DEDEKIND S TRANSPOSITION PRINCIPLE

Size: px
Start display at page:

Download "DEDEKIND S TRANSPOSITION PRINCIPLE"

Transcription

1 DEDEKIND S TRANSPOSITION PRINCIPLE AND ISOTOPIC ALGEBRAS WITH NONISOMORPHIC CONGRUENCE LATTICES William DeMeo williamdemeo@gmail.com University of South Carolina AMS Spring Western Sectional Meeting University of Colorado, Boulder, CO April 13-14, 2013 These slides and other resources are available at

2 DEDEKIND S TRANSPOSITION PRINCIPLE FOR MODULAR LATTICES Notation Let L = L,, be a lattice with a L. Let ϕ a and ψ a be the perspectivity maps ϕ a (x) = x a and ψ a(x) = x a For x, y L, let x, y L = {z L x z y}.

3 DEDEKIND S TRANSPOSITION PRINCIPLE FOR MODULAR LATTICES Notation Let L = L,, be a lattice with a L. Let ϕ a and ψ a be the perspectivity maps ϕ a (x) = x a and ψ a(x) = x a For x, y L, let x, y L = {z L x z y}. THEOREM (DEDEKIND S TRANSPOSITION PRINCIPLE) L is modular iff for all a, b L the maps ϕ a and ψ b are inverse lattice isomorphisms of a b, a and b, a b.

4 DEDEKIND S TRANSPOSITION PRINCIPLE FOR MODULAR LATTICES a b Notation Let L = L,, be a lattice with a L. Let ϕ a and ψ a be the perspectivity maps a ψ b (x) y b ϕ a (x) = x a and ψ a(x) = x a x For x, y L, let x, y L = {z L x z y}. ϕ a (y) a b THEOREM (DEDEKIND S TRANSPOSITION PRINCIPLE) L is modular iff for all a, b L the maps ϕ a and ψ b are inverse lattice isomorphisms of a b, a and b, a b.

5 ANOTHER TRANSPOSITION PRINCIPLE FOR LATTICES OF EQUIVALENCE RELATIONS Let X be a set and let Eq X be the lattice of equivalence relations on X. If L is a sublattice of Eq X with η, θ L, then we define η, θ L = {γ L η γ θ}.

6 ANOTHER TRANSPOSITION PRINCIPLE FOR LATTICES OF EQUIVALENCE RELATIONS Let X be a set and let Eq X be the lattice of equivalence relations on X. If L is a sublattice of Eq X with η, θ L, then we define η, θ L = {γ L η γ θ}. For β Eq X, let η, θ β L be the set of relations in η, θ L that permute with β, η, θ β L = {γ L η γ θ and γ β = β γ}.

7 ANOTHER TRANSPOSITION PRINCIPLE FOR LATTICES OF EQUIVALENCE RELATIONS Let X be a set and let Eq X be the lattice of equivalence relations on X. If L is a sublattice of Eq X with η, θ L, then we define η, θ L = {γ L η γ θ}. For β Eq X, let η, θ β L be the set of relations in η, θ L that permute with β, η, θ β L = {γ L η γ θ and γ β = β γ}. α β x β LEMMA Suppose α and β are permuting relations in L Eq X. Then β, α β L = α β, α β L α β, α L. α x y α α β y β

8 DEDEKIND S RULE The proof requires the following version of Dedekind s Rule: LEMMA Suppose α, β, γ L Eq X and α β. Then the following identities of subsets of X 2 hold: α (β γ) = β (α γ) (β γ) α = β (γ α)

9 ISOTOPY BASIC DEFINITIONS Let A, B, C be algebras of the same type. A and B are isotopic over C, denoted A C B, if there is an isomorphism ϕ : A C = B C that leaves the second coordinate fixed i.e. ( a A) ( c C) ϕ(a, c) = (ϕ 1 (a, c), c)

10 ISOTOPY BASIC DEFINITIONS Let A, B, C be algebras of the same type. A and B are isotopic over C, denoted A C B, if there is an isomorphism ϕ : A C = B C that leaves the second coordinate fixed i.e. ( a A) ( c C) ϕ(a, c) = (ϕ 1 (a, c), c) We say that A and B are isotopic, denoted A B, if A C B for some C. It is easy to verify that is an equivalence relation.

11 ISOTOPY BASIC DEFINITIONS Let A, B, C be algebras of the same type. A and B are isotopic over C, denoted A C B, if there is an isomorphism ϕ : A C = B C that leaves the second coordinate fixed i.e. ( a A) ( c C) ϕ(a, c) = (ϕ 1 (a, c), c) We say that A and B are isotopic, denoted A B, if A C B for some C. If A C B and Con(A C) happens to be modular, then we write and say that A and B are modular isotopic over C. A mod C B

12 ISOTOPY BASIC DEFINITIONS Let A, B, C be algebras of the same type. A and B are isotopic over C, denoted A C B, if there is an isomorphism ϕ : A C = B C that leaves the second coordinate fixed i.e. ( a A) ( c C) ϕ(a, c) = (ϕ 1 (a, c), c) We say that A and B are isotopic, denoted A B, if A C B for some C. If A C B and Con(A C) happens to be modular, then we write and say that A and B are modular isotopic over C. A mod C We call A and B modular isotopic in one step, denoted A mod 1 B, if they are modular isotopic over some C. B

13 ISOTOPY BASIC DEFINITIONS Let A, B, C be algebras of the same type. A and B are isotopic over C, denoted A C B, if there is an isomorphism ϕ : A C = B C that leaves the second coordinate fixed i.e. ( a A) ( c C) ϕ(a, c) = (ϕ 1 (a, c), c) We say that A and B are isotopic, denoted A B, if A C B for some C. If A C B and Con(A C) happens to be modular, then we write and say that A and B are modular isotopic over C. A mod C We call A and B modular isotopic in one step, denoted A mod 1 B, if they are modular isotopic over some C. We call A and B are modular isotopic, denoted A mod B, if (A, B) is in the transitive closure of mod 1. B

14 ISOTOPY MODULAR CASE Lemma 11. If A mod B then Con A = Con B. The proof is a nice/easy application of Dedekind s Transposition Principle.

15 ISOTOPY MODULAR CASE Lemma 11. If A mod B then Con A = Con B. The proof is a nice/easy application of Dedekind s Transposition Principle. Could we use the same strategy with the non-modular version of the transposition principle to show that A B implies Con A = Con B?

16 ISOTOPY MODULAR CASE Lemma 11. If A mod B then Con A = Con B. The proof is a nice/easy application of Dedekind s Transposition Principle. Could we use the same strategy with the non-modular version of the transposition principle to show that A B implies Con A = Con B? As you have guessed, the answer is no! The perspectivity map that is so useful when Con(A C) is modular can fail miserably in the non-modular case...

17 ISOTOPY MODULAR CASE Lemma 11. If A mod B then Con A = Con B. The proof is a nice/easy application of Dedekind s Transposition Principle. Could we use the same strategy with the non-modular version of the transposition principle to show that A B implies Con A = Con B? As you have guessed, the answer is no! The perspectivity map that is so useful when Con(A C) is modular can fail miserably in the non-modular case... even when A = B!

18 ISOTOPY MODULAR CASE Lemma 11. If A mod B then Con A = Con B. The proof is a nice/easy application of Dedekind s Transposition Principle. Could we use the same strategy with the non-modular version of the transposition principle to show that A B implies Con A = Con B? As you have guessed, the answer is no! The perspectivity map that is so useful when Con(A C) is modular can fail miserably in the non-modular case... even when A = B! But this only shows that the same argument doesn t work...

19 COUNTEREXAMPLES We describe a class of examples in which A B and Con A Con B. The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

20 COUNTEREXAMPLES We describe a class of examples in which A B and Con A Con B. The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size. For any group G, let Sub(G) denote the lattice of subgroups of G.

21 COUNTEREXAMPLES We describe a class of examples in which A B and Con A Con B. The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size. For any group G, let Sub(G) denote the lattice of subgroups of G. A group G is called a Dedekind group if every subgroup of G is normal.

22 COUNTEREXAMPLES We describe a class of examples in which A B and Con A Con B. The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size. For any group G, let Sub(G) denote the lattice of subgroups of G. A group G is called a Dedekind group if every subgroup of G is normal. Let S be any group and let D denote the diagonal subgroup of S S, D = {(x, x) x S} The interval D, S S Sub(S S) is described by the following LEMMA The filter above the diagonal subgroup of S S is isomorphic to the lattice of normal subgroups of S.

23 THE EXAMPLE Let S be a group, and let G = S 1 S 2, where S 1 = S2 = S. Let D = {(x 1, x 2) G x 1 = x 2}, T 1 = S 1 1, T 2 = 1 S 2.

24 THE EXAMPLE Let S be a group, and let G = S 1 S 2, where S 1 = S2 = S. Let D = {(x 1, x 2) G x 1 = x 2}, T 1 = S 1 1, T 2 = 1 S 2. Then D = T 1 = T2, and these are pair-wise compliments: T 1, T 2 = T 1, D = D, T 2 = G T 1 D = D T 2 = T 1 T 2 = (1, 1)

25 THE EXAMPLE Let S be a group, and let G = S 1 S 2, where S 1 = S2 = S. Let D = {(x 1, x 2) G x 1 = x 2}, T 1 = S 1 1, T 2 = 1 S 2. Then D = T 1 = T2, and these are pair-wise compliments: T 1, T 2 = T 1, D = D, T 2 = G T 1 D = D T 2 = T 1 T 2 = (1, 1) Let A = G/T 1, G A = the algebra with universe the left cosets of T 1 in G, and basic operations the left multiplications by elements of G. For each g G the operation g A G A is defined by g A (xt 1) = (gx)t 1 (xt 1 G/T 1). Define the algebra C = G/T 2, G C similarly.

26 THE EXAMPLE The algebra B will have universe B = G/D, but we define the action of G on B with a twist.

27 THE EXAMPLE The algebra B will have universe B = G/D, but we define the action of G on B with a twist. For each g = (g 1, g 2) G, for each (x 1, x 2)D G/D, define g B ((x 1, x 2)D) = (g 2x 1, g 1x 2)D. Let B = G/D, G B, where G B = {g B g G}.

28 THE EXAMPLE The algebra B will have universe B = G/D, but we define the action of G on B with a twist. For each g = (g 1, g 2) G, for each (x 1, x 2)D G/D, define g B ((x 1, x 2)D) = (g 2x 1, g 1x 2)D. Let B = G/D, G B, where G B = {g B g G}. Consider the binary relation ϕ (A C) (B C) that associates to each ordered pair ((x 1, x 2)T 1, (y 1, y 2)T 2) A C the pair ((x 2, y 1)D, (y 1, y 2)T 2) B C

29 THE EXAMPLE The algebra B will have universe B = G/D, but we define the action of G on B with a twist. For each g = (g 1, g 2) G, for each (x 1, x 2)D G/D, define g B ((x 1, x 2)D) = (g 2x 1, g 1x 2)D. Let B = G/D, G B, where G B = {g B g G}. Consider the binary relation ϕ (A C) (B C) that associates to each ordered pair ((x 1, x 2)T 1, (y 1, y 2)T 2) A C the pair ((x 2, y 1)D, (y 1, y 2)T 2) B C It is easy to verify that this relation is a function, and in fact ϕ: A C B C is an isomorphism.

30 THE EXAMPLE The algebra B will have universe B = G/D, but we define the action of G on B with a twist. For each g = (g 1, g 2) G, for each (x 1, x 2)D G/D, define g B ((x 1, x 2)D) = (g 2x 1, g 1x 2)D. Let B = G/D, G B, where G B = {g B g G}. Consider the binary relation ϕ (A C) (B C) that associates to each ordered pair ((x 1, x 2)T 1, (y 1, y 2)T 2) A C the pair ((x 2, y 1)D, (y 1, y 2)T 2) B C It is easy to verify that this relation is a function, and in fact ϕ: A C B C is an isomorphism. Since ϕ leaves second coordinates fixed, A C B.

31 CONCLUSION Compare Con A and Con B.

32 CONCLUSION Compare Con A and Con B. Con A = T 1, G Sub(G), so Con A = Sub(S).

33 CONCLUSION Compare Con A and Con B. Con A = T 1, G Sub(G), so Con A = Sub(S). Con B is isomorphic to the lattice of normal subgroups of S.

34 CONCLUSION Compare Con A and Con B. Con A = T 1, G Sub(G), so Con A = Sub(S). Con B is isomorphic to the lattice of normal subgroups of S. Con B = NSub(S) Sub(S) = Con A So, if S is any non-dedekind group, Con B Con A.

35 CONCLUSION Compare Con A and Con B. Con A = T 1, G Sub(G), so Con A = Sub(S). Con B is isomorphic to the lattice of normal subgroups of S. Con B = NSub(S) Sub(S) = Con A So, if S is any non-dedekind group, Con B Con A. If S is a nonabelian simple group, then Con B = 2, while Con A = Sub(S) can be arbitrarily large.

DEDEKIND S TRANSPOSITION PRINCIPLE

DEDEKIND S TRANSPOSITION PRINCIPLE DEDEKIND S TRANSPOSITION PRINCIPLE AND PERMUTING SUBGROUPS & EQUIVALENCE RELATIONS William DeMeo williamdemeo@gmail.com University of South Carolina Zassenhaus Conference at WCU Asheville, NC May 24 26,

More information

SMALL CONGRUENCE LATTICES

SMALL CONGRUENCE LATTICES SMALL CONGRUENCE LATTICES William DeMeo williamdemeo@gmail.com University of South Carolina joint work with Ralph Freese, Peter Jipsen, Bill Lampe, J.B. Nation BLAST Conference Chapman University August

More information

NOTES ON THE FINITE LATTICE REPRESENTATION PROBLEM

NOTES ON THE FINITE LATTICE REPRESENTATION PROBLEM NOTES ON THE FINITE LATTICE REPRESENTATION PROBLEM WILLIAM J. DEMEO Notation and Terminology. Given a finite lattice L, the expression L = [H, G] means there exist finite groups H < G such that L is isomorphic

More information

* 8 Groups, with Appendix containing Rings and Fields.

* 8 Groups, with Appendix containing Rings and Fields. * 8 Groups, with Appendix containing Rings and Fields Binary Operations Definition We say that is a binary operation on a set S if, and only if, a, b, a b S Implicit in this definition is the idea that

More information

γ γ γ γ(α) ). Then γ (a) γ (a ) ( γ 1

γ γ γ γ(α) ). Then γ (a) γ (a ) ( γ 1 The Correspondence Theorem, which we next prove, shows that the congruence lattice of every homomorphic image of a Σ-algebra is isomorphically embeddable as a special kind of sublattice of the congruence

More information

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups

D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 3. Modular arithmetic, quotients, product groups D-MATH Algebra I HS 2013 Prof. Brent Doran Solution 3 Modular arithmetic, quotients, product groups 1. Show that the functions f = 1/x, g = (x 1)/x generate a group of functions, the law of composition

More information

5 Group theory. 5.1 Binary operations

5 Group theory. 5.1 Binary operations 5 Group theory This section is an introduction to abstract algebra. This is a very useful and important subject for those of you who will continue to study pure mathematics. 5.1 Binary operations 5.1.1

More information

Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson

Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson On almost every Friday of the semester, we will have a brief quiz to make sure you have memorized the definitions encountered in our studies.

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY

DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY HANDOUT ABSTRACT ALGEBRA MUSTHOFA DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY 2012 BINARY OPERATION We are all familiar with addition and multiplication of two numbers. Both

More information

Physics 251 Solution Set 1 Spring 2017

Physics 251 Solution Set 1 Spring 2017 Physics 5 Solution Set Spring 07. Consider the set R consisting of pairs of real numbers. For (x,y) R, define scalar multiplication by: c(x,y) (cx,cy) for any real number c, and define vector addition

More information

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall I. Take-Home Portion: Math 350 Final Exam Due by 5:00pm on Tues. 5/12/15 No resources/devices other than our class textbook and class notes/handouts may be used. You must work alone. Choose any 5 problems

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Math 31 Lesson Plan. Day 22: Tying Up Loose Ends. Elizabeth Gillaspy. October 31, Supplies needed: Colored chalk.

Math 31 Lesson Plan. Day 22: Tying Up Loose Ends. Elizabeth Gillaspy. October 31, Supplies needed: Colored chalk. Math 31 Lesson Plan Day 22: Tying Up Loose Ends Elizabeth Gillaspy October 31, 2011 Supplies needed: Colored chalk Other topics V 4 via (P ({1, 2}), ) and Cayley table. D n for general n; what s the center?

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

MA441: Algebraic Structures I. Lecture 18

MA441: Algebraic Structures I. Lecture 18 MA441: Algebraic Structures I Lecture 18 5 November 2003 1 Review from Lecture 17: Theorem 6.5: Aut(Z/nZ) U(n) For every positive integer n, Aut(Z/nZ) is isomorphic to U(n). The proof used the map T :

More information

Math 222A W03 D. Congruence relations

Math 222A W03 D. Congruence relations Math 222A W03 D. 1. The concept Congruence relations Let s start with a familiar case: congruence mod n on the ring Z of integers. Just to be specific, let s use n = 6. This congruence is an equivalence

More information

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS.

ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ABSTRACT ALGEBRA 1, LECTURES NOTES 5: SUBGROUPS, CONJUGACY, NORMALITY, QUOTIENT GROUPS, AND EXTENSIONS. ANDREW SALCH 1. Subgroups, conjugacy, normality. I think you already know what a subgroup is: Definition

More information

Algebra: Groups. Group Theory a. Examples of Groups. groups. The inverse of a is simply a, which exists.

Algebra: Groups. Group Theory a. Examples of Groups. groups. The inverse of a is simply a, which exists. Group Theory a Let G be a set and be a binary operation on G. (G, ) is called a group if it satisfies the following. 1. For all a, b G, a b G (closure). 2. For all a, b, c G, a (b c) = (a b) c (associativity).

More information

Answers to Final Exam

Answers to Final Exam Answers to Final Exam MA441: Algebraic Structures I 20 December 2003 1) Definitions (20 points) 1. Given a subgroup H G, define the quotient group G/H. (Describe the set and the group operation.) The quotient

More information

Varieties with a Difference Term

Varieties with a Difference Term Varieties with a Difference Term Keith A. Kearnes Fachbereich Mathematik, AG1 Technische Hochschule Darmstadt D 64289 Darmstadt Germany Abstract We give characterizations of varieties with a difference

More information

AN AXIOMATIC FORMATION THAT IS NOT A VARIETY

AN AXIOMATIC FORMATION THAT IS NOT A VARIETY AN AXIOMATIC FORMATION THAT IS NOT A VARIETY KEITH A. KEARNES Abstract. We show that any variety of groups that contains a finite nonsolvable group contains an axiomatic formation that is not a subvariety.

More information

Distributive congruence lattices of congruence-permutable algebras

Distributive congruence lattices of congruence-permutable algebras Distributive congruence lattices of congruence-permutable algebras Pavel Ruzicka, Jiri Tuma, Friedrich Wehrung To cite this version: Pavel Ruzicka, Jiri Tuma, Friedrich Wehrung. Distributive congruence

More information

A note on congruence lattices of slim semimodular

A note on congruence lattices of slim semimodular A note on congruence lattices of slim semimodular lattices Gábor Czédli Abstract. Recently, G. Grätzer has raised an interesting problem: Which distributive lattices are congruence lattices of slim semimodular

More information

Lecture 7 Cyclic groups and subgroups

Lecture 7 Cyclic groups and subgroups Lecture 7 Cyclic groups and subgroups Review Types of groups we know Numbers: Z, Q, R, C, Q, R, C Matrices: (M n (F ), +), GL n (F ), where F = Q, R, or C. Modular groups: Z/nZ and (Z/nZ) Dihedral groups:

More information

Quick course in Universal Algebra and Tame Congruence Theory

Quick course in Universal Algebra and Tame Congruence Theory Quick course in Universal Algebra and Tame Congruence Theory Ross Willard University of Waterloo, Canada Workshop on Universal Algebra and the Constraint Satisfaction Problem Nashville, June 2007 (with

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

MATH 223A NOTES 2011 LIE ALGEBRAS 35

MATH 223A NOTES 2011 LIE ALGEBRAS 35 MATH 3A NOTES 011 LIE ALGEBRAS 35 9. Abstract root systems We now attempt to reconstruct the Lie algebra based only on the information given by the set of roots Φ which is embedded in Euclidean space E.

More information

Basic Definitions: Group, subgroup, order of a group, order of an element, Abelian, center, centralizer, identity, inverse, closed.

Basic Definitions: Group, subgroup, order of a group, order of an element, Abelian, center, centralizer, identity, inverse, closed. Math 546 Review Exam 2 NOTE: An (*) at the end of a line indicates that you will not be asked for the proof of that specific item on the exam But you should still understand the idea and be able to apply

More information

Primer of Quasivariety Lattices

Primer of Quasivariety Lattices A Kira Adaricheva, Jennifer Hyndman, J. B. Nation, Joy Nishida Hofstra University, UNBC, University of Hawai i Hofstra, October 2017 Backus International Airport Two problems of Birkhoff and Mal cev Describe

More information

Quiz 2 Practice Problems

Quiz 2 Practice Problems Quiz 2 Practice Problems Math 332, Spring 2010 Isomorphisms and Automorphisms 1. Let C be the group of complex numbers under the operation of addition, and define a function ϕ: C C by ϕ(a + bi) = a bi.

More information

A Little Beyond: Linear Algebra

A Little Beyond: Linear Algebra A Little Beyond: Linear Algebra Akshay Tiwary March 6, 2016 Any suggestions, questions and remarks are welcome! 1 A little extra Linear Algebra 1. Show that any set of non-zero polynomials in [x], no two

More information

Three-dimensional imprimitive representations of PSL 2 (Z) and their associated vector-valued modular forms

Three-dimensional imprimitive representations of PSL 2 (Z) and their associated vector-valued modular forms Three-dimensional imprimitive representations of PSL 2 (Z) and their associated vector-valued modular forms U-M Automorphic forms workshop, March 2015 1 Definition 2 3 Let Γ = PSL 2 (Z) Write ( 0 1 S =

More information

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION PAVEL RŮŽIČKA 9.1. Congruence modulo n. Let us have a closer look at a particular example of a congruence relation on

More information

10. Finite Lattices and their Congruence Lattices. If memories are all I sing I d rather drive a truck. Ricky Nelson

10. Finite Lattices and their Congruence Lattices. If memories are all I sing I d rather drive a truck. Ricky Nelson 10. Finite Lattices and their Congruence Lattices If memories are all I sing I d rather drive a truck. Ricky Nelson In this chapter we want to study the structure of finite lattices, and how it is reflected

More information

Simultaneous congruence representations: a special case

Simultaneous congruence representations: a special case Algebra univers. 54 (2005) 249 255 0002-5240/05/020249 07 DOI 10.1007/s00012-005-1931-3 c Birkhäuser Verlag, Basel, 2005 Algebra Universalis Mailbox Simultaneous congruence representations: a special case

More information

SF2729 GROUPS AND RINGS LECTURE NOTES

SF2729 GROUPS AND RINGS LECTURE NOTES SF2729 GROUPS AND RINGS LECTURE NOTES 2011-03-01 MATS BOIJ 6. THE SIXTH LECTURE - GROUP ACTIONS In the sixth lecture we study what happens when groups acts on sets. 1 Recall that we have already when looking

More information

MATH 433 Applied Algebra Lecture 19: Subgroups (continued). Error-detecting and error-correcting codes.

MATH 433 Applied Algebra Lecture 19: Subgroups (continued). Error-detecting and error-correcting codes. MATH 433 Applied Algebra Lecture 19: Subgroups (continued). Error-detecting and error-correcting codes. Subgroups Definition. A group H is a called a subgroup of a group G if H is a subset of G and the

More information

A CHARACTERIZATION OF LOCALLY FINITE VARIETIES THAT SATISFY A NONTRIVIAL CONGRUENCE IDENTITY

A CHARACTERIZATION OF LOCALLY FINITE VARIETIES THAT SATISFY A NONTRIVIAL CONGRUENCE IDENTITY A CHARACTERIZATION OF LOCALLY FINITE VARIETIES THAT SATISFY A NONTRIVIAL CONGRUENCE IDENTITY KEITH A. KEARNES Abstract. We show that a locally finite variety satisfies a nontrivial congruence identity

More information

Ultraproducts of Finite Groups

Ultraproducts of Finite Groups Ultraproducts of Finite Groups Ben Reid May 11, 010 1 Background 1.1 Ultrafilters Let S be any set, and let P (S) denote the power set of S. We then call ψ P (S) a filter over S if the following conditions

More information

MATH 420 FINAL EXAM J. Beachy, 5/7/97

MATH 420 FINAL EXAM J. Beachy, 5/7/97 MATH 420 FINAL EXAM J. Beachy, 5/7/97 1. (a) For positive integers a and b, define gcd(a, b). (b) Compute gcd(1776, 1492). (c) Show that if a, b, c are positive integers, then gcd(a, bc) = 1 if and only

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Determine whether a relation is an equivalence relation by determining whether it is Reflexive Symmetric

More information

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. CATEGORY THEORY PROFESSOR PETER JOHNSTONE Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. Definition 1.1. A category C consists

More information

MATH 3005 ABSTRACT ALGEBRA I FINAL SOLUTION

MATH 3005 ABSTRACT ALGEBRA I FINAL SOLUTION MATH 3005 ABSTRACT ALGEBRA I FINAL SOLUTION SPRING 2014 - MOON Write your answer neatly and show steps. Any electronic devices including calculators, cell phones are not allowed. (1) Write the definition.

More information

INTRODUCTION TO THE GROUP THEORY

INTRODUCTION TO THE GROUP THEORY Lecture Notes on Structure of Algebra INTRODUCTION TO THE GROUP THEORY By : Drs. Antonius Cahya Prihandoko, M.App.Sc e-mail: antoniuscp.fkip@unej.ac.id Mathematics Education Study Program Faculty of Teacher

More information

ECEN 5022 Cryptography

ECEN 5022 Cryptography Elementary Algebra and Number Theory University of Colorado Spring 2008 Divisibility, Primes Definition. N denotes the set {1, 2, 3,...} of natural numbers and Z denotes the set of integers {..., 2, 1,

More information

ALGEBRA HOMEWORK SET 2. Due by class time on Wednesday 14 September. Homework must be typeset and submitted by as a PDF file.

ALGEBRA HOMEWORK SET 2. Due by class time on Wednesday 14 September. Homework must be typeset and submitted by  as a PDF file. ALGEBRA HOMEWORK SET 2 JAMES CUMMINGS (JCUMMING@ANDREW.CMU.EDU) Due by class time on Wednesday 14 September. Homework must be typeset and submitted by email as a PDF file. (1) Let H and N be groups and

More information

List of topics for the preliminary exam in algebra

List of topics for the preliminary exam in algebra List of topics for the preliminary exam in algebra 1 Basic concepts 1. Binary relations. Reflexive, symmetric/antisymmetryc, and transitive relations. Order and equivalence relations. Equivalence classes.

More information

AMS regional meeting Bloomington, IN April 1, 2017

AMS regional meeting Bloomington, IN April 1, 2017 Joint work with: W. Boney, S. Friedman, C. Laskowski, M. Koerwien, S. Shelah, I. Souldatos University of Illinois at Chicago AMS regional meeting Bloomington, IN April 1, 2017 Cantor s Middle Attic Uncountable

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 10-1 Chapter 10 Mathematical Systems 10.1 Groups Definitions A mathematical system consists of a set of elements and at least one binary operation. A

More information

SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III. THE CASE OF TOTALLY ORDERED SETS

SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III. THE CASE OF TOTALLY ORDERED SETS SUBLATTICES OF LATTICES OF ORDER-CONVEX SETS, III. THE CASE OF TOTALLY ORDERED SETS MARINA SEMENOVA AND FRIEDRICH WEHRUNG Abstract. For a partially ordered set P, let Co(P) denote the lattice of all order-convex

More information

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL ALGEBRA EXERCISES, PhD EXAMINATION LEVEL 1. Suppose that G is a finite group. (a) Prove that if G is nilpotent, and H is any proper subgroup, then H is a proper subgroup of its normalizer. (b) Use (a)

More information

2. Groups 2.1. Groups and monoids. Let s start out with the basic definitions. We will consider sets with binary operations, which we will usually

2. Groups 2.1. Groups and monoids. Let s start out with the basic definitions. We will consider sets with binary operations, which we will usually 2. Groups 2.1. Groups and monoids. Let s start out with the basic definitions. We will consider sets with binary operations, which we will usually write multiplicatively, as a b, or, more commonly, just

More information

AND. William DeMeo. joint work with. Cliff Bergman Jiali Li. Iowa State University BLAST 2015

AND. William DeMeo. joint work with. Cliff Bergman Jiali Li. Iowa State University BLAST 2015 THE ALGEBRAIC APPROACH TO CSP AND CSPS OF COMMUTATIVE IDEMPOTENT BINARS William DeMeo williamdemeo@gmail.com joint work with Cliff Bergman Jiali Li Iowa State University BLAST 2015 University of North

More information

RESIDUAL SMALLNESS AND WEAK CENTRALITY

RESIDUAL SMALLNESS AND WEAK CENTRALITY RESIDUAL SMALLNESS AND WEAK CENTRALITY KEITH A. KEARNES AND EMIL W. KISS Abstract. We develop a method of creating skew congruences on subpowers of finite algebras using groups of twin polynomials, and

More information

GROUPS WITH IDENTICAL SUBGROUP LATTICES IN ALL POWERS

GROUPS WITH IDENTICAL SUBGROUP LATTICES IN ALL POWERS GROUPS WITH IDENTICAL SUBGROUP LATTICES IN ALL POWERS KEITH A. KEARNES AND ÁGNES SZENDREI Abstract. Suppose that G and H are groups with cyclic Sylow subgroups. We show that if there is an isomorphism

More information

Group Theory

Group Theory Group Theory 2014 2015 Solutions to the exam of 4 November 2014 13 November 2014 Question 1 (a) For every number n in the set {1, 2,..., 2013} there is exactly one transposition (n n + 1) in σ, so σ is

More information

Tutorial on Universal Algebra, Mal cev Conditions, and Finite Relational Structures: Lecture I

Tutorial on Universal Algebra, Mal cev Conditions, and Finite Relational Structures: Lecture I Tutorial on Universal Algebra, Mal cev Conditions, and Finite Relational Structures: Lecture I Ross Willard University of Waterloo, Canada BLAST 2010 Boulder, June 2010 Ross Willard (Waterloo) Universal

More information

Lattice Theory Lecture 5. Completions

Lattice Theory Lecture 5. Completions Lattice Theory Lecture 5 Completions John Harding New Mexico State University www.math.nmsu.edu/ JohnHarding.html jharding@nmsu.edu Toulouse, July 2017 Completions Definition A completion of a poset P

More information

Lecture 15: The Hidden Subgroup Problem

Lecture 15: The Hidden Subgroup Problem CS 880: Quantum Information Processing 10/7/2010 Lecture 15: The Hidden Subgroup Problem Instructor: Dieter van Melkebeek Scribe: Hesam Dashti The Hidden Subgroup Problem is a particular type of symmetry

More information

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S.

Number Axioms. P. Danziger. A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b. a b S. Appendix A Number Axioms P. Danziger 1 Number Axioms 1.1 Groups Definition 1 A Group is a set S together with a binary operation (*) on S, denoted a b such that for all a, b and c S 0. (Closure) 1. (Associativity)

More information

The Radicans. James B. Wilson. April 13, 2002

The Radicans. James B. Wilson. April 13, 2002 The Radicans James B. Wilson April 13, 2002 1 Radices of Integers Computational mathematics has brought awareness to the use of various bases in representing integers. The standard for most number systems

More information

arxiv: v1 [math.co] 22 Feb 2013

arxiv: v1 [math.co] 22 Feb 2013 arxiv:1302.5673v1 [math.co] 22 Feb 2013 Nest graphs and minimal complete symmetry groups for magic Sudoku variants E. Arnold, R. Field, J. Lorch, S. Lucas, and L. Taalman 1 Introduction November 9, 2017

More information

Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm

Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm Elementary Algebra Chinese Remainder Theorem Euclidean Algorithm April 11, 2010 1 Algebra We start by discussing algebraic structures and their properties. This is presented in more depth than what we

More information

17 More Groups, Lagrange s Theorem and Direct Products

17 More Groups, Lagrange s Theorem and Direct Products 7 More Groups, Lagrange s Theorem and Direct Products We consider several ways to produce groups. 7. The Dihedral Group The dihedral group D n is a nonabelian group. This is the set of symmetries of a

More information

Math 345 Sp 07 Day 7. b. Prove that the image of a homomorphism is a subring.

Math 345 Sp 07 Day 7. b. Prove that the image of a homomorphism is a subring. Math 345 Sp 07 Day 7 1. Last time we proved: a. Prove that the kernel of a homomorphism is a subring. b. Prove that the image of a homomorphism is a subring. c. Let R and S be rings. Suppose R and S are

More information

Abstract Algebra: Supplementary Lecture Notes

Abstract Algebra: Supplementary Lecture Notes Abstract Algebra: Supplementary Lecture Notes JOHN A. BEACHY Northern Illinois University 1995 Revised, 1999, 2006 ii To accompany Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

More information

KLEIN LINK MULTIPLICITY AND RECURSION. 1. Introduction

KLEIN LINK MULTIPLICITY AND RECURSION. 1. Introduction KLEIN LINK MULTIPLICITY AND RECURSION JENNIFER BOWEN, DAVID FREUND, JOHN RAMSAY, AND SARAH SMITH-POLDERMAN Abstract. The (m, n)-klein links are formed by altering the rectangular representation of an (m,

More information

CHAPTER 2 -idempotent matrices

CHAPTER 2 -idempotent matrices CHAPTER 2 -idempotent matrices A -idempotent matrix is defined and some of its basic characterizations are derived (see [33]) in this chapter. It is shown that if is a -idempotent matrix then it is quadripotent

More information

The Asymptotic Genus of a Group

The Asymptotic Genus of a Group The Asymptotic Genus of a Group Daniel Frohardt Robert Guralnick Kay Magaard October 25, 2006 Introduction As in [Gur], we define the genus of a finite permutation group G to be the minimal genus of a

More information

1 Finite abelian groups

1 Finite abelian groups Last revised: May 16, 2014 A.Miller M542 www.math.wisc.edu/ miller/ Each Problem is due one week from the date it is assigned. Do not hand them in early. Please put them on the desk in front of the room

More information

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B.

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B. Relations Binary Relation Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation Let R A B be a relation from A to B. If (a, b) R, we write a R b. 1 Binary Relation Example:

More information

Mathematics for Cryptography

Mathematics for Cryptography Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

More information

Christopher J. TAYLOR

Christopher J. TAYLOR REPORTS ON MATHEMATICAL LOGIC 51 (2016), 3 14 doi:10.4467/20842589rm.16.001.5278 Christopher J. TAYLOR DISCRIMINATOR VARIETIES OF DOUBLE-HEYTING ALGEBRAS A b s t r a c t. We prove that a variety of double-heyting

More information

Math 250A, Fall 2004 Problems due October 5, 2004 The problems this week were from Lang s Algebra, Chapter I.

Math 250A, Fall 2004 Problems due October 5, 2004 The problems this week were from Lang s Algebra, Chapter I. Math 250A, Fall 2004 Problems due October 5, 2004 The problems this week were from Lang s Algebra, Chapter I. 24. We basically know already that groups of order p 2 are abelian. Indeed, p-groups have non-trivial

More information

LOCALLY SOLVABLE FACTORS OF VARIETIES

LOCALLY SOLVABLE FACTORS OF VARIETIES PROCEEDINGS OF HE AMERICAN MAHEMAICAL SOCIEY Volume 124, Number 12, December 1996, Pages 3619 3625 S 0002-9939(96)03501-0 LOCALLY SOLVABLE FACORS OF VARIEIES KEIH A. KEARNES (Communicated by Lance W. Small)

More information

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 49 (2008), No. 2, 341-368. Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems Ma lgorzata

More information

NOTES IN COMMUTATIVE ALGEBRA: PART 2

NOTES IN COMMUTATIVE ALGEBRA: PART 2 NOTES IN COMMUTATIVE ALGEBRA: PART 2 KELLER VANDEBOGERT 1. Completion of a Ring/Module Here we shall consider two seemingly different constructions for the completion of a module and show that indeed they

More information

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 3 3. (a) Yes; (b) No; (c) No; (d) No; (e) Yes; (f) Yes; (g) Yes; (h) No; (i) Yes. Comments: (a) is the additive group

More information

A. (Groups of order 8.) (a) Which of the five groups G (as specified in the question) have the following property: G has a normal subgroup N such that

A. (Groups of order 8.) (a) Which of the five groups G (as specified in the question) have the following property: G has a normal subgroup N such that MATH 402A - Solutions for the suggested problems. A. (Groups of order 8. (a Which of the five groups G (as specified in the question have the following property: G has a normal subgroup N such that N =

More information

Math 225A Model Theory. Speirs, Martin

Math 225A Model Theory. Speirs, Martin Math 225A Model Theory Speirs, Martin Autumn 2013 General Information These notes are based on a course in Metamathematics taught by Professor Thomas Scanlon at UC Berkeley in the Autumn of 2013. The course

More information

Algebraic structures I

Algebraic structures I MTH5100 Assignment 1-10 Algebraic structures I For handing in on various dates January March 2011 1 FUNCTIONS. Say which of the following rules successfully define functions, giving reasons. For each one

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

Lecture 6: Deterministic Primality Testing

Lecture 6: Deterministic Primality Testing Lecture 6: Deterministic Primality Testing Topics in Pseudorandomness and Complexity (Spring 018) Rutgers University Swastik Kopparty Scribe: Justin Semonsen, Nikolas Melissaris 1 Introduction The AKS

More information

The Shape of Congruence Lattices. Keith A. Kearnes Emil W. Kiss

The Shape of Congruence Lattices. Keith A. Kearnes Emil W. Kiss The Shape of Congruence Lattices Keith A. Kearnes Emil W. Kiss Author address: Department of Mathematics, University of Colorado, Boulder, CO 80309-0395, USA E-mail address: kearnes@euclid.colorado.edu

More information

Math 588, Fall 2001 Problem Set 1 Due Sept. 18, 2001

Math 588, Fall 2001 Problem Set 1 Due Sept. 18, 2001 Math 588, Fall 2001 Problem Set 1 Due Sept. 18, 2001 1. [Burris-Sanka. 1.1.9] Let A, be a be a finite poset. Show that there is a total (i.e., linear) order on A such that, i.e., a b implies a b. Hint:

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Recall: Parity of a Permutation S n the set of permutations of 1,2,, n. A permutation σ S n is even if it can be written as a composition of an

More information

Variations on a Theme: Fields of Definition, Fields of Moduli, Automorphisms, and Twists

Variations on a Theme: Fields of Definition, Fields of Moduli, Automorphisms, and Twists Variations on a Theme: Fields of Definition, Fields of Moduli, Automorphisms, and Twists Michelle Manes (mmanes@math.hawaii.edu) ICERM Workshop Moduli Spaces Associated to Dynamical Systems 17 April, 2012

More information

Commutative Algebra Lecture 3: Lattices and Categories (Sept. 13, 2013)

Commutative Algebra Lecture 3: Lattices and Categories (Sept. 13, 2013) Commutative Algebra Lecture 3: Lattices and Categories (Sept. 13, 2013) Navid Alaei September 17, 2013 1 Lattice Basics There are, in general, two equivalent approaches to defining a lattice; one is rather

More information

Nick Gill. 13th July Joint with Hunt (USW) and Spiga (Milano Bicocca).

Nick Gill. 13th July Joint with Hunt (USW) and Spiga (Milano Bicocca). 13th July 2016 Joint with Hunt and Spiga (Milano Bicocca). Overview Beautiful sets From here on, G is a group acting on a set Ω, and Λ is a subset of Ω. Write G Λ for the set-wise stabilizer of Λ. Write

More information

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a.

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a. Chapter 2 Groups Groups are the central objects of algebra. In later chapters we will define rings and modules and see that they are special cases of groups. Also ring homomorphisms and module homomorphisms

More information

Math 2070BC Term 2 Weeks 1 13 Lecture Notes

Math 2070BC Term 2 Weeks 1 13 Lecture Notes Math 2070BC 2017 18 Term 2 Weeks 1 13 Lecture Notes Keywords: group operation multiplication associative identity element inverse commutative abelian group Special Linear Group order infinite order cyclic

More information

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b),

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b), 16. Ring Homomorphisms and Ideals efinition 16.1. Let φ: R S be a function between two rings. We say that φ is a ring homomorphism if for every a and b R, and in addition φ(1) = 1. φ(a + b) = φ(a) + φ(b)

More information

The Vaught Conjecture Do uncountable models count?

The Vaught Conjecture Do uncountable models count? The Vaught Conjecture Do uncountable models count? John T. Baldwin Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago May 22, 2005 1 Is the Vaught Conjecture model

More information

Theorems and Definitions in Group Theory

Theorems and Definitions in Group Theory Theorems and Definitions in Group Theory Shunan Zhao Contents 1 Basics of a group 3 1.1 Basic Properties of Groups.......................... 3 1.2 Properties of Inverses............................. 3

More information

The Outer Automorphism of S 6

The Outer Automorphism of S 6 Meena Jagadeesan 1 Karthik Karnik 2 Mentor: Akhil Mathew 1 Phillips Exeter Academy 2 Massachusetts Academy of Math and Science PRIMES Conference, May 2016 What is a Group? A group G is a set of elements

More information

Group. Orders. Review. Orders: example. Subgroups. Theorem: Let x be an element of G. The order of x divides the order of G

Group. Orders. Review. Orders: example. Subgroups. Theorem: Let x be an element of G. The order of x divides the order of G Victor Adamchik Danny Sleator Great Theoretical Ideas In Computer Science Algebraic Structures: Group Theory II CS 15-251 Spring 2010 Lecture 17 Mar. 17, 2010 Carnegie Mellon University Group A group G

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

Lecture 4: Orbits. Rajat Mittal. IIT Kanpur

Lecture 4: Orbits. Rajat Mittal. IIT Kanpur Lecture 4: Orbits Rajat Mittal IIT Kanpur In the beginning of the course we asked a question. How many different necklaces can we form using 2 black beads and 10 white beads? In the question, the numbers

More information