ON OPTIMALITY AND CONSTRUCTION OF CIRCULAR REPEATED-MEASUREMENTS DESIGNS

Size: px
Start display at page:

Download "ON OPTIMALITY AND CONSTRUCTION OF CIRCULAR REPEATED-MEASUREMENTS DESIGNS"

Transcription

1 Statistica Sinica 27 (2017), oi: ON OPTIMALITY AND CONSTRUCTION OF CIRCULAR REPEATED-MEASUREMENTS DESIGNS R. A. Bailey 1,2, Peter J. Cameron 1,2, Katarzyna Filipiak 3, Joachim Kunert 4 an Augustyn Markiewicz 5 1 University of St Anrews, 2 University of Lonon, 3 Poznań University of Technology, 4 TU Dortmun University an 5 Poznań University of Life Sciences Abstract: The aim of this paper is to characterize an construct universally optimal esigns among the class of circular repeate-measurements esigns when the parameters o not permit balance for carry-over effects. It is shown that some circular weakly neighbour balance esigns efine by Filipiak an Markiewicz (2012) are universally optimal repeate-measurements esigns. These results exten the work of Maga (1980), Kunert (1984b), an Filipiak an Markiewicz (2012). Key wors an phrases: Circular weakly balance esign, repeate-measurements esign, uniform esign, universal optimality. 1. Introuction The problem of universal optimality of repeate-measurements esigns is wiely stuie in the literature. Most of the esigns consiere have the same number of perios as treatments; we also make this assumption. For experiments without a pre-perio, Heayat an Afsarineja (1978) an Cheng an Wu (1980) prove the universal optimality, for the estimation of irect as well as carry-over effects, of some balance uniform repeate-measurements esigns over a restricte class of competing esigns. If the number n of subjects is at most twice the number t of treatments, Kunert (1984a) showe that, for the estimation of irect effects, balance uniform esigns are universally optimal over the class of all esigns. Heayat an Yang (2003) extene this by showing universaloptimalityofbalanceuniformesignsifn t(t 1)/2. Kunert (1984a) also prove that if n is sufficiently large then a balance uniform esign is no longer optimal. Moreover, this esign is not universally optimal for the estimation of carry-over effects when certain other special esigns exist. Stufken (1991) constructe some universally optimal esigns using orthogonal arrays of type I. Jones, Kunert an Wynn (1992) prove universal optimality of some balance uniform esigns uner the moel with ranom carry-over effects.

2 2 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Kunert (1983) consiere repeate-measurements esigns with or without a pre-perio. He prove the universal optimality of some special generalize latin squares an generalize Youen esigns over particular classes of esigns. A repeate-measurements esign is calle circular if there is a pre-perio an, for each subject, the treatment on the pre-perio is the same as the treatment on the last perio. Maga (1980) prove the universal optimality of circular strongly balance uniform esigns (uniform CSBDs) an circular balance uniform esigns (uniform CBDs) over appropriate subclasses of possible esigns. Kunert (1984b) strengthene these results by showing the universal optimality of CBDs over all esigns. Recent constructions of CSBDs an CBDs have been given by Iqbal an Tahir (2009) using cyclic shifts an by Manal, Parsa an Gupta (2016) using integer programming. Universal optimality of some CBDs is also stuie assuming a moel of repeate measurements esigns in which perio effects are negligible. This simpler moel, in which carry-over effects play the role of left-neighbour effects, is known in the literature as an interference moel. Druilhet (1999) consiere optimality of CBDs for the estimation of irect as well as carry-over effects, while Bailey an Druilhet (2004) prove their optimality for the estimation of total effects. Filipiak an Markiewicz (2012) showe universal optimality of circular weakly balance esigns (CWBDs) for the estimation of irect effects only. In this paper we consier circular repeate-measurements esigns uner the full moel an uner two simpler moels. We show universal optimality, for the estimation of irect as well as carry-over effects, of CWBDs an we give methos of constructing some of them. For particular parameter sets, there exists a CWBD using fewer subjects than uniform CBDs. The iea of the possible reuction of number of subjects is suggeste by the results of Filipiak an Markiewicz (2012). 2. Moels an Designs Let D t,n,t be the set of circular esigns with t treatments, n experimental subjects, an t perios, each subject being given one treatment uring each perio. By (l, u), for 1 l t an 1 u n, we enote the treatment assigne to the uth subject in the lth perio. Maga (1980) propose a moel associate with the esign in D t,n,t : y lu = α l + β u + τ (l,u) + ρ (l 1,u) + ε lu, 1 l t, 1 u n, (2.1) where y lu is the response of the uth subject in the lth perio, an α l, β u, τ (l,u), an ρ (l 1,u) are, respectively, the lth perio effect, the uth subject effect, the irect effect of treatment (l, u), an the carry-over effect of treatment (l 1,u),

3 CIRCULAR WEAKLY BALANCED DESIGNS 3 where (0,u)=(t, u). The ε lu are uncorrelate ranom variables with common variance an zero mean. In vector notation moel (2.1) can be rewritten as y = Pα + Uβ + T τ + F ρ + ε. (2.2) Here y is the transpose of the vector y =(y 11,y 21,...,y tn ). Also, α, β, τ, an ρ are the vectors of perio, experimental subject, irect, an carry-over effects, respectively. Moreover, ε is the vector of ranom errors, with ε N(0 nt,σ 2 I nt ), where σ 2 is a positive constant, I n enotes the ientity matrix of orer n, an 0 n is the n-imensional vector of zeros. The matrices T an F are the esign matrices for irect an carry-over effects, respectively, while P = 1 n I t an U = I n 1 t are the incience matrices for perio an experimental subject effects, respectively, where 1 n is the n-imensional vector of ones an enotes the Kronecker prouct. Let H t =(h ij ) be the circulant matrix of orer t with h ij = 1 if j i = 1 or i =1,j = t, an h ij = 0 otherwise. Then F =(I n H t )T. In this paper we also consier simpler moels moel (2.2) without perio effects, y = Uβ + T τ + F ρ + ε, (2.3) an moel (2.2) without experimental subject effects, y = Pα + T τ + F ρ + ε. (2.4) In the context of experiments in agriculture an forestry, as iscusse by Azaïs, Bailey an Mono (1993), perios correspon to rows, subjects correspon to columns, an the carry-over effect correspons to the neighbour effect of the treatment to the North. The roles of rows an columns are frequently interchange in such literature, an so moel (2.3) is known as the interference moel with left-neighbour effects; cf., Druilhet (1999), Filipiak an Markiewicz (2012). Following Maga (1980), we say that a esign in D t,n,t is: (i) uniform on perios if all treatments occur equally often in each perio; (ii) uniform on subjects if each treatment occurs exactly once on each subject; (iii) uniform if it is uniform on both perios an subjects; (iv) circular strongly balance (CSBD) if the collection of orere pairs ((l 1,u),(l, u)), for 1 l t an 1 u n, contains each orere pair of treatments (istinct or not) λ 0 times, where λ 0 = n/t; (v) circular balance (CBD) if the collection of orere pairs ((l 1,u),(l, u)), for 1 l t an 1 u n, contains each orere pair of istinct treatments λ 1 times, where λ 1 = n/(t 1), an oes not contain any pair of equal treatments.

4 4 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ We aitionally efine circular weakly balance esigns. Let S = T F = (s ij ) 1 i,j t. The entry s ij is the number of appearances of treatment i precee by treatment j in the esign. Thus the rows an columns of S sum to the vector of treatment replications. Filipiak et al. (2008) calle the matrix S the left-neighbouring matrix. When the number of treatments is equal to the number of perios, Filipiak an Markiewicz (2012) calle a esign in D t,n,t (vi)circular weakly balance (CWBD) if the collection of orere pairs ((l 1,u),(l, u)), for 1 l t an 1 u n, contains each orere pair of istinct treatments λ or λ 1 times, where λ = n/(t 1), an (a) S 1 t = S 1 t = n1 t, so that each treatment has replication n; (b) S S is completely symmetric (all iagonal entries are equal an all offiagonal entries are equal). In this efinition x is the smallest integer greater than or equal to x. Wilkinson et al. (1983) efine partially neighbour balance esigns as esigns with s ij {0, 1} if i =j; however, their esigns are not circular, an they consier neighbours in more than one irection. Some methos of constructing circular partially neighbour-balance esigns are given by Azaïs, Bailey an Mono (1993). If is a CSBD then S = λ 0 J t, where J t = 1 t 1 t; if is a CBD then S = λ 1 (J t I t ). If is a CWBD but not a CBD then S is not completely symmetric but S S is. 3. Existence Conitions A necessary conition for the existence of a CBD with t perios is that (t 1) ivies n: see e.g., Druilhet (1999), while for the existence of a CWBD the expression n(n 2λ + 1) must be ivisible by t 1; cf., Filipiak an Markiewicz (2012). Parameters satisfying the necessary conition for the existence of a CWBD with t 19 an n<3(t 1) are liste in Table 1 of Filipiak an Markiewicz (2012). Let be a CWBD in D t,n,t which is not a CBD. Then λ = n/(t 1). Put k = n (λ 1)(t 1). (3.1) Since is not a CBD, 1 k t 2. Using this notation, the necessary conition for a CWBD given by Filipiak an Markiewicz (2012) is t 1 ivies k(k 2λ + 1). (3.2) Filipiak an Różański (2009) showe that if n = 1, or if t is even an n = 2, then all esigns are isconnecte in the sense that it is not possible to estimate all contrasts between irect effects an all contrasts between carry-over effects

5 CIRCULAR WEAKLY BALANCED DESIGNS 5 without bias. If is isconnecte then it cannot be consiere to be universally optimal; in fact, the proof of Theorem 3.1 of Filipiak an Markiewicz (2012) breaks own in this case. If n = 2 then (3.1) an (3.2) show that the only CWBD is a CBD for t = 3. From now on, we assume that n 3 an is connecte. Let A = S (λ 1)(J t I t ). Then A is a t t matrix whose iagonal entries are all zero an whose other entries are all in {0, 1}. Moreover, each row an column of A has k non-zero entries. Hence A J t = J t A = kj t. Therefore S S = [ (λ 1)(J t I t )+A ] [(λ 1)(Jt I t )+A ] =(λ 1) 2 [(t 2)J t + I t ]+2(λ 1)kJ t + A A (λ 1)(A + A ). Thus S S is completely symmetric if an only if A A (λ 1)(A + A ) is completely symmetric. (3.3) If it satisfies (3.3), we shall say that esign has Type I if A + A is completely symmetric; Type II if A + A is not completely symmetric an λ = 1; Type III if A + A is not completely symmetric an λ>1. If has Type I or II then A A is completely symmetric. The off-iagonal entries in each row of A A sum to k(k 1), so in this case k(k 1) is ivisible by t 1. If has Type I then k =(t 1)/2 an A + A = J t I t. Then t 1 ivies (t 1)(t 3)/4, an so t 3 mo 4. If k = 1 then A A = I t : thus cannot have Type III, an (3.1) shows that if has Type II then n = 1, which we exclue. Theorem 1. Suppose that is a CWBD in D t,n,t an is a CBD in D t,m,t, for some values of n an m. Then the esign in D t,n+m,t which juxtaposes an is a CWBD if an only if has Type I. Proof. If is a CBD then m is a multiple of t 1 an S is completely symmetric. Hence S = S + S an so A = A. Put λ = m/(t 1). Conition (3.3) for esign says that A A (λ + λ 1)(A + A ) is completely symmetric. (3.4) If has Type I then A A an A + A are both completely symmetric, an so conition (3.4) is satisfie an is a CWBD. Conversely, if is a CWBD then conitions (3.3) an (3.4) are both satisfie. Hence A + A is completely symmetric an so has Type I.

6 6 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Lemma 1. Suppose that is a CWBD in D t,n,t which has Type III. (a) If k =(t 1)/2 then λ k/2. (b) If k<(t 1)/2 then λ k. (c) If k>(t 1)/2 then λ t k 1. Proof. Put m 0 = max{0, 2k t}. If i j then m 0 (A A ) ij k (A +A ) ij. Let m 1 an m 2 be the smallest an largest off-iagonal entries in A + A. The entries in the corresponing positions of A A (λ 1)(A + A ) lie in the intervals [m 0 m 1 (λ 1),k m 1 λ]an[m 0 m 2 (λ 1),k m 2 λ] respectively. If the latter entries are equal then k m 2 λ m 0 m 1 (λ 1). (a) If k =(t 1)/2 but A + A is not completely symmetric then m 0 = 0, m 1 = 0 an m 2 = 2. Hence k 2λ 0. (b) If k<(t 1)/2 then m 0 = 0, m 1 = 0 an m 2 1. Hence k λ 0. (c) If k>(t 1)/2 then k t/2 an so m 0 =2k t. Also, m 2 = 2 an m 1 1. Hence k 2λ 2k t (λ 1). Theorem 2. If is a CWBD in D t,n,t an has Type II or III then is not uniform on the perios. Proof. If is uniform on the perios then t ivies n. If has Type II then n = k t 2, an so this is not possible. If t ivies n then equation (3.1) shows that t ivies k λ + 1. Lemma 1 shows that if has Type III then 0 <λ k<t 1 an so 0 <k λ +1<t, thus t cannot ivie k λ Optimality 4.1. Preliminaries Kunert (1984b) showe that any CBD which is uniform on subjects is universally optimal for the estimation of irect as well as carry-over effects uner moel (2.3) over the class D t,n,t. Druilhet (1999) extene this to esigns where the number of perios is any multiple of t. Filipiak an Markiewicz (2012) efine circular weakly neighbour balance esigns to be CWBDs for t perios which are uniform on subjects; they showe their universal optimality for the estimation of irect effects uner moel (2.3) over the class D t,n,t with n t 1, an over the class of equireplicate esigns without self-neighbours if n>t 1. One aim of this paper is to prove universal optimality for the estimation of irect as well as carry-over effects of uniform CWBDs, CWBDs uniform on subjects, an CWBDs uniform on perios uner moels (2.2), (2.3) an (2.4), respectively. We are intereste in etermining esigns with minimal (in some sense) variance of the best linear unbiase estimator of the vector of parameters. Kiefer

7 CIRCULAR WEAKLY BALANCED DESIGNS 7 (1975) formulate the universal optimality criterion in terms of the information matrix, which is the inverse of the variance-covariance matrix; cf., Pukelsheim (1993). Therefore, following Proposition 1 of Kiefer (1975), we suppose that a class C = {C : D t,n,t } of non-negative efinite information matrices with zero row an column sums contains a matrix C which is completely symmetric an has maximal trace over D t,n,t. Then the esign is universally optimal in Kiefer s sense in the class D t,n,t. For a κ 1 κ 2 matrix K efine ω (K) =I κ1 K(K K) K = I κ1 ω(k) as the orthogonal projector onto the orthocomplement of the column space of K, where (K K) is a generalize inverse of K K. Then the information matrix for the least squares estimate of τ uner moel (2.g), g =2, 3, 4, is given by C (g) = T ω (Z (g) )T with zero row an column sums, where Z (g) is a block matrix containing the esign matrices of nuisance parameters, Z (2) =(P : U : F ), Z (3) =(U : F ), an Z (4) =(P : F ); cf., e.g., Kunert (1983, 1984a,b). Since ω((a : B)) = ω(a)+ω(ω (A)B), we may rewrite the matrix C (g) as C (g) = T ω (F )T T ω(ω (F )W (g) )T, with W (2) =(P : U), W (3) = U, an W (4) = P. Similarly, Kunert (1984b) showe that the information matrix for the least squares estimate of ρ uner moel (2.g), g =2, 3, 4, is C (g) = F ω ( Z (g) )F = F ω (T )F F ω(ω (T )W (g) )F, with Z (2) =(P : U : T ), Z(3) =(U : T ), an Z (4) =(P : T ) Optimality results Filipiak an Markiewicz (2012) showe that for a CWBD, S S = φi t + ξj t with φ = n(2λ 1) λ(λ 1)t n(n 2λ+1)/(t 1) an ξ = λ(λ 1)+n(n 2λ+ 1)/(t 1). Since S is nonsingular an commutes with J t, pre-multiplying by S an post-multiplying by (S ) 1 we get S S = S S ; cf., Raghavarao (1971, Theorem 5.2.1), Filipiak an Markiewicz (2016). Moreover, since for a CWBD T ω (F )T = ni t n 1 S S = F ω (T )F, the following hols. Proposition 1. Assume is a CWBD. Uner moels (2.2), (2.3) or (2.4), if is uniform, uniform on subjects, or uniform on perios, respectively, then is universally optimal for the estimation of irect effects if an only if is universally optimal for the estimation of carry-over effects.

8 8 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Let Λ t,n,t be the class of esigns in D t,n,t with no treatment precee by itself. Using the above proposition we can exten Theorem 3.1 an Theorem 3.2 of Filipiak an Markiewicz (2012), in which optimality of CWBDs for the estimation of irect effects was shown, as follows. Theorem 3. If there exists a CWBD in D t,n,t which is uniform on subjects, then it is universally optimal for the estimation of carry-over effects uner moel (2.3) over the collection of esigns in D t,n,t if n t 1, an over the collection of equireplicate esigns in Λ t,n,t otherwise. If a esign is uniform on perios then t ivies n an so n>t 1. The following theorem can be prove in the same way as Theorem 3.2 of Filipiak an Markiewicz (2012) using aitionally Proposition 1 of this paper. Theorem 4. Assume that t>2 an n>t 1. If there exists a CWBD in Λ t,n,t which is uniform on perios, then it is universally optimal for the estimation of irect as well as carry-over effects uner moel (2.4) over the collection of equireplicate esigns in Λ t,n,t. For the two moels with subject effects, we now show optimality over a broaer class of esigns than in Theorem 4. Theorem 1 shows that if is a CWBD which is not a CBD, then we can make larger CWBDs by juxtaposing with one or more CBDs only if has Type I. Therefore, we restrict attention to the case that k =(t 1)/2, where t 3 mo 4, an n is an o multiple of (t 1)/2. It follows from Theorem 2 that a uniform CWBD which is not a CBD can only exist if, aitionally, n is an o multiple of t(t 1)/2. For such esign parameters, λ = n/(t 1)+1/2. We enote by n iu the number of times that treatment i appears in the uth subject (T U = F U =(n iu)), an by r i the number of times that treatment i appears in the esign. As shown by e.g., Kunert (1984b), if g = 2 or g = 3 then t tr C (g) r i 1 t n t t n 2 iu t (s ij (1/t) n n iun ju ) 2. (4.1) r j i=1 i=1 i=1 j=1 We begin with a technical lemma, an omit the straightforwar proof. Lemma 2. If x 1,x 2,...,x b satisfy b i=1 x i = c then b i=1 x2 i c2 /b. Proposition 2. If j is a treatment in esign in Λ t,n,t then t ( s ij 1 n ) 2 rj 2 n iu n ju t t(t 1). i=1

9 CIRCULAR WEAKLY BALANCED DESIGNS 9 Proof. For all competing esigns all s jj = 0. Therefore, t (s ij 1 n n iu n ju )= 1 n n 2 ju t t + (s ij 1 t i=1 i =j It follows that (s ij 1 t i =j n n iu n ju )= 1 t Applying Lemma 2, we conclue that t (s ij 1 n n iu n ju ) 2 = 1 ( n t t 2 i=1 1 t 2 ( n = n 2 ju n 2 ju 1 ( n t(t 1) n n 2 ju. ) 2 + (s ij 1 t i =j n n iu n ju ). ) ( n + t 1 t 2 n 2 ju n n iu n ju ) 2 ) 2 rj 2 t(t 1). Proposition 3. For a esign Λ t,n,t efine a = t n i=1 max{n iu 1, 0}. Then t n n 2 iu nt +2a. i=1 Proof. For 1 i t an 1 u n, efine e iu = n iu 1. Then all e iu are integers an, therefore, e 2 iu e iu. Since t n i=1 n iu = nt, we have eiu = 0 an, since the sum of all positive e iu equals a, we conclue that eiu =2a. In all, we get t n n 2 iu = i=1 t i=1 = nt +2 n (e iu + 1) 2 t i=1 n e iu + t i=1 n 2 ju ) 2 n e 2 iu nt +2a. We immeiately get a first boun for the trace of the information matrix which epens on a. Proposition 4. For any esign Λ t,n,t an g =2, 3 we have tr C (g) n(t 1 1 t 1 ) 2a t. Proof. The boun is well-known; it was use by Kunert (1984a,b). If a is small, we get a sharper boun, erive in the next proposition.

10 10 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Proposition 5. If t 5 an esign has a < (t 1)/2 then, for g =2, 3, ( tr C (g) n t 1 1 ) 2a ( t 1 (t 2a ) t 1 t 4n 2a ). nt Proof. There are at most 2a of the n iu not equal to 1. Since a < (t 1)/2, we conclue that there must be at least t 2a treatments j such that n ju =1 for 1 u n. Define J as the set of all such treatments. Assume without loss of generality that treatment t is in J. Then r t = n. Since we consier the circular neighbour structure, t i=1 s it = r t = n. Without loss of generality we can assume that the treatments are labelle in such a way that s 1t s 2t s,t 1,t. Recall that 2k = t 1 an λ = n/(t 1)+1/2. If s kt λ 1 then t 1 i=k+1 s it ks kt = k(λ 1) = (n k)/2. Since t 1 i=1 s it = n, this implies that k i=1 s it (n+k)/2. Otherwise, s kt λ an so k i=1 s it kλ =(n+k)/2 again. Hence Now put c = k i=1 (s it r i /t). The efinition of a gives k i=1 r i kn+a. c = i=1 k s it 1 t i=1 k i=1 r i n + k 2 1 ( ) (t 1)n + a t 2 It follows that c > n/(2t) because a <kan t>2. Furthermore, t ( 0= s it r ) t 1 ( i = c+ s it r ) i +s tt r t 1 ( t = c+ t t t i=1 i=k+1 = n 2t + k 2 a t. (4.2) i=k+1 an therefore t 1 i=k+1 (s it r i /t) =n/t c. Then Lemma 2 gives t ( s it r ) i 2 n 2 t t [ ( n ) ] 2 c 2 + k t c. i=1 s it r i t Since c > n/(2t), this boun is increasing in c. Therefore (4.2) gives t ( s it r ) i 2 n 2 t t ( n 2 k 4t 2 + k2 4 ka ) + a2 t t 2 n2 t(t 1) + k 2 2a t. Since n tu = 1 for 1 i n, this shows that t ( s it 1 n ) 2 t ( n iu n tu = s it r i t t i=1 i=1 ) 2 n 2 t(t 1) + k 2 2a t. ) n t The same boun applies when treatment t is replace by any treatment j in J. For all other treatments j, we use the boun in Proposition 2. Inserting these, an the boun in Proposition 3, into (4.1), we get, for g = 2, 3,

11 tr C (g) CIRCULAR WEAKLY BALANCED DESIGNS 11 nt 1 t (nt +2a ) = nt 1 t (nt +2a ) j J t j=1 r j t(t 1) j J ( r j t 1 t(t 1) J 4n ( n t(t 1) + t 1 ) 4n 2a nt ) 2a, nt where we have use the fact that r j = n for all j J, an where J is the number of elements of J. Due to the restrictions that a < (t 1)/2 an t 5, we observe that (t 1)/(4n) 2a /(nt) > (t 1)(t 4)/(4nt) > 0. Since J t 2a, it follows that, for g =2, 3, tr C (g) nt 1 t (nt +2a ) n ( t 1 t 1 (t 2a ) 4n 2a ), nt which implies the esire inequality. Now we can prove our main optimality result. Theorem 5. Assume that t 5 an that n t(t 1)/2. Assume that t is o an that n is an o multiple of (t 1)/2. If is a uniform CWBD in Λ t,n,t then is universally optimal for the estimation of irect as well as carry-over effects over the esigns in Λ t,n,t uner moel (2.2). If is a CWBD in Λ t,n,t which is uniform on subjects, then is universally optimal for the estimation of irect as well as carry-over effects over the esigns in Λ t,n,t uner moel (2.3). Proof. If the esign has a = 0, we get from Proposition 5 that, for g =2, 3, ( tr C (g) n t 1 1 ) t(t 1) t 1 4n, which is the trace of the information matrix of the CWBD. Consiering the simple boun erive in Proposition 4, we see that any esign Λ t,n,t can only perform better than if t(t 1) 4n 2a t. Since we restrict to the case n t(t 1)/2, the left-han sie is less than or equal to 1/2. If, however, a (t 1)/2, then the right-han sie is at least (t 1)/t > 1/2. Therefore, we only have to consier esigns with a < (t 1)/2 an the boun in Proposition 5 applies. Taking the erivative of ( f(a) =n t 1 1 ) 2a ( t 1 t 1 t (t 2a) 4n 2a ) nt

12 12 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ with respect to a, we get f (a)= 2 t +2 ( t 1 4n = 2 t + 2(t 1) 4n 2a ) ( (t 2a) 2 ) nt nt + 2t nt 4a nt 4a nt 8n +2t(t 1)+8t 32a = 4nt 4t(t 1)+2t(t 1)+8t = 4nt (t 1)+4 2n 0. This, however, implies that the boun from Proposition 5 is largest for a = 0, an for any esign Λ t,n,t we have tr C (g) tr C (g), for g =2, Constructions In this section we suppose that is a CWBD in D t,n,t which is not a CBD. For each type of CWBD, we give constructions for a suitable matrix A an then search for a esign with A = A. By Theorem 2, only Section 5.1 inclues uniform CWBDs Designs of Type I For a esign of Type I, we have t 3 mo 4 an k =(t 1)/2. We nee a t t matrix A which has zero entries on the iagonal, k entries equal to 1 in each row an column, an all other entries zero; it must also satisfy (a) A + A = J t I t an (b) A A = φi t + ξj t with φ =(t + 1)/4 an ξ =(t 3)/4. The matrix A can be regare as the ajacency matrix of a irecte graph Γ on t vertices: there is an arc from vertex i to vertex j if an only if A ij = 1. This irecte graph is calle a oubly regular tournament precisely when the matrix A satisfies the foregoing conitions, see Rei an Brown (1972). For a esign which is a CWBD, is uniform on subjects, an has λ = 1, we nee a ecomposition of a oubly regular tournament Γ into Hamiltonian cycles. One construction of oubly regular tournaments uses finite fiels. If t is a power of an o prime then there is a finite fiel GF(t) of t elements. If t is prime then GF(t) is the same as Z t, which is the ring of integers moulo t. Let S be the set of non-zero squares in GF(t), an N the set of non-squares. If t 3mo4 then 1 N; in this case, if we label the vertices of Γ by the elements of GF(t) an efine the ajacency matrix A by putting A ij = 1 if an only if j i S, then Γ is a oubly regular tournament, see Lil an Nieerreiter (1997). By reversing all the eges of Γ, we obtain another oubly regular tournament, which can be mae irectly by using N in place of S.

13 CIRCULAR WEAKLY BALANCED DESIGNS 13 If t is itself prime, then there is an obvious Hamiltonian ecomposition of Γ: the circular sequences have the form (0, s, 2s,...,(t 1)s) for s in S. Construction 1. Suppose that t 3 mo 4 an t is prime with t>3. Put n =(t 1)/2. Label the t treatments an the t perios by the elements of Z t, an the n subjects by the elements of S. Define the esign by (l, u) =lu for l in Z t an u in S. Then is a CWBD which is uniform on the subjects with λ = 1. Example 1. When t = 7 we have S = {1, 2, 4}. We obtain the esign in Figure 1(a), where the entries are integers moulo 7. (In every figure, the rows enote perios an the columns enote subjects.) Example 2. When t = 11 we have S = {1, 3, 4, 5, 9}. This gives the esign in Figure 1(b), where the entries are integers moulo 11. For n>1, Construction 1 eals with t = 7, 11, 19, 23 an 31 for t<35. Suitable matrices A also exist for many other values of t. Rei an Brown (1972) showe that the (t + 1) (t + 1) matrix [ 1 1 t ] 1 t J t 2A is a skew-haamar matrix if an only if A is the ajacency matrix of a oubly regular tournament. Skew-Haamar matrices of orer t + 1 are conjecture to exist whenever t + 1 is ivisible by 4. This has been verifie for t < 187: see Craigen (1996). Rei an Brown (1972) give the following oubling construction. If A 1 is the ajacency matrix of a oubly regular tournament Γ 1 on t vertices an A 2 = A 1 0 t A 1 + I t 1 t 0 0 t A 1 1 t A 1, (5.1) then A 2 is the ajacency matrix of a oubly regular tournament Γ 2 on 2t +1 vertices. Example 3. Let t = 15. Take Γ 1 to be the oubly regular tournament use in Example 1. The oubling construction (5.1) gives the ajacency matrix A 2 of a oubly regular tournament Γ 2 on 15 vertices. Label the vertices, in orer, 0, 1, 2, 3, 4, 5, 6,, 0,1,2,3,4,5 an 6. For x in GF(7), there is an arc from to x an an arc from x to. For x an y in GF(7), there is an arc from x to y if y x N; an arc from x to y if x = y or y x S; an arc from x to y if y x S; an an arc from x to y if y x S.

14 14 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ (a) (b) (c) Figure 1. Three CWBDs for t treatments on n subjects in t perios which are uniform on the subjects: (a) t = 7 an n = 3; (b) t = 11 an n = 5; (c) t = 15 an n = 7. To fin a CWBD which is uniform on subjects, we use GAP (2014) to fin a irecte cycle ϕ of length 15 starting (, 0,...)inΓ 2 with the extra property that if i is any non-zero element of GF(7), then the cycles ϕ an ϕ + i have no arc in common. Here we use the conventions that if ϕ =(ϕ 1,...,ϕ 15 ) then ϕ + i =(ϕ 1 + i,...,ϕ 15 + i), where + i = an x + i =(x + i) for x an i in GF(7). GAP (2014) foun all such cycles. There are 120, an they come in groups of three because if ϕ is such a cycle an s Sthen sϕ is also such a cycle (here the convention is that sϕ =(sϕ 1,...,sϕ 15 ), where s = an s x =(sx) for s an x in GF(7)). For each such cycle ϕ, the collection of cycles ϕ, ϕ +1,..., ϕ + 6 gives a CWBD for 15 treatments on 7 subjects in 15 perios which is uniform on subjects an for which A = A 2. One of these is shown in Figure 1(c). Alternatively, the function FinHamiltonianCycles in Mathematica 9.0 can be use to fin a Hamiltonian ecomposition of Γ 2. For t = 3, Construction 1 gives a esign with n = 1 that is isconnecte. In orer to obtain a connecte CWBD which is not a CBD, we nee to use one of the sequences (0, 1, 2) an (0, 2, 1) twice, an the other one once. If esign is mae by Construction 1 then a uniform esign with t(t 1)/2 subjects may be obtaine by replacing the sequence ϕ for each subject by the sequences ϕ+i for all i in GF(t). However, this has the effect that S = ts, so is not a CWBD, because the off-iagonal entries of S inclue both 0 an

15 CIRCULAR WEAKLY BALANCED DESIGNS 15 t. Thus we nee a ifferent construction for uniform CWBDs. Again, we use GF(t), where t 3 mo 4. If x an y are both in S or N then xy S; if one is in S an the other in N then xy N: see Lil an Nieerreiter (1997). If ϕ is any sequence (ϕ 1,...,ϕ m ) of elements of GF(t), we enote by ϕ δ the sequence (ϕ 2 ϕ 1,ϕ 3 ϕ 2,...,ϕ m ϕ m 1,ϕ 1 ϕ m ) of successive circular ifferences in ϕ. Further, let f 0 (ϕ δ ), f S (ϕ δ ) an f N (ϕ δ ) be the number of entries of ϕ δ which are in {0}, S an N, respectively. Definition 1. Let ϕ be a sequence of length t whose entries are in GF(t), where t is a prime power congruent to 3 moulo 4. Then ϕ is beautiful if the entries in ϕ are all ifferent an f S (ϕ δ )=f N (ϕ δ ) ± 1. If all of the entries of ϕ are ifferent then f 0 (ϕ δ ) = 0. Thus if ϕ has length t then it is beautiful if an only if f S (ϕ δ ) {k, k +1}. Construction 2. Given a beautiful sequence ϕ =(ϕ 1,...,ϕ t ) of all the elements of GF(t), form the t(t 1)/2 sequences sϕ + i for all s in S an all i in GF(t). Create the esign by using each of these sequences for one subject. Theorem 6. Suppose t 3mo4an t is a prime power. If ϕ is beautiful then the esign given by Construction 2 is a uniform CWBD. Proof. The entries in ϕ are all ifferent, so the entries in sϕ + i are all ifferent for each value of s an i. Therefore each treatment occurs once on each subject, so is uniform on subjects an no treatment is precee by itself. For each fixe s in S, every element of GF(t) occurs once in each perio among the t sequences sϕ + i, as i varies in GF(t). Therefore is uniform. Consier perio j. Put ϕ δ j = v. Let i GF(t) an s S. Treatment i occurs in perio j of the sequence sϕ + i sϕ j. The treatment in perio j +1 of this sequence is sϕ j+1 + i sϕ j = i + sv. If v Sthen {sv : s S} = S, an so every orere pair of treatments of the the form (i, i + q), for i in GF(t) an q in S, occurs exactly once in perios j an j + 1. Otherwise, if v N then {sv : s S} = N, an so every orere pair of treatments of the the form (i, i + q), for i in GF(t) an q in N, occurs exactly once in perios j an j + 1. Thus if w i Sthen (i, w) occurs f S (ϕ δ ) times in the esign, while if w i N then (i, w) occurs f N (ϕ δ ) times. If ϕ is beautiful then the offiagonal entries of S are in {k, k +1} an A is the ajacency matrix of one of the oubly regular tournaments efine by S or N. Hence is a CWBD. Example 4. Let t = 7 an ϕ = (3, 1, 0, 2, 6, 4, 5), where the entries are the integers moulo 7. Then ϕ δ = (5, 6, 2, 4, 5, 1, 5). Here S = {1, 2, 4} an N = {3, 5, 6}, an so f S (ϕ δ )=3anf N (ϕ δ ) = 4. Thus ϕ is beautiful. Hence Construction 2 gives a uniform CWBD for 7 treatments on 21 subjects in 7 perios.

16 16 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Now let x be any primitive element of GF(t); that is, x is a generator of the cyclic group (GF(t) \{0}, ). The even powers of x constitute S, while the o powers constitute N. Let ψ be the sequence (1, x, x 2,...,x t 2 ). Then ψ contains each non-zero element of GF(t) exactly once. The entries in ψ δ are x 1, x(x 1),...,x t 3 (x 1) an 1 x t 2, which is x t 2 (x 1). These are again all the non-zero elements of GF(t) exactly once, an so f S (ψ δ )=f N (ψ δ )=k. Theorem 7. Let t be a prime power congruent to 3 moulo 4 with t>3. If x is a primitive element of GF(t) an ϕ is obtaine from ψ by replacing (1,x) with (x, 1, 0), then ϕ is beautiful. Proof. If t>3, the substitution removes 1 x 1, x 1 an x 2 x from ψ δ, an replaces them in ϕ δ by x x 1,1 x, 1 an x 2. None of these is zero if t>3. Now, 1 N an x 2 S. Since x N, one of x 1 an x(x 1) is in S an the other is in N. Since 1 x 1 =( x 1 )(1 x) an x 1 S, the entries 1 x 1 an 1 x are either both in S or both in N. Thus f S (ϕ δ )=f S (ψ δ )+1=k +1 if x x 1 S, while f S (ϕ δ )=f S (ψ δ )=k if x x 1 N. If t = 7 then 3 is a primitive element. The construction in Theorem 7 gives the beautiful sequence ϕ in Example 4. Theorems 6 7 show that there is a uniform CWBD for t treatments on t(t 1)/2 subjects in t perios whenever t is a prime power congruent to 3 moulo 4 an t>3. This covers t = 7, 11, 19, 23, 27 an 31 for t< Designs of Type II For a esign of Type II, we have n = k, where 2 k t 2. Also, conition (3.2) shows that t 1 ivies k(k 1). We nee a t t matrix A which has k entries equal to 1 in each row an column, an all other entries zero, in such a way that A A = φi t + ξj t with φ = k(t k)/(t 1) an ξ = k(k 1)/(t 1). The matrix A can be regare as the incience matrix of a symmetric balance incomplete-block esign (BIBD) : treatment i is in block j if an only if A ij = 1. Given such a esign, Hall s Marriage Theorem (Bailey (2008), Cameron (1994), Hall (1935)) shows that the treatments an blocks can be labelle in such a way that the iagonal entries of A are all zero. Now our strategy is to fin a known BIBD of the appropriate size, label its blocks in such a way that the iagonal entries of A are all zero, an then try to fin a CWBD which is uniform on subjects for which λ = 1 an S = A = A. The conition that t 1 ivies k(k 1) is not sufficient to guarantee the existence of a BIBD. The Bruck Ryser Chowla Theorem shows that some pairs (t, k) have no BIBD: see Cameron (1994). For t<35, the following pairs are exclue by this theorem: (22, 7), (22, 15), (29, 8), (29, 21), (34, 12) an (34, 22).

17 CIRCULAR WEAKLY BALANCED DESIGNS 17 Some BIBDs can be constructe from ifference sets, see Hall (1986). If (G, +) is a finite Abelian group an P G, then P is calle a ifference set if every non-zero element of G occurs equally often among the ifferences x y for x an y in P with x y. When G is the aitive group of GF(t) an t 3mo4 then S an N are both ifference sets. If P is a ifference set then so is its complement P, an so is the set P + i = {x + i : i P} for each i in G. If i/ P then P i is a ifference set that oes not contain 0. In particular, when t is a prime power an t 3 mo 4 then S 1 is a ifference set with k =(t + 1)/2 that oes not contain 0. To obtain a BIBD from the ifference set P, label the treatments an blocks by the elements of G, an put A ij = 1 if an only if j i P. As above, we can assume that 0 / P, an then the iagonal entries of A are all zero. Difference sets give a generalization of Construction 1. Construction 3. Suppose P is a ifference set of size k in Z t, that 0 / P, an that all elements of P are coprime to t. Label the t treatments an the t perios by the elements of Z t, an the k subjects by the elements of P. Define the esign by (l, u) =lu for l in Z t an u in P. Then is a CWBD which is uniform on subjects with λ = 1. Example 5. When t = 7 an k = 4 we have the ifference set S 1 ={2, 4, 5, 6}. Then Construction 3 gives a CWBD for 4 subjects which is uniform on subjects. Difference sets exist for many other values of t an k satisfying the ivisibility conitions, see Baumert (1971) an Table 2 of Filipiak an Markiewicz (2012). For example, when t = 13 then {1, 2, 5, 7} an {2, 3, 5, 7, 8, 9, 10, 11, 12} are both ifference sets in Z 13. Construction 3 gives CWBDs that are uniform on subjects, one for 4 subjects an one for 9 subjects. When t = 31, {1, 2, 4, 9, 13, 19} is a ifference set in Z 31. Thus Construction 3 gives CWBDs uniform on subjects, one for 6 subjects an one for 25 subjects. A result of Mann (1964) shows that there is no ifference set of size 9 or 16 for Z 25. Theorems of Laner (1983) rule out ifference sets of size k or t k for Z t when (t, k) is (16, 6), (27, 13) or (31, 10). There is a ifference set of size 8 for Z 15, but its elements are not all coprime to 15, so Construction 3 cannot be use. The same problem occurs for k = 5 an k = 16 when t = 21. If A is symmetric then it can also be regare as the ajacency matrix of an unirecte graph. If A A is completely symmetric then every pair of istinct vertices have the same number of common neighbours. Such graphs were stuie by Ruvalis (1971). If such a graph has a Hamiltonian ecomposition then using each cycle once in each irection gives a CWBD which is uniform on subjects.

18 18 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Example 6. The smallest such graph is the square lattice graph L 2 (4), which has 16 vertices an valency 6. Every pair of istinct vertices has exactly two common neighbours. The vertices form a 4 4 gri. There is an ege between i an j if i j but i an j are in the same row or i an j are in the same column. Label the vertices row by row, so that the first row is (1, 2, 3, 4), an so on. Let π be the permutation (2, 3, 4)(5, 9, 13)(6, 11, 16)(7, 12, 14)(8, 10, 15) of the vertices, which is an automorphism of L 2 (4). There is a Hamiltonian ecomposition of L 2 (4) which is invariant uner π. Using each of these cycles in both irections gives the esign in Figure 2(a). The Shrikhane graph is another graph with 16 vertices, valency 6, an the common-neighbour property, see Seiel (1968). Using GAP (2014), we foun that it has a large number of Hamiltonian ecompositions. Each gives a CWBD that cannot be obtaine from the one in Figure 2(a) by renaming treatments. Example 7. The Clebsch graph Ω is another such graph with 16 vertices, see Seiel (1968). It has valency 10, an every pair of istinct vertices has exactly 6 common neighbours. The vertices are the vectors of length 5 over GF(2) of even weight (equivalently, the treatments in the factorial esign with efining contrast ABCDE = I); two vertices are joine if they iffer in precisely two positions. The permutation π taking (x 1,x 2,x 3,x 4,x 5 ) to (x 2,x 3,x 4,x 5,x 1 ) is an automorphism of Ω. Using GAP (2014), we foun a very large number of Hamiltonian ecompositions of Ω which are invariant uner π (as in Example 6, it is sufficient to fin a single Hamiltonian cycle which has no eges in common with any of its images uner powers of π). For any one of these ecompositions, using each cycle in both irections gives the require CWBD. One is shown in Figure 2(b), where vertex (x 1,x 2,x 3,x 4,x 5 ) is ientifie as the integer 8x 1 +4x 2 +2x 3 + x For t>16, Ruvalis (1971) showe that the smallest value of t for which there exists a graph with the common-neighbour property is t = Designs of Type III For a esign of Type III, we consier A to be the ajacency matrix of a irecte graph Ξ. Now λ 1 an conition (3.3) is satisfie. However, neither A A nor A + A is completely symmetric, so at most one value of λ is possible for any given irecte graph Ξ. As in Section 5.1, we buil larger matrices from smaller ones. Let A 1 be the ajacency matrix of a oubly regular tournament Γ on r vertices, where r =4q+3. Let t = mr, where m 2, an put A 2 = J m (I r +A 1 ) I t. Then A 2 +A 2 = J m (J r +I r ) 2I t an A 2 A 2 =(mq+m 1)J m (J r +I r )+I t. Thus A 2 satisfies conition (3.3) with λ = m(q + 1), k =2m(q + 1) 1, an n = m 2 (4q + 3)(q + 1) m(3q + 2).

19 CIRCULAR WEAKLY BALANCED DESIGNS (a) (b) Figure 2. Two CWBDs for 16 treatments on n subjects in 16 perios which are uniform on the subjects: (a) n = 6; (b) n = 10. Example 8. When q = 0 we may let A 1 be the ajacency matrix of the oubly regular tournament efine by S in GF(3). When m = 2 then t = 6, n = 8, an A 2 is A for the esign in Example 4.4 of Filipiak an Markiewicz (2012) with its treatments written in the orer 1, 3, 5, 6, 2, 4. Babai an Cameron (2000) give a oubling construction for what they call an S-igraph. Let A 1 be the ajacency matrix of a oubly regular tournament Γ on r vertices, where r =4q + 3. Put A 2 = 0 1 r 0 0 r 0 r A 1 1 r A r 0 1 r 1 r A 1 0 r A 1 an I 8q =(J 2 I 2 ) I 4q. Then the S-igraph Ξ has ajacency matrix A 2. Now, A 2 + A 2 = J 8q I 8q I 8q an A 2 A 2 = (4q + 3)I 8q + (2q + 1)(J 8q I 8q I 8q ). Thus A 2 satisfies conition (3.3) with t = 8(q + 1), k =4q + 3, λ = 2(q + 1), an n = 16q q Example 9. If q = 0 an an A 1 is as in Example 8, then this oubling construction gives a matrix A 2 which, after relabelling of the treatments, is the matrix A for the esign in Example 4.3 of Filipiak an Markiewicz (2012). If t/ {4, 6}, then there is a CBD for t treatments with n = t 1 an λ = 1, see Tillson (1980). Examples for t = 3, t = 5, an 7 t 16 are given by

20 20 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Azaïs, Bailey an Mono (1993). When t = 4 or t = 6 then there is a CBD with n = 2(t 1), an there is no CWBD for t = 4 with n 5. Thus Type III esigns o not give a CWBD with fewer subjects than a CBD unless t = 6. However, in a situation like Example 9, the CWBD with 10 subjects gives lower variances of all treatment estimators than the CBD with 7 subjects, so there may still be some interest in constructing such esigns. The methos in this section give two possible ways of constructing the matrix A. A computer search shoul quickly fin whether the corresponing igraph Ξ has a Hamiltonian ecomposition. If so, this can be juxtapose with λ 1 copies of the relevant CBD to obtain a CWBD. Acknowlegements This paper was starte in the Isaac Newton Institute for Mathematical Sciences in Cambrige, UK, uring the 2011 programme on the Design an Analysis of Experiments. This research was partially supporte by the National Science Center Grant DEC-2011/01/B/ST1/01413 (K. Filipiak an A. Markiewicz) an by the Collaborative Research Center Statistical moeling of nonlinear ynamic processes (SFB 823, Teilprojekt C2) of the German Research Founation (J. Kunert). Part of the work was one while R. A. Bailey an P. J. Cameron hel Hoo Fellowships at the University of Aucklan in References Azaïs, J.-M., Bailey, R. A. an Mono, H. (1993). A catalogue of efficient neighbour-esigns with borer plots. Biometrics 49, Babai, L. an Cameron, P. J. (2000). Automorphisms an enumeration of switching classes of tournaments. Electron. J. Combin. 7, article #R38 (25pp.) Bailey, R. A. (2008). Design of Comparative Experiments. Cambrige University Press, Cambrige. Bailey, R. A. an Druilhet, P. (2004). Optimality of neighbour balance esigns for total effects. Ann. Statist. 32, Baumert, L. D. (1971). Cyclic Difference Sets. Springer-Verlag, Berlin. Cameron, P. J. (1994). Combinatorics: Topics, Techniques, Algorithms. Cambrige University Press, Cambrige. Cheng, C.-S. an Wu, C.-F. (1980). Balance repeate measurements esigns. Ann. Statist. 8, Craigen, R. (1996). Chapter IV.24 Haamar matrices an esigns. In The CRC Hanbook of Combinatorial Designs (Eite by Charles J. Colbourn an Jeffrey H. Dinitz), CRC Press, Boca Raton. Druilhet, P. (1999). Optimality of circular neighbor balance esigns. J. Statist. Plann. Inference 81,

21 CIRCULAR WEAKLY BALANCED DESIGNS 21 Filipiak, K. an Markiewicz, A. (2012). On universal optimality of circular weakly neighbor balance esigns uner an interference moel. Comm. Statist. Theory Methos 41, Filipiak, K. an Markiewicz, A. (2016). Universally optimal esigns uner interference moels with an without block effects. Comm. Statist. Theory Methos. DOI: / Filipiak, K. an Różański, R. (2009). Connecteness of complete block esigns uner an interference moel. Statist. Papers 50, Filipiak, K., Różański R., Sawikowska A. an Wojtera-Tyrakowska D. (2008). On the E- optimality of complete esigns uner an interference moel. Statist. Probab. Lett. 78, Hall, M. (1986). Combinatorial Theory. 2n eition. Wiley, New York. Hall, P. (1935). On representatives of subsets. J. Lon. Math. Soc. 10, Heayat, A. an Afsarineja K. (1978). Repeate measurements esigns, II. Ann. Statist. 6, Heayat, A. an Yang M. (2003). Universal optimality of balance uniform crossover esigns. Ann. Statist. 31, Iqbal, I. an Tahir, M. H. (2009). Circular strongly balance repeate measurements esigns. Comm. Statist. Theory Methos 38, Jones, B., Kunert, J. an Wynn, H. (1992). Information matrices for mixe effects moels with applications to the optimality of repeate measurements esigns. J. Statist. Plann. Inference 33, Kiefer, J. (1975). Construction an optimality of generalize Youen esigns. In A Survey of Statistical Design an Linear Moels (Eite by J. N. Srivastava), North-Hollan, Amsteram. Kunert, J. (1983). Optimal esigns an refinement of the linear moel with applications to repeate measurements esigns. Ann. Statist. 11, Kunert, J. (1984a). Optimality of balance uniform repeate measurements esigns. Ann. Statist. 12, Kunert, J. (1984b). Designs balance for circular resiual effects. Comm. Statist. Theory Methos 13, Laner, E. S. (1983). Symmetric Designs: An Algebraic Approach. Cambrige University Press, Cambrige. Lil, R. an Nieerreiter, H. (1997). Finite Fiels 2n eition. Cambrige University Press, Cambrige. Maga, C. G. (1980). Circular balance repeate measurements esigns. Comm. Statist. Theory Methos 9, Manal, B. N., Parsa, R. an Gupta, V. K. (2016). Cyclic circular balance an strongly balance crossover esigns through integer programming. Comm. Statist. Theory Methos 45, Mann, H. B. (1964). Balance incomplete block esigns an abelian ifference sets. Illinois J. Math. 8, Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York. Raghavarao, D. (1971). Constructions an Combinatorial Problems in Design of Experiments. Wiley, New York. (Correcte reprint, Dover Publications, New York, 1988.)

22 22 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ Rei, K. B. an Brown, E. (1972). Doubly regular tournaments are equivalent to skew Haamar matrices. J. Combin. Theory Ser. A 12, Ruvalis, A. (1971). (v,k,λ)-graphs an polarities of (v,k,λ)-esigns. Math. Z. 120, Seiel, J. J. (1968). Strongly regular graphs with ( 1, 1, 0) ajacency matrix having eigenvalue 3. Linear Algebra Appl. 1, Stufken, J. (1991). Some families of optimal an efficient repeate measurements esigns. J. Statist. Plann. Inference 27, The GAP Group (2014). GAP Groups, Algorithms, an Programming, Version (http: // Tillson, T. W. (1980). A Hamiltonian ecomposition of K 2m, 2m 8. J. Combin. Theory Ser. B 29, Wilkinson, G. N., Eckert, R., Hancock, T. W. an Mayo, O. (1983). Nearest neighbour (NN) analysis of fiel experiments. J. R. Stat. Soc. B 45, School of Mathematics an Statistics, University of St Anrews, UK School of Mathematical Sciences, Queen Mary, University of Lonon, UK. rab24@st-anrews.ac.uk School of Mathematics an Statistics, University of St Anrews, UK. School of Mathematical Sciences, Queen Mary, University of Lonon, UK. pjc20@st-anrews.ac.uk Institute of Mathematics, Poznań University of Technology, Polan. katarzyna.filipiak@put.poznan.pl Department of Statistics, TU Dortmun University, Germany. joachim.kunert@tu-ortmun.e Department of Mathematical an Statistical Methos, Poznań University of Life Sciences, Polan. amark@up.poznan.pl (Receive February 2015; accepte January 2016)

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION

LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION The Annals of Statistics 1997, Vol. 25, No. 6, 2313 2327 LATTICE-BASED D-OPTIMUM DESIGN FOR FOURIER REGRESSION By Eva Riccomagno, 1 Rainer Schwabe 2 an Henry P. Wynn 1 University of Warwick, Technische

More information

TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH

TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH English NUMERICAL MATHEMATICS Vol14, No1 Series A Journal of Chinese Universities Feb 2005 TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH He Ming( Λ) Michael K Ng(Ξ ) Abstract We

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 436 01 874 887 Contents lists available at SciVerse ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Maximal determinant

More information

Permanent vs. Determinant

Permanent vs. Determinant Permanent vs. Determinant Frank Ban Introuction A major problem in theoretical computer science is the Permanent vs. Determinant problem. It asks: given an n by n matrix of ineterminates A = (a i,j ) an

More information

Two formulas for the Euler ϕ-function

Two formulas for the Euler ϕ-function Two formulas for the Euler ϕ-function Robert Frieman A multiplication formula for ϕ(n) The first formula we want to prove is the following: Theorem 1. If n 1 an n 2 are relatively prime positive integers,

More information

USE OF NESTED DESIGNS IN DIALLEL CROSS EXPERIMENTS

USE OF NESTED DESIGNS IN DIALLEL CROSS EXPERIMENTS USE OF NESTED DESIGNS IN DIALLEL CROSS EXPERIMENTS. Introuction Rajener Parsa I.A.S.R.I., Library Avenue, New Delhi - 0 0 The term iallel is a Greek wor an implies all possible crosses among a collection

More information

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations

Diophantine Approximations: Examining the Farey Process and its Method on Producing Best Approximations Diophantine Approximations: Examining the Farey Process an its Metho on Proucing Best Approximations Kelly Bowen Introuction When a person hears the phrase irrational number, one oes not think of anything

More information

Acute sets in Euclidean spaces

Acute sets in Euclidean spaces Acute sets in Eucliean spaces Viktor Harangi April, 011 Abstract A finite set H in R is calle an acute set if any angle etermine by three points of H is acute. We examine the maximal carinality α() of

More information

Witt#5: Around the integrality criterion 9.93 [version 1.1 (21 April 2013), not completed, not proofread]

Witt#5: Around the integrality criterion 9.93 [version 1.1 (21 April 2013), not completed, not proofread] Witt vectors. Part 1 Michiel Hazewinkel Sienotes by Darij Grinberg Witt#5: Aroun the integrality criterion 9.93 [version 1.1 21 April 2013, not complete, not proofrea In [1, section 9.93, Hazewinkel states

More information

A new proof of the sharpness of the phase transition for Bernoulli percolation on Z d

A new proof of the sharpness of the phase transition for Bernoulli percolation on Z d A new proof of the sharpness of the phase transition for Bernoulli percolation on Z Hugo Duminil-Copin an Vincent Tassion October 8, 205 Abstract We provie a new proof of the sharpness of the phase transition

More information

arxiv: v2 [math.co] 14 Jun 2017

arxiv: v2 [math.co] 14 Jun 2017 A PROBLEM ON PARTIAL SUMS IN ABELIAN GROUPS arxiv:1706.00042v2 [math.co] 14 Jun 2017 S. COSTA, F. MORINI, A. PASOTTI, AND M.A. PELLEGRINI Abstract. In this paper we propose a conjecture concerning partial

More information

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS

ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS ALGEBRAIC AND ANALYTIC PROPERTIES OF ARITHMETIC FUNCTIONS MARK SCHACHNER Abstract. When consiere as an algebraic space, the set of arithmetic functions equippe with the operations of pointwise aition an

More information

Applications of the Wronskian to ordinary linear differential equations

Applications of the Wronskian to ordinary linear differential equations Physics 116C Fall 2011 Applications of the Wronskian to orinary linear ifferential equations Consier a of n continuous functions y i (x) [i = 1,2,3,...,n], each of which is ifferentiable at least n times.

More information

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential Avances in Applie Mathematics an Mechanics Av. Appl. Math. Mech. Vol. 1 No. 4 pp. 573-580 DOI: 10.4208/aamm.09-m0946 August 2009 A Note on Exact Solutions to Linear Differential Equations by the Matrix

More information

arxiv: v1 [math.co] 15 Sep 2015

arxiv: v1 [math.co] 15 Sep 2015 Circular coloring of signe graphs Yingli Kang, Eckhar Steffen arxiv:1509.04488v1 [math.co] 15 Sep 015 Abstract Let k, ( k) be two positive integers. We generalize the well stuie notions of (k, )-colorings

More information

Hadamard and conference matrices

Hadamard and conference matrices Hadamard and conference matrices Peter J. Cameron University of St Andrews & Queen Mary University of London Mathematics Study Group with input from Rosemary Bailey, Katarzyna Filipiak, Joachim Kunert,

More information

Efficiency of NNBD and NNBIBD using autoregressive model

Efficiency of NNBD and NNBIBD using autoregressive model 2018; 3(3): 133-138 ISSN: 2456-1452 Maths 2018; 3(3): 133-138 2018 Stats & Maths www.mathsjournal.com Received: 17-03-2018 Accepted: 18-04-2018 S Saalini Department of Statistics, Loyola College, Chennai,

More information

Hadamard and conference matrices

Hadamard and conference matrices Hadamard and conference matrices Peter J. Cameron University of St Andrews & Queen Mary University of London Mathematics Study Group with input from Rosemary Bailey, Katarzyna Filipiak, Joachim Kunert,

More information

Agmon Kolmogorov Inequalities on l 2 (Z d )

Agmon Kolmogorov Inequalities on l 2 (Z d ) Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Publishe by Canaian Center of Science an Eucation Agmon Kolmogorov Inequalities on l (Z ) Arman Sahovic Mathematics Department,

More information

On colour-blind distinguishing colour pallets in regular graphs

On colour-blind distinguishing colour pallets in regular graphs J Comb Optim (2014 28:348 357 DOI 10.1007/s10878-012-9556-x On colour-blin istinguishing colour pallets in regular graphs Jakub Przybyło Publishe online: 25 October 2012 The Author(s 2012. This article

More information

u!i = a T u = 0. Then S satisfies

u!i = a T u = 0. Then S satisfies Deterministic Conitions for Subspace Ientifiability from Incomplete Sampling Daniel L Pimentel-Alarcón, Nigel Boston, Robert D Nowak University of Wisconsin-Maison Abstract Consier an r-imensional subspace

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

Combinatorica 9(1)(1989) A New Lower Bound for Snake-in-the-Box Codes. Jerzy Wojciechowski. AMS subject classification 1980: 05 C 35, 94 B 25

Combinatorica 9(1)(1989) A New Lower Bound for Snake-in-the-Box Codes. Jerzy Wojciechowski. AMS subject classification 1980: 05 C 35, 94 B 25 Combinatorica 9(1)(1989)91 99 A New Lower Boun for Snake-in-the-Box Coes Jerzy Wojciechowski Department of Pure Mathematics an Mathematical Statistics, University of Cambrige, 16 Mill Lane, Cambrige, CB2

More information

Chromatic number for a generalization of Cartesian product graphs

Chromatic number for a generalization of Cartesian product graphs Chromatic number for a generalization of Cartesian prouct graphs Daniel Král Douglas B. West Abstract Let G be a class of graphs. The -fol gri over G, enote G, is the family of graphs obtaine from -imensional

More information

Sharp Thresholds. Zachary Hamaker. March 15, 2010

Sharp Thresholds. Zachary Hamaker. March 15, 2010 Sharp Threshols Zachary Hamaker March 15, 2010 Abstract The Kolmogorov Zero-One law states that for tail events on infinite-imensional probability spaces, the probability must be either zero or one. Behavior

More information

Iterated Point-Line Configurations Grow Doubly-Exponentially

Iterated Point-Line Configurations Grow Doubly-Exponentially Iterate Point-Line Configurations Grow Doubly-Exponentially Joshua Cooper an Mark Walters July 9, 008 Abstract Begin with a set of four points in the real plane in general position. A to this collection

More information

On the Equivalence Between Real Mutually Unbiased Bases and a Certain Class of Association Schemes

On the Equivalence Between Real Mutually Unbiased Bases and a Certain Class of Association Schemes Worcester Polytechnic Institute DigitalCommons@WPI Mathematical Sciences Faculty Publications Department of Mathematical Sciences 010 On the Equivalence Between Real Mutually Unbiase Bases an a Certain

More information

BLOCK DESIGNS WITH NESTED ROWS AND COLUMNS

BLOCK DESIGNS WITH NESTED ROWS AND COLUMNS BLOCK DESIGNS WITH NESTED ROWS AND COLUMNS Rajener Parsa I.A.S.R.I., Lirary Avenue, New Delhi 110 012 rajener@iasri.res.in 1. Introuction For experimental situations where there are two cross-classifie

More information

The chromatic number of graph powers

The chromatic number of graph powers Combinatorics, Probability an Computing (19XX) 00, 000 000. c 19XX Cambrige University Press Printe in the Unite Kingom The chromatic number of graph powers N O G A A L O N 1 an B O J A N M O H A R 1 Department

More information

Square 2-designs/1. 1 Definition

Square 2-designs/1. 1 Definition Square 2-designs Square 2-designs are variously known as symmetric designs, symmetric BIBDs, and projective designs. The definition does not imply any symmetry of the design, and the term projective designs,

More information

Ramsey numbers of some bipartite graphs versus complete graphs

Ramsey numbers of some bipartite graphs versus complete graphs Ramsey numbers of some bipartite graphs versus complete graphs Tao Jiang, Michael Salerno Miami University, Oxfor, OH 45056, USA Abstract. The Ramsey number r(h, K n ) is the smallest positive integer

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

arxiv: v1 [math.co] 31 Mar 2008

arxiv: v1 [math.co] 31 Mar 2008 On the maximum size of a (k,l)-sum-free subset of an abelian group arxiv:080386v1 [mathco] 31 Mar 2008 Béla Bajnok Department of Mathematics, Gettysburg College Gettysburg, PA 17325-186 USA E-mail: bbajnok@gettysburgeu

More information

Periods of quadratic twists of elliptic curves

Periods of quadratic twists of elliptic curves Perios of quaratic twists of elliptic curves Vivek Pal with an appenix by Amo Agashe Abstract In this paper we prove a relation between the perio of an elliptic curve an the perio of its real an imaginary

More information

Stable Polynomials over Finite Fields

Stable Polynomials over Finite Fields Rev. Mat. Iberoam., 1 14 c European Mathematical Society Stable Polynomials over Finite Fiels Domingo Gómez-Pérez, Alejanro P. Nicolás, Alina Ostafe an Daniel Saornil Abstract. We use the theory of resultants

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Relatively Prime Uniform Partitions

Relatively Prime Uniform Partitions Gen. Math. Notes, Vol. 13, No., December, 01, pp.1-1 ISSN 19-7184; Copyright c ICSRS Publication, 01 www.i-csrs.org Available free online at http://www.geman.in Relatively Prime Uniform Partitions A. Davi

More information

Lie symmetry and Mei conservation law of continuum system

Lie symmetry and Mei conservation law of continuum system Chin. Phys. B Vol. 20, No. 2 20 020 Lie symmetry an Mei conservation law of continuum system Shi Shen-Yang an Fu Jing-Li Department of Physics, Zhejiang Sci-Tech University, Hangzhou 3008, China Receive

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

A check digit system over a group of arbitrary order

A check digit system over a group of arbitrary order 2013 8th International Conference on Communications an Networking in China (CHINACOM) A check igit system over a group of arbitrary orer Yanling Chen Chair of Communication Systems Ruhr University Bochum

More information

Lower Bounds for the Smoothed Number of Pareto optimal Solutions

Lower Bounds for the Smoothed Number of Pareto optimal Solutions Lower Bouns for the Smoothe Number of Pareto optimal Solutions Tobias Brunsch an Heiko Röglin Department of Computer Science, University of Bonn, Germany brunsch@cs.uni-bonn.e, heiko@roeglin.org Abstract.

More information

A Sketch of Menshikov s Theorem

A Sketch of Menshikov s Theorem A Sketch of Menshikov s Theorem Thomas Bao March 14, 2010 Abstract Let Λ be an infinite, locally finite oriente multi-graph with C Λ finite an strongly connecte, an let p

More information

A FURTHER REFINEMENT OF MORDELL S BOUND ON EXPONENTIAL SUMS

A FURTHER REFINEMENT OF MORDELL S BOUND ON EXPONENTIAL SUMS A FURTHER REFINEMENT OF MORDELL S BOUND ON EXPONENTIAL SUMS TODD COCHRANE, JEREMY COFFELT, AND CHRISTOPHER PINNER 1. Introuction For a prime p, integer Laurent polynomial (1.1) f(x) = a 1 x k 1 + + a r

More information

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz A note on asymptotic formulae for one-imensional network flow problems Carlos F. Daganzo an Karen R. Smilowitz (to appear in Annals of Operations Research) Abstract This note evelops asymptotic formulae

More information

2Algebraic ONLINE PAGE PROOFS. foundations

2Algebraic ONLINE PAGE PROOFS. foundations Algebraic founations. Kick off with CAS. Algebraic skills.3 Pascal s triangle an binomial expansions.4 The binomial theorem.5 Sets of real numbers.6 Surs.7 Review . Kick off with CAS Playing lotto Using

More information

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013 Survey Sampling Kosuke Imai Department of Politics, Princeton University February 19, 2013 Survey sampling is one of the most commonly use ata collection methos for social scientists. We begin by escribing

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Similar Operators and a Functional Calculus for the First-Order Linear Differential Operator

Similar Operators and a Functional Calculus for the First-Order Linear Differential Operator Avances in Applie Mathematics, 9 47 999 Article ID aama.998.067, available online at http: www.iealibrary.com on Similar Operators an a Functional Calculus for the First-Orer Linear Differential Operator

More information

Laplacian Cooperative Attitude Control of Multiple Rigid Bodies

Laplacian Cooperative Attitude Control of Multiple Rigid Bodies Laplacian Cooperative Attitue Control of Multiple Rigi Boies Dimos V. Dimarogonas, Panagiotis Tsiotras an Kostas J. Kyriakopoulos Abstract Motivate by the fact that linear controllers can stabilize the

More information

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col

Rank, Trace, Determinant, Transpose an Inverse of a Matrix Let A be an n n square matrix: A = a11 a1 a1n a1 a an a n1 a n a nn nn where is the jth col Review of Linear Algebra { E18 Hanout Vectors an Their Inner Proucts Let X an Y be two vectors: an Their inner prouct is ene as X =[x1; ;x n ] T Y =[y1; ;y n ] T (X; Y ) = X T Y = x k y k k=1 where T an

More information

Linear Algebra- Review And Beyond. Lecture 3

Linear Algebra- Review And Beyond. Lecture 3 Linear Algebra- Review An Beyon Lecture 3 This lecture gives a wie range of materials relate to matrix. Matrix is the core of linear algebra, an it s useful in many other fiels. 1 Matrix Matrix is the

More information

Quantum mechanical approaches to the virial

Quantum mechanical approaches to the virial Quantum mechanical approaches to the virial S.LeBohec Department of Physics an Astronomy, University of Utah, Salt Lae City, UT 84112, USA Date: June 30 th 2015 In this note, we approach the virial from

More information

Systems & Control Letters

Systems & Control Letters Systems & ontrol Letters ( ) ontents lists available at ScienceDirect Systems & ontrol Letters journal homepage: www.elsevier.com/locate/sysconle A converse to the eterministic separation principle Jochen

More information

LECTURE NOTES ON DVORETZKY S THEOREM

LECTURE NOTES ON DVORETZKY S THEOREM LECTURE NOTES ON DVORETZKY S THEOREM STEVEN HEILMAN Abstract. We present the first half of the paper [S]. In particular, the results below, unless otherwise state, shoul be attribute to G. Schechtman.

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES Communications on Stochastic Analysis Vol. 2, No. 2 (28) 289-36 Serials Publications www.serialspublications.com SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

arxiv: v4 [cs.ds] 7 Mar 2014

arxiv: v4 [cs.ds] 7 Mar 2014 Analysis of Agglomerative Clustering Marcel R. Ackermann Johannes Blömer Daniel Kuntze Christian Sohler arxiv:101.697v [cs.ds] 7 Mar 01 Abstract The iameter k-clustering problem is the problem of partitioning

More information

A Note on Modular Partitions and Necklaces

A Note on Modular Partitions and Necklaces A Note on Moular Partitions an Neclaces N. J. A. Sloane, Rutgers University an The OEIS Founation Inc. South Aelaie Avenue, Highlan Par, NJ 08904, USA. Email: njasloane@gmail.com May 6, 204 Abstract Following

More information

Multi-agent Systems Reaching Optimal Consensus with Time-varying Communication Graphs

Multi-agent Systems Reaching Optimal Consensus with Time-varying Communication Graphs Preprints of the 8th IFAC Worl Congress Multi-agent Systems Reaching Optimal Consensus with Time-varying Communication Graphs Guoong Shi ACCESS Linnaeus Centre, School of Electrical Engineering, Royal

More information

International Journal of Pure and Applied Mathematics Volume 35 No , ON PYTHAGOREAN QUADRUPLES Edray Goins 1, Alain Togbé 2

International Journal of Pure and Applied Mathematics Volume 35 No , ON PYTHAGOREAN QUADRUPLES Edray Goins 1, Alain Togbé 2 International Journal of Pure an Applie Mathematics Volume 35 No. 3 007, 365-374 ON PYTHAGOREAN QUADRUPLES Eray Goins 1, Alain Togbé 1 Department of Mathematics Purue University 150 North University Street,

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

11 Block Designs. Linear Spaces. Designs. By convention, we shall

11 Block Designs. Linear Spaces. Designs. By convention, we shall 11 Block Designs Linear Spaces In this section we consider incidence structures I = (V, B, ). always let v = V and b = B. By convention, we shall Linear Space: We say that an incidence structure (V, B,

More information

Space-time Linear Dispersion Using Coordinate Interleaving

Space-time Linear Dispersion Using Coordinate Interleaving Space-time Linear Dispersion Using Coorinate Interleaving Jinsong Wu an Steven D Blostein Department of Electrical an Computer Engineering Queen s University, Kingston, Ontario, Canaa, K7L3N6 Email: wujs@ieeeorg

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

CHARACTERIZATION OF PSL(3,Q) BY NSE

CHARACTERIZATION OF PSL(3,Q) BY NSE CHARACTERIZATION OF PSL(,Q) BY NSE S. ASGARY an N. AHANJIDEH Communicate by Alexanru Buium Let G be a group an π e(g) be the set of element orers of G. Suppose that k π e(g) an m k is the number of elements

More information

Uniform semi-latin squares and their Schur-optimality

Uniform semi-latin squares and their Schur-optimality Uniform semi-latin squares and their Schur-optimality Leonard H. Soicher School of Mathematical Sciences Queen Mary University of London Mile End Road, London E1 4NS, UK L.H.Soicher@qmul.ac.uk September

More information

COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY

COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY QI CHENG, JOSHUA E. HILL, AND DAQING WAN Abstract. Let p be a prime. Given a polynomial in F p m[x] of egree over the finite fiel F p m, one can view it as

More information

Some V(12,t) vectors and designs from difference and quasi-difference matrices

Some V(12,t) vectors and designs from difference and quasi-difference matrices AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 4 (28), Pages 69 85 Some V(12,t) vectors and designs from difference and quasi-difference matrices R Julian R Abel School of Mathematics and Statistics University

More information

Optimal Fractional Factorial Plans for Asymmetric Factorials

Optimal Fractional Factorial Plans for Asymmetric Factorials Optimal Fractional Factorial Plans for Asymmetric Factorials Aloke Dey Chung-yi Suen and Ashish Das April 15, 2002 isid/ms/2002/04 Indian Statistical Institute, Delhi Centre 7, SJSS Marg, New Delhi 110

More information

Entanglement is not very useful for estimating multiple phases

Entanglement is not very useful for estimating multiple phases PHYSICAL REVIEW A 70, 032310 (2004) Entanglement is not very useful for estimating multiple phases Manuel A. Ballester* Department of Mathematics, University of Utrecht, Box 80010, 3508 TA Utrecht, The

More information

On the enumeration of partitions with summands in arithmetic progression

On the enumeration of partitions with summands in arithmetic progression AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 8 (003), Pages 149 159 On the enumeration of partitions with summans in arithmetic progression M. A. Nyblom C. Evans Department of Mathematics an Statistics

More information

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 54, No. 2, 213, Pages 59 65 Publishe online: December 8, 213 ON TAUBERIAN CONDITIONS FOR C, 1 SUMMABILITY OF INTEGRALS Abstract. We investigate some Tauberian

More information

Least-Squares Regression on Sparse Spaces

Least-Squares Regression on Sparse Spaces Least-Squares Regression on Sparse Spaces Yuri Grinberg, Mahi Milani Far, Joelle Pineau School of Computer Science McGill University Montreal, Canaa {ygrinb,mmilan1,jpineau}@cs.mcgill.ca 1 Introuction

More information

Monotonicity for excited random walk in high dimensions

Monotonicity for excited random walk in high dimensions Monotonicity for excite ranom walk in high imensions Remco van er Hofsta Mark Holmes March, 2009 Abstract We prove that the rift θ, β) for excite ranom walk in imension is monotone in the excitement parameter

More information

Lecture 5. Symmetric Shearer s Lemma

Lecture 5. Symmetric Shearer s Lemma Stanfor University Spring 208 Math 233: Non-constructive methos in combinatorics Instructor: Jan Vonrák Lecture ate: January 23, 208 Original scribe: Erik Bates Lecture 5 Symmetric Shearer s Lemma Here

More information

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is

SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. where L is some constant, usually called the Lipschitz constant. An example is SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER S FORMULA. Uniqueness for solutions of ifferential equations. We consier the system of ifferential equations given by x = v( x), () t with a given initial conition

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

On the number of isolated eigenvalues of a pair of particles in a quantum wire

On the number of isolated eigenvalues of a pair of particles in a quantum wire On the number of isolate eigenvalues of a pair of particles in a quantum wire arxiv:1812.11804v1 [math-ph] 31 Dec 2018 Joachim Kerner 1 Department of Mathematics an Computer Science FernUniversität in

More information

Lower bounds on Locality Sensitive Hashing

Lower bounds on Locality Sensitive Hashing Lower bouns on Locality Sensitive Hashing Rajeev Motwani Assaf Naor Rina Panigrahy Abstract Given a metric space (X, X ), c 1, r > 0, an p, q [0, 1], a istribution over mappings H : X N is calle a (r,

More information

Zachary Scherr Math 503 HW 5 Due Friday, Feb 26

Zachary Scherr Math 503 HW 5 Due Friday, Feb 26 Zachary Scherr Math 503 HW 5 Due Friay, Feb 26 1 Reaing 1. Rea Chapter 9 of Dummit an Foote 2 Problems 1. 9.1.13 Solution: We alreay know that if R is any commutative ring, then R[x]/(x r = R for any r

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

arxiv: v2 [math.cv] 2 Mar 2018

arxiv: v2 [math.cv] 2 Mar 2018 The quaternionic Gauss-Lucas Theorem Riccaro Ghiloni Alessanro Perotti Department of Mathematics, University of Trento Via Sommarive 14, I-38123 Povo Trento, Italy riccaro.ghiloni@unitn.it, alessanro.perotti@unitn.it

More information

Technion - Computer Science Department - M.Sc. Thesis MSC Constrained Codes for Two-Dimensional Channels.

Technion - Computer Science Department - M.Sc. Thesis MSC Constrained Codes for Two-Dimensional Channels. Technion - Computer Science Department - M.Sc. Thesis MSC-2006- - 2006 Constraine Coes for Two-Dimensional Channels Keren Censor Technion - Computer Science Department - M.Sc. Thesis MSC-2006- - 2006 Technion

More information

GCD of Random Linear Combinations

GCD of Random Linear Combinations JOACHIM VON ZUR GATHEN & IGOR E. SHPARLINSKI (2006). GCD of Ranom Linear Combinations. Algorithmica 46(1), 137 148. ISSN 0178-4617 (Print), 1432-0541 (Online). URL https://x.oi.org/10.1007/s00453-006-0072-1.

More information

Perfect Matchings in Õ(n1.5 ) Time in Regular Bipartite Graphs

Perfect Matchings in Õ(n1.5 ) Time in Regular Bipartite Graphs Perfect Matchings in Õ(n1.5 ) Time in Regular Bipartite Graphs Ashish Goel Michael Kapralov Sanjeev Khanna Abstract We consier the well-stuie problem of fining a perfect matching in -regular bipartite

More information

The effect of dissipation on solutions of the complex KdV equation

The effect of dissipation on solutions of the complex KdV equation Mathematics an Computers in Simulation 69 (25) 589 599 The effect of issipation on solutions of the complex KV equation Jiahong Wu a,, Juan-Ming Yuan a,b a Department of Mathematics, Oklahoma State University,

More information

Physics 251 Results for Matrix Exponentials Spring 2017

Physics 251 Results for Matrix Exponentials Spring 2017 Physics 25 Results for Matrix Exponentials Spring 27. Properties of the Matrix Exponential Let A be a real or complex n n matrix. The exponential of A is efine via its Taylor series, e A A n = I + n!,

More information

Optimal CDMA Signatures: A Finite-Step Approach

Optimal CDMA Signatures: A Finite-Step Approach Optimal CDMA Signatures: A Finite-Step Approach Joel A. Tropp Inst. for Comp. Engr. an Sci. (ICES) 1 University Station C000 Austin, TX 7871 jtropp@ices.utexas.eu Inerjit. S. Dhillon Dept. of Comp. Sci.

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

GLOBAL SOLUTIONS FOR 2D COUPLED BURGERS-COMPLEX-GINZBURG-LANDAU EQUATIONS

GLOBAL SOLUTIONS FOR 2D COUPLED BURGERS-COMPLEX-GINZBURG-LANDAU EQUATIONS Electronic Journal of Differential Equations, Vol. 015 015), No. 99, pp. 1 14. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu GLOBAL SOLUTIONS FOR D COUPLED

More information

ON THE INTEGRAL RING SPANNED BY GENUS TWO WEIGHT ENUMERATORS. Manabu Oura

ON THE INTEGRAL RING SPANNED BY GENUS TWO WEIGHT ENUMERATORS. Manabu Oura ON THE INTEGRAL RING SPANNED BY GENUS TWO WEIGHT ENUMERATORS Manabu Oura Abstract. It is known that the weight enumerator of a self-ual oublyeven coe in genus g = 1 can be uniquely written as an isobaric

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

From Local to Global Control

From Local to Global Control Proceeings of the 47th IEEE Conference on Decision an Control Cancun, Mexico, Dec. 9-, 8 ThB. From Local to Global Control Stephen P. Banks, M. Tomás-Roríguez. Automatic Control Engineering Department,

More information

MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ

MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ GENERALIZED UNIFORMLY CONTINUOUS SEMIGROUPS AND SEMILINEAR HYPERBOLIC SYSTEMS WITH REGULARIZED DERIVATIVES MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ Abstract. We aopt the theory of uniformly continuous operator

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

Tilburg University. Strongly Regular Graphs with Maximal Energy Haemers, W. H. Publication date: Link to publication

Tilburg University. Strongly Regular Graphs with Maximal Energy Haemers, W. H. Publication date: Link to publication Tilburg University Strongly Regular Graphs with Maximal Energy Haemers, W. H. Publication date: 2007 Link to publication Citation for published version (APA): Haemers, W. H. (2007). Strongly Regular Graphs

More information

A Look at the ABC Conjecture via Elliptic Curves

A Look at the ABC Conjecture via Elliptic Curves A Look at the ABC Conjecture via Elliptic Curves Nicole Cleary Brittany DiPietro Alexaner Hill Gerar D.Koffi Beihua Yan Abstract We stuy the connection between elliptic curves an ABC triples. Two important

More information