavlngts sin on a litium surac, ty jct lctrons wit kintic nrgis qual to t dirnc btwn t nrgy o t poton and t work unction o litium. Stratgy: Insrt t data rom on o t xprimnts (and t calculatd work unction rom t prvious qustion) into t quation or c and solv or Planck s constant m Solution: Solv or Planck s constant: W0 Kmax 8.89 V V c m/s V s J/V J s Insigt: Millikan was abl to calculat Planck s constant to witin 1% o its prsntly accptd valu using ts two xprimnts Pictur t Problm: T imag sows a nm poton scattring o o an lctron. Atr t collision, t lctron as a kintic nrgy o V and t poton scattrs at an angl. Stratgy: Us quations 0-4 and 14-1 to calculat t initial nrgy o t poton. Subtract t kintic nrgy o t lctron rom t poton s nrgy to calculat t inal nrgy o t poton, and tn us quation 0-4 to ind t inal wavlngt. Tn us quation to calculat t scattring angl. A rcurring valu in similar Compton scattring problms is 1 mc.4610 m nm. Solution: 1. (a) In tis problm t poton as transrrd lss nrgy to t lctron tan it did in Exampl 30-4, so t scattring angl will b lss tan 15.. (b) Calculat t initial nrgy o t poton: J s3.010 m/s nm J/V E c V 3. Calculat t inal nrgy o t poton: E EK V V V 4. Calculat t inal wavlngt o t poton: 5. Solv quation or t scattring angl: J s3.010 m/s V1.610 J/V c E nm 1 cos 1 mc nm nm cos nm Insigt: T scattring angl o t poton incrass as t momntum o t lctron incrass. Tror, i t kintic nrgy o t lctron dcrass, t momntum o t lctron also dcrass, and t scattring angl o t poton also dcrass. 30 4

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

Dual Nature of Matter and Radiation

Dual Nature of Matter and Radiation Higr Ordr Tinking Skill Qustions Dual Natur of Mattr and Radiation 1. Two bas on of rd ligt and otr of blu ligt of t sa intnsity ar incidnt on a tallic surfac to it otolctrons wic on of t two bas its lctrons

More information

The failure of the classical mechanics

The failure of the classical mechanics h failur of th classical mchanics W rviw som xprimntal vidncs showing that svral concpts of classical mchanics cannot b applid. - h blac-body radiation. - Atomic and molcular spctra. - h particl-li charactr

More information

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the Lctur 22-1 Byond Bohr Modl Unfortunatly, th classical visualization of th orbiting lctron turns out to b wrong vn though it still givs us a simpl way to think of th atom. Quantum Mchanics is ndd to truly

More information

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final!

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final! # SCORES 50 40 30 0 10 MTE 3 Rsults P08 Exam 3 0 30 40 50 60 70 80 90 100 SCORE Avrag 79.75/100 std 1.30/100 A 19.9% AB 0.8% B 6.3% BC 17.4% C 13.1% D.1% F 0.4% Final Mon. Ma 1, 1:5-:5, Ingraam B10 Gt

More information

General Physics (PHY 2140)

General Physics (PHY 2140) Gnral Pysics (PHY 140) Lctur 16 Modrn Pysics Last lctur: 1. Quantum pysics Wav function Uncrtainty rlations Ligtning Rviw ΔΔ x p π ΔEΔt π Atomic Pysics Early modls of t atom Atomic spctra Bor s tory of

More information

Why is a E&M nature of light not sufficient to explain experiments?

Why is a E&M nature of light not sufficient to explain experiments? 1 Th wird world of photons Why is a E&M natur of light not sufficint to xplain xprimnts? Do photons xist? Som quantum proprtis of photons 2 Black body radiation Stfan s law: Enrgy/ ara/ tim = Win s displacmnt

More information

Compton Scattering. There are three related processes. Thomson scattering (classical) Rayleigh scattering (coherent)

Compton Scattering. There are three related processes. Thomson scattering (classical) Rayleigh scattering (coherent) Comton Scattring Tr ar tr rlatd rocsss Tomson scattring (classical) Poton-lctron Comton scattring (QED) Poton-lctron Raylig scattring (cornt) Poton-atom Tomson and Raylig scattring ar lasticonly t dirction

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Chapter. 3 Wave & Particles I

Chapter. 3 Wave & Particles I Announcmnt Cours wbpag http://highnrgy.phys.ttu.du/~sl/2402/ Txtbook PHYS-2402 Lctur 8 Quiz 1 Class avrag: 14.2 (out of 20) ~ 70% Fb. 10, 2015 HW2 (du 2/19) 13, 17, 23, 25, 28, 31, 37, 38, 41, 44 Chaptr.

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam. Exam 2 Thursday (7:30-9pm) It will covr matrial through HW 7, but no matrial that was on th 1 st xam. What happns if w bash atoms with lctrons? In atomic discharg lamps, lots of lctrons ar givn kintic

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered Chaptr 1 Lat 1800 s Svral failurs of classical (Nwtonian) physics discovrd 1905 195 Dvlopmnt of QM rsolvd discrpancis btwn xpt. and classical thory QM Essntial for undrstanding many phnomna in Chmistry,

More information

From Classical to Quantum mechanics

From Classical to Quantum mechanics From Classical to Quantum mcanics Engl & Rid 99-300 vrij Univrsitit amstrdam Classical wav baviour Ligt is a wav Two-slit xprimnt wit potons (81-85) 1 On sourc Intrfrnc sourcs ttp://www.falstad.com/matpysics.tml

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

The Quantum Efficiency and Thermal Emittance of Metal Cathodes

The Quantum Efficiency and Thermal Emittance of Metal Cathodes T Quantum fficincy and Trmal mittanc of Mtal Catods David H. Dowll Tory Sminar Jun, 6 I. Introduction II. Q and Trmal mittanc Tory III. Ral World Issus Surfac Rougnss Masurmnts Diamond Turning vs. Polising

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

Davisson Germer experiment Announcements:

Davisson Germer experiment Announcements: Davisson Grmr xprimnt Announcmnts: Homwork st 7 is du Wdnsday. Problm solving sssions M3-5, T3-5. Th 2 nd midtrm will b April 7 in MUEN E0046 at 7:30pm. BFFs: Davisson and Grmr. Today w will go ovr th

More information

de/dx Effectively all charged particles except electrons

de/dx Effectively all charged particles except electrons de/dx Lt s nxt turn our attntion to how chargd particls los nrgy in mattr To start with w ll considr only havy chargd particls lik muons, pions, protons, alphas, havy ions, Effctivly all chargd particls

More information

Introduction to the quantum theory of matter and Schrödinger s equation

Introduction to the quantum theory of matter and Schrödinger s equation Introduction to th quantum thory of mattr and Schrödingr s quation Th quantum thory of mattr assums that mattr has two naturs: a particl natur and a wa natur. Th particl natur is dscribd by classical physics

More information

Contemporary, atomic, nuclear, and particle physics

Contemporary, atomic, nuclear, and particle physics Contmporary, atomic, nuclar, and particl physics 1 Blackbody radiation as a thrmal quilibrium condition (in vacuum this is th only hat loss) Exampl-1 black plan surfac at a constant high tmpratur T h is

More information

λ = 2L n Electronic structure of metals = 3 = 2a Free electron model Many metals have an unpaired s-electron that is largely free

λ = 2L n Electronic structure of metals = 3 = 2a Free electron model Many metals have an unpaired s-electron that is largely free 5.6 4 Lctur #4-6 pag Elctronic structur of mtals r lctron modl Many mtals av an unpaird s-lctron tat is largly fr Simplst modl: Particl in a box! or a cubic box of lngt L, ψ ( xyz) 8 xπ ny L L L n x π

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14 Univrsity of Wasinton Dpartmnt of Cmistry Cmistry 453 Wintr Quartr 04 Lctur 0: Transition Stat Tory. ERD: 5.4. Transition Stat Tory Transition Stat Tory (TST) or ctivatd Complx Tory (CT) is a raction mcanism

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

2. Laser physics - basics

2. Laser physics - basics . Lasr physics - basics Spontanous and stimulatd procsss Einstin A and B cofficints Rat quation analysis Gain saturation What is a lasr? LASER: Light Amplification by Stimulatd Emission of Radiation "light"

More information

Lecture 18 - Semiconductors - continued

Lecture 18 - Semiconductors - continued Lctur 18 - Smiconductors - continud Lctur 18: Smiconductors - continud (Kittl C. 8) + a - Donors and accptors Outlin Mor on concntrations of lctrons and ols in Smiconductors Control of conductivity by

More information

7.4 Potential Difference and Electric Potential

7.4 Potential Difference and Electric Potential 7.4 Potntial Diffrnc and Elctric Potntial In th prvious sction, you larnd how two paralll chargd surfacs produc a uniform lctric fild. From th dfinition of an lctric fild as a forc acting on a charg, it

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination Univrsity of Illinois at Chicago Dpartmnt of hysics hrmodynamics & tatistical Mchanics Qualifying Eamination January 9, 009 9.00 am 1:00 pm Full crdit can b achivd from compltly corrct answrs to 4 qustions.

More information

AP Calculus BC AP Exam Problems Chapters 1 3

AP Calculus BC AP Exam Problems Chapters 1 3 AP Eam Problms Captrs Prcalculus Rviw. If f is a continuous function dfind for all ral numbrs and if t maimum valu of f() is 5 and t minimum valu of f() is 7, tn wic of t following must b tru? I. T maimum

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

SPH4U Electric Charges and Electric Fields Mr. LoRusso

SPH4U Electric Charges and Electric Fields Mr. LoRusso SPH4U lctric Chargs an lctric Fils Mr. LoRusso lctricity is th flow of lctric charg. Th Grks first obsrv lctrical forcs whn arly scintists rubb ambr with fur. Th notic thy coul attract small bits of straw

More information

Title: Vibrational structure of electronic transition

Title: Vibrational structure of electronic transition Titl: Vibrational structur of lctronic transition Pag- Th band spctrum sn in th Ultra-Violt (UV) and visibl (VIS) rgions of th lctromagntic spctrum can not intrprtd as vibrational and rotational spctrum

More information

AP Calculus Multiple-Choice Question Collection

AP Calculus Multiple-Choice Question Collection AP Calculus Multipl-Coic Qustion Collction 985 998 . f is a continuous function dfind for all ral numbrs and if t maimum valu of f () is 5 and t minimum valu of f () is 7, tn wic of t following must b

More information

Principles of Humidity Dalton s law

Principles of Humidity Dalton s law Principls of Humidity Dalton s law Air is a mixtur of diffrnt gass. Th main gas componnts ar: Gas componnt volum [%] wight [%] Nitrogn N 2 78,03 75,47 Oxygn O 2 20,99 23,20 Argon Ar 0,93 1,28 Carbon dioxid

More information

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative MAT 7 Tst Rviw (Spring ) Tst on April in PSA Sction.7 Implicit Drivativ Rmmbr: Equation of t tangnt lin troug t point ( ab, ) aving slop m is y b m( a ). dy Find t drivativ y d. y y. y y y. y 4. y sin(

More information

Characteristics of Gliding Arc Discharge Plasma

Characteristics of Gliding Arc Discharge Plasma Caractristics of Gliding Arc Discarg Plasma Lin Li( ), Wu Bin(, Yang Ci(, Wu Cngkang ( Institut of Mcanics, Cins Acadmy of Scincs, Bijing 8, Cina E-mail: linli@imc.ac.cn Abstract A gliding arc discarg

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18 Prlab Lctur Cmy 374 Tur., Marc, 08 Editd mar8, mar8 LA REPORT:From t ClassicalTrmoISub-7.pdf andout: Was not a dry lab A partially complt spradst was postd on wb Not ruird 3 If solid is pur X Partial

More information

Assignment # (1.0 %), 5.2 (0.6 %), 5.3 (1.0 %), 5.5 (0.4 %), 5.8 (1.0 %), 5.9 (0.4 %), 5.10 (0.6 %)

Assignment # (1.0 %), 5.2 (0.6 %), 5.3 (1.0 %), 5.5 (0.4 %), 5.8 (1.0 %), 5.9 (0.4 %), 5.10 (0.6 %) ELEC4/1-1 Assignmnt 4 1 Assignmnt #4..1 (1. %),. (.6 %),.3 (1. %),. (.4 %),.8 (1. %),.9 (.4 %),. (.6 %).1. Band gap and potodtction. a) a) Dtrmin t maximum valu of t nrgy gap (bandgap) wic a smiconductor,

More information

Exponential Functions

Exponential Functions Eponntial Functions Dinition: An Eponntial Function is an unction tat as t orm a, wr a > 0. T numbr a is calld t bas. Eampl: Lt i.. at intgrs. It is clar wat t unction mans or som valus o. 0 0,,, 8,,.,.

More information

The pn junction: 2 Current vs Voltage (IV) characteristics

The pn junction: 2 Current vs Voltage (IV) characteristics Th pn junction: Currnt vs Voltag (V) charactristics Considr a pn junction in quilibrium with no applid xtrnal voltag: o th V E F E F V p-typ Dpltion rgion n-typ Elctron movmnt across th junction: 1. n

More information

Classical Magnetic Dipole

Classical Magnetic Dipole Lctur 18 1 Classical Magntic Dipol In gnral, a particl of mass m and charg q (not ncssarily a point charg), w hav q g L m whr g is calld th gyromagntic ratio, which accounts for th ffcts of non-point charg

More information

Atomic energy levels. Announcements:

Atomic energy levels. Announcements: Atomic nrgy lvls Announcmnts: Exam solutions ar postd. Problm solving sssions ar M3-5 and Tusday 1-3 in G-140. Will nd arly and hand back your Midtrm Exam at nd of class. http://www.colorado.du/physics/phys2170/

More information

Constants and Conversions:

Constants and Conversions: EXAM INFORMATION Radial Distribution Function: P 2 ( r) RDF( r) Br R( r ) 2, B is th normalization constant. Ordr of Orbital Enrgis: Homonuclar Diatomic Molculs * * * * g1s u1s g 2s u 2s u 2 p g 2 p g

More information

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator. Exam N a m : _ S O L U T I O N P U I D : I n s t r u c t i o n s : It is important that you clarly show your work and mark th final answr clarly, closd book, closd nots, no calculator. T i m : h o u r

More information

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017 Th following qustions ar to b answrd individually. Usful information such as tabls with dtctor charactristics and graphs with th proprtis of matrials ar availabl in th cours wb sit: http://www.lip.pt/~patricia/fisicadaradiacao.

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

5. Equation of state for high densities

5. Equation of state for high densities 5 1 5. Equation of stat for high dnsitis Equation of stat for high dnsitis 5 Vlocity distribution of lctrons Classical thrmodynamics: 6 dimnsional phas spac: (x,y,z,px,py,pz) momntum: p = p x+p y +p z

More information

How can I control light? (and rule the world?)

How can I control light? (and rule the world?) How can I control light? (and rul th world?) "You know, I hav on simpl rqust. And that is to hav sharks with frickin' lasr bams attachd to thir hads! - Dr. Evil Phys 230, Day 35 Qustions? Spctra (colors

More information

ELEMENTARY QUANTUM MECHANICS

ELEMENTARY QUANTUM MECHANICS Pag 1 of 9 ELEMENTARY QUANTUM MECHANICS 1. INTRODUCTION Th triumph of modrn physics is th triumph of quantum physics. Quantum physics (mchanics) Grw out of failurs of classical physics Launchd by xprimnts

More information

Determination of Vibrational and Electronic Parameters From an Electronic Spectrum of I 2 and a Birge-Sponer Plot

Determination of Vibrational and Electronic Parameters From an Electronic Spectrum of I 2 and a Birge-Sponer Plot 5 J. Phys. Chm G Dtrmination of Vibrational and Elctronic Paramtrs From an Elctronic Spctrum of I 2 and a Birg-Sponr Plot 1 15 2 25 3 35 4 45 Dpartmnt of Chmistry, Gustavus Adolphus Collg. 8 Wst Collg

More information

PH2200 Practice Final Exam Spring 2004

PH2200 Practice Final Exam Spring 2004 PH2200 Practic Final Exam Spring 2004 Instructions 1. Writ your nam and studnt idntification numbr on th answr sht. 2. This a two-hour xam. 3. Plas covr your answr sht at all tims. 4. This is a closd book

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Schrodinger Equation in 3-d

Schrodinger Equation in 3-d Schrodingr Equation in 3-d ψ( xyz,, ) ψ( xyz,, ) ψ( xyz,, ) + + + Vxyz (,, ) ψ( xyz,, ) = Eψ( xyz,, ) m x y z p p p x y + + z m m m + V = E p m + V = E E + k V = E Infinit Wll in 3-d V = x > L, y > L,

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

Davisson Germer experiment

Davisson Germer experiment Announcmnts: Davisson Grmr xprimnt Homwork st 5 is today. Homwork st 6 will b postd latr today. Mad a good guss about th Nobl Priz for 2013 Clinton Davisson and Lstr Grmr. Davisson won Nobl Priz in 1937.

More information

BETA DECAY VISUAL PHYSICS ONLINE

BETA DECAY VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE BETA DECAY Suppos now that a nuclus xists which has ithr too many or too fw nutrons rlativ to th numbr of protons prsnt for stability. Stability can b achivd by th convrsion insid

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics NUCLEAR AND PARTICLE PHYSICS NET/JRF (JUNE-2011)

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics NUCLEAR AND PARTICLE PHYSICS NET/JRF (JUNE-2011) NUCLEAR AND PARTICLE PHYSICS NET/JRF (JUNE-) 64 Q. Th radius of a 9Cu nuclus is masurd to b 4.8 - cm. (A). Th radius of a 7 Mg nuclus can b stimatd to b.86 - cm (b) 5. - cm (c).6 - cm (d) 8.6 - cm (c)

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light Lnss & Prism Considr light ntring a prism At th plan surac prpndicular light is unrractd Moving rom th glass to th slop sid light is bnt away rom th normal o th slop Using Snll's law n sin( ϕ ) = n sin(

More information

REGISTER!!! The Farmer and the Seeds (a parable of scientific reasoning) Class Updates. The Farmer and the Seeds. The Farmer and the Seeds

REGISTER!!! The Farmer and the Seeds (a parable of scientific reasoning) Class Updates. The Farmer and the Seeds. The Farmer and the Seeds How dos light intract with mattr? And what dos (this say about) mattr? REGISTER!!! If Schrödingr s Cat walks into a forst, and no on is around to obsrv it, is h rally in th forst? sourc unknown Phys 1010

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

TREATMENT OF THE PLASMA NONLINEAR ABSORPTION LAW AT LINEARLY POLARIZED LASER RADIATION OF RELATIVISTIC INTENSITIES. A. G.

TREATMENT OF THE PLASMA NONLINEAR ABSORPTION LAW AT LINEARLY POLARIZED LASER RADIATION OF RELATIVISTIC INTENSITIES. A. G. Armnian Journal of Physics, 15, vol. 8, issu, pp. 64-7 TREATMENT OF THE PLASMA NONLINEAR ABSORPTION LAW AT LINEARLY POLARIZED LASER RADIATION OF RELATIVISTIC INTENSITIES A. G. Ghazaryan Cntr of Strong

More information

Physics 2D Lecture Slides Lecture 12: Jan 28 th 2004

Physics 2D Lecture Slides Lecture 12: Jan 28 th 2004 Brian Wcht, th TA, is away this wk. I will substitut for his offic hours (in my offic 3314 Mayr Hall, discussion and PS sssion. Pl. giv all rgrad rqusts to m this wk (only) Quiz 3 Will Covr Sctions.1-.5

More information

Physics 2D Lecture Slides Lecture 14: Feb 1 st 2005

Physics 2D Lecture Slides Lecture 14: Feb 1 st 2005 Physics D Lctur Slids Lctur 14: Fb 1 st 005 Vivk Sharma UCSD Physics Compton Effct: what should Happn Classically? Plan wav [f,λ] incidnt on a surfac with loosly bound lctrons intraction of E fild of EM

More information

ph People Grade Level: basic Duration: minutes Setting: classroom or field site

ph People Grade Level: basic Duration: minutes Setting: classroom or field site ph Popl Adaptd from: Whr Ar th Frogs? in Projct WET: Curriculum & Activity Guid. Bozman: Th Watrcours and th Council for Environmntal Education, 1995. ph Grad Lvl: basic Duration: 10 15 minuts Stting:

More information

Quantum Physics ANSWERS TO QUESTIONS CHAPTER OUTLINE

Quantum Physics ANSWERS TO QUESTIONS CHAPTER OUTLINE CHAPTER OUTNE 8 Blackbody Radiation and Planck s Tory 8 T Potolctric Effct 83 T Compton Effct 84 Potons and Elctromagntic Wavs 85 T Wav Proprtis of Particls 86 T Quantum Particl 87 T Doubl-Slit Eprimnt

More information

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER J. C. Sprott PLP 821 Novmbr 1979 Plasma Studis Univrsity of Wisconsin Ths PLP Rports ar informal and prliminary and as such may contain rrors not yt

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

ATMO 551a Homework 6 solutions Fall 08

ATMO 551a Homework 6 solutions Fall 08 . A rising air parcl in th cor of a thundrstorm achivs a vrtical vlocity of 8 m/s similar to th midtrm whn it rachs a nutral buoyancy altitud at approximatly 2 km and 2 mb. Assum th background atmosphr

More information

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in Surfac plasmon rsonanc is snsitiv mchanism for obsrving slight changs nar th surfac of a dilctric-mtal intrfac. It is commonl usd toda for discovring th was in which protins intract with thir nvironmnt,

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

On the Hamiltonian of a Multi-Electron Atom

On the Hamiltonian of a Multi-Electron Atom On th Hamiltonian of a Multi-Elctron Atom Austn Gronr Drxl Univrsity Philadlphia, PA Octobr 29, 2010 1 Introduction In this papr, w will xhibit th procss of achiving th Hamiltonian for an lctron gas. Making

More information

4. Money cannot be neutral in the short-run the neutrality of money is exclusively a medium run phenomenon.

4. Money cannot be neutral in the short-run the neutrality of money is exclusively a medium run phenomenon. PART I TRUE/FALSE/UNCERTAIN (5 points ach) 1. Lik xpansionary montary policy, xpansionary fiscal policy rturns output in th mdium run to its natural lvl, and incrass prics. Thrfor, fiscal policy is also

More information

2. Background Material

2. Background Material S. Blair Sptmbr 3, 003 4. Background Matrial Th rst of this cours dals with th gnration, modulation, propagation, and ction of optical radiation. As such, bic background in lctromagntics and optics nds

More information

A central nucleus. Protons have a positive charge Electrons have a negative charge

A central nucleus. Protons have a positive charge Electrons have a negative charge Atomic Structur Lss than ninty yars ago scintists blivd that atoms wr tiny solid sphrs lik minut snookr balls. Sinc thn it has bn discovrd that atoms ar not compltly solid but hav innr and outr parts.

More information

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005 PHYS1444-,Fall 5, Trm Exam #1, Oct., 1, 5 Nam: Kys 1. circular ring of charg of raius an a total charg Q lis in th x-y plan with its cntr at th origin. small positiv tst charg q is plac at th origin. What

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e 8/7/018 Cours Instructor Dr. Raymond C. Rumpf Offic: A 337 Phon: (915) 747 6958 E Mail: rcrumpf@utp.du EE 4347 Applid Elctromagntics Topic 3 Skin Dpth & Powr Flow Skin Dpth Ths & Powr nots Flow may contain

More information

What makes laser light special? Lasers. Lasers. Laser history. Lasers are everywhere! Review of atom discharge lamps. So how do we make laser light?

What makes laser light special? Lasers. Lasers. Laser history. Lasers are everywhere! Review of atom discharge lamps. So how do we make laser light? Lasrs Lasrs What is diffrnt/spcial about lasr light. How dos a lasr work. - rviw atomic discharg lamps. - how light intracts with atoms - how ths idas ar usd to mak lasr. "You know, I hav on simpl rqust.

More information

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we set it to zero and choose A real.

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we set it to zero and choose A real. Midtrm #, Physics 37A, Spring 07. Writ your rsponss blow or on xtra pags. Show your work, and tak car to xplain what you ar doing; partial crdit will b givn for incomplt answrs that dmonstrat som concptual

More information

E hf. hf c. 2 2 h 2 2 m v f ' f 2f ' f cos c

E hf. hf c. 2 2 h 2 2 m v f ' f 2f ' f cos c EXPERIMENT 9: COMPTON EFFECT Rlatd Topics Intractions of photons with lctrons, consrvation of momntum and nrgy, inlastic and lastic scattring, intraction cross sction, Compton wavlngth. Principl Whn photons

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpnCoursWar http://ocw.mit.du 5.62 Physical Chmistry II Spring 2008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. 5.62 Lctur #7: Translational Part of

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Chapter 8: Electron Configurations and Periodicity

Chapter 8: Electron Configurations and Periodicity Elctron Spin & th Pauli Exclusion Principl Chaptr 8: Elctron Configurations and Priodicity 3 quantum numbrs (n, l, ml) dfin th nrgy, siz, shap, and spatial orintation of ach atomic orbital. To xplain how

More information

PH300 Modern Physics SP11 Final Essay. Up Next: Periodic Table Molecular Bonding

PH300 Modern Physics SP11 Final Essay. Up Next: Periodic Table Molecular Bonding PH Modrn Physics SP11 Final Essay Thr will b an ssay portion on th xam, but you don t nd to answr thos qustions if you submit a final ssay by th day of th final: Sat. 5/7 It dosnʼt mattr how smart you

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Collisions between electrons and ions

Collisions between electrons and ions DRAFT 1 Collisions btwn lctrons and ions Flix I. Parra Rudolf Pirls Cntr for Thortical Physics, Unirsity of Oxford, Oxford OX1 NP, UK This rsion is of 8 May 217 1. Introduction Th Fokkr-Planck collision

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

The following information relates to Questions 1 to 4:

The following information relates to Questions 1 to 4: Th following information rlats to Qustions 1 to 4: QUESTIN 1 Th lctrolyt usd in this ful cll is D watr carbonat ions hydrogn ions hydroxid ions QUESTIN 2 Th product formd in th ful cll is D hydrogn gas

More information

September 23, Honors Chem Atomic structure.notebook. Atomic Structure

September 23, Honors Chem Atomic structure.notebook. Atomic Structure Atomic Structur Topics covrd Atomic structur Subatomic particls Atomic numbr Mass numbr Charg Cations Anions Isotops Avrag atomic mass Practic qustions atomic structur Sp 27 8:16 PM 1 Powr Standards/ Larning

More information

Give the letter that represents an atom (6) (b) Atoms of A and D combine to form a compound containing covalent bonds.

Give the letter that represents an atom (6) (b) Atoms of A and D combine to form a compound containing covalent bonds. 1 Th diagram shows th lctronic configurations of six diffrnt atoms. A B C D E F (a) You may us th Priodic Tabl on pag 2 to hlp you answr this qustion. Answr ach part by writing on of th lttrs A, B, C,

More information