On Hilbert Kunz Functions of Some Hypersurfaces

Size: px
Start display at page:

Download "On Hilbert Kunz Functions of Some Hypersurfaces"

Transcription

1 JOURNAL OF ALGEBRA 199, ARTICLE NO. JA O HlbertKuz Fuctos of Soe Hypersurfaces L Chag* Departet of Matheatcs, Natoal Tawa Uersty, Tape, Tawa ad Yu-Chg Hug Departet of Matheatcs, Natoal Tawa Noral Uersty, Tape, Tawa Coucated by Crag Huee Receved October 26, INTRODUCTION Let p be a pre, Ž O,. a coplete local Noethera Ž p. -algebra, ad the p th Frobeus power of,.e., the deal of O geerated by p all a wth a. By e Ž O. we deote the legth of O. The fucto h : e Ž O. s called the HlbertKuz fucto of O. a By a result of Mosy 11, Theore 1.8, t s ow that e O cp where a s the Krull deso of O, c a postve real costat, ad Ž Ž a1. O p.. I the sae paper, Mosy 11, Theore 3.10 also showed that f a 1, the c s the ultplcty of O ad s a evetually perodc fucto of. I geeral, to detere the HlbertKuz fucto of a rg s a hard proble. However, there are already soe results for soe classes of specal rgs, for exaple, 1, 4, 5, 711. Whle s d 1 d 1 s ž 1 / 2 OŽ p. X,..., X X X, * E-al address: chagl@ath.tu.edu.tw. E-al address: hugyc@ath.tu.edu.tw $25.00 Copyrght 1998 by Acadec Press All rghts of reproducto ay for reserved.

2 500 CHIANG AND HUNG s2 Žj. j Kuz 10 showed that c s ratoal ad j0 p wth each Žj. evetually perodc. I 8, Ha ad Mosy showed that f d1 dt 1 t Ž 1 t. O p X,..., X X X wth d 1, the c s ratoal ad s perodc for suffcetly large whle p 2ort3. If p 2 ad t 3, they also proved that there are tegers l ad, 1, 0 l p Žt3. such that l for 0 8, Theore 5.7. I 4, Coca detered the HlbertKuz fuctos of OFX,..., X 1 s I where I s a ooal deal or a prcpal deal geerated by a hoogeeous boal for Žcf. 4, Theore 2.1, Theore I ths artcle, by ag use of the represetato rg developed by Ha ad Mosy, we ca geeralze the results 8, Theore 5.7; 4, Theore 2.1. Our a result s as follows: THEOREM 1.1. Let F be a feld of characterstc p 0; let t ž, j j1 / 1 d f X Ž 1. where t1 t2 ts 2 ts1 ts2 t 1. Let a Ž t. 1, S 1,...,s 4, t1 Ž t 2.For. 1 S each A S, de- fe Ž A. Ž t 2. A f A, ad 0. The the HlbertKuz fucto of the hypersurface fs Ž A. t a cp A, jž. jž., AS j0 j0 where c s a ratoal uber. For the ters Ž. ad Ž. A, j j, we ca fd poste tegers ad l A s such that A, jž. la p j A, jž. for 0 ad jž. fjž. jž., j where f p f. If p 2, we hae Ž. 0 f 0. j j

3 ON HILBERTKUNZ FUNCTIONS 501 Furtherore, the tegers l A hae the followg propertes: Ž. Ž A3. 1 For odd p, f A 3 the l p, ad f A A 3 the la 1. Ž. ŽA1. 2 For p 2, the l 2 f A, ad l 1. A By cobg Theore 1.1 ad E. Ž 21., we ca also obta the HlbertKuz fuctos of all hypersurfaces of the for t,j 1 j1 d f X, j 2 for d, j 1. Actually, f we tae t1 t2 ts 2 ts1 Ž t t 1, a t. 1, S 1,...,s4 s2 1 ad t 1 Ž t 2., we wll have the followg slar result: S COROLLARY 1. E. Ž. 2 s where c s ratoal ad The fuctos re 1.1. The HlbertKuz fucto for the hypersurface f defed Ž A. t a cp A, j j, 3 AS j0 j0 Ž A. Ž t 1. A. 1 s ad s hae the sae propertes as those Theo- A, j j 2. REPRESENTATION RING AND MULTIPLICATION FORMULAE There s a useful tool called the represetato rg preseted 8. Let F be a feld. A F-object s a ftely geerated FT-odule o whch T acts lpotetly. Let M ad N be two F-objects. The M N ad M N are also F-objects wth TŽ. T T ad TŽ. F Ž T. Ž T.. Let be the set of ordered pars Ž M, N. F of two F-objects. I we defe the followg euvalece relato: F Ž M 1, N1. Ž M 2, N2. M N s soorphc to M N as FT-odules

4 502 CHIANG AND HUNG The euvalece class Ž M, N., deoted by M N, s called the foral dfferece of M ad N. Let F be the set of the foral dffereces of F-objects. I we defe two bary operatos: F Ž M1 N1. Ž M2 N2. Ž M1 M2. Ž N1 N 2., Ž M N. Ž M N. Ž M M. Ž N N F 2 1 F 2 Ž M N. Ž N M.. 1 F 2 1 F 2 The Ž,,. F s a coutatve rg, whch s called the represetato rg Žcf.. 8. We call the ultplcato defed here the HaMosy ultplcato. We wll defe aother ultplcato at the ed of ths secto. Note that we ca decopose ay F-object to a drect su of FTT Ž. s. Let FTŽ T. 0. The Ž. 4 F, s a free -odule wth bass 1. We have a ap fro the set of F-objects to F, : M M 0 wth Ž M N. Ž M. Ž N. ad Ž M N. Ž M. Ž N.. Throughout ths artcle, F wll always deote a feld of characterstc p 0, ad a power of p. Here we defe a -hooorphs D F: as follows: For ay F-objects M ad N,f M FTT Ž. a F 1 ad N FTT Ž. b, the ad 1 It s easy to see that D Ž MN. Ž a b., F 1 d Ž M N. Ž a b.. F 1 D Ž, j.. F j For coveece, as 8, we tae aother bass for the free -odule : ½ 1 f 0, Ž 1. Ž. f 1. 1 We fd soe forulae 8, 3 to decopose to the su of. Oe ca also refer to 2. Here we lst soe of the.

5 ON HILBERTKUNZ FUNCTIONS 503 PROPOSITION 2.1 8, Lea 3.3, Theore 3.4. p. We hae ad, for 0 s, we hae Let 0 s,1 s s, Ž 4. 1s Ž s1. s, Ž 5. 1s Ž s1. s, Ž 6. s s, Ž 7. 1s 1s. Ž 8. Ž. Ž. By E. 4 E. 8, the followg forulae are edate. For s, 1, s Ž 1., Ž 9. s Ž 1. s s, Ž Ž 1. 1s s. Ž 11. Note here that E. 10 ad E. 11 are also vald whe s. Let 0 f 0, H ½ 1 f 0. We have PROPOSITION 2.2 3, Proposto 3.3. If 1, j p, the jžj1. Žj3. b Ž j p. HŽ jp. p, Ž 12. where b j 1, 2 p 1 j. PROPOSITION 2.3 3, Proposto 3.4. If 1, j p ad j 1 p the j1 p for all 1, p, p 2,.... By E. 12 ad Proposto 2.3, we edately have j Ž Žj1. Žj3. b p. Ž j p. HŽ jp.. Ž 13.

6 504 CHIANG AND HUNG PROPOSITION 2.4 3, Proposto 3.5. hae For 0 p 1, 1 j p, we Ž 1. j HŽ j. j Žj1. c HŽ jp. p, Ž 14. where c j,2p1j. PROPOSITION 2.5 3, Proposto 3.6. For 0, j p 1, we hae c c, Ž 15. j Žj2. Žj where c, j, p 1, p 1 j. Let 0 b p 1, ad t b 1. PROPOSITION 2.6 3, Proposto 4.1. Let p be a odd pre, ad 1, p, p 2,.... We hae u u u u 0 0 2p1 21 2p 2 4p1 41 u u Ž p1.p1 Ž p1.1 Ž p1.p Ž p1. f b s ee, ad f b u u u u p1 1 p 3p1 31 3p 3 u u 2 Ž p2.p Ž p2. p 1 p1 s odd. Here the u s are o-egate tegers. There are soe propertes about the coeffcets u. PROPOSITION 2.7 3, Proposto 4.2. for all. u p t2 Whle t 2 we hae PROPOSITION 2.8 3, Corollary to Proposto 4.2. If t 3 ad 2 2 0, p 1, p p, p 1,we 4 hae u p t3.

7 ON HILBERTKUNZ FUNCTIONS 505 Whle p 2, we have 00 0, 0 ad 0, thus we have the followg sple forulae: PROPOSITION 2.9 3, Proposto 4.3. Let p 2. The 0 f b s ee, ad f b s odd. For a pre power ad l 1, defe 1 l l l l j1 D 2j j1 j1, Ž p1. GŽ. Ž 1. Ž p1.ž p1.1ž p3. 0 ; 0 Ž p1. G 1 f s odd ad Ž p1. Ž p2. Ž p3. 0 G 0 Ž. Ž 0. f s eve. If 1, we defe E to be the addtve subgroup geerated by the, 0or1Ž od 2. ad O to be the addtve subgroup geerated by the, or 1 Ž od 2. Žcf. 8, Defto PROPOSITION , Theore If r s ee, r E E ad r O O. If r s odd, r E O ad r O E. PROPOSITION , Corollary E E E, E O O ad OOE. Let j A u u u u u 0 0 p1 1 p 2p1 21 2p 2 where u ad defe u 2 u 2, p p p p 1 p1 u 2 u 2 p p p 1 WŽ A.. u u p1 0

8 506 CHIANG AND HUNG For a eleet K 1 u 0 F T Ž K. u. where u, we defe 1 PROPOSITION Let, j. The 1 T 1 H j j. j Ž. Proof. Let u. By E. 6, we have j 1 Thus 1 1 Ž j. j u Ž u 1 u u Ž, j. u j because u D Ž, j.. The Ž 1. 1 T Ž. 1 F j j Ž, j. ad the proposto follows. Q.E.D. By Proposto 2.12, t s easy to verfy the followg lea: LEMMA 2.1. l DF u D Ž. u ž ž / / 1 1 l l Ž., l l T u D Ž. u. 1 1 ž ž / / By ths lea, we have ž ž / / ž ž / / 2 2 F D u D Ž. T u D Ž. 2 u. Ž 16. If p s odd, we have soe portat relatos betwee G 0 Ž. ad G. Let 0 Ž. Ž. G Ž. E O,

9 ON HILBERTKUNZ FUNCTIONS 507 where E Ž. E PROPOSITION Proof. ad O Ž. O. We have Ž. Ž. 1 GŽ. E O. Ž 17. It s easy for 1. For 1, we have ž / 0 Ž1. Ž1. Ž1. Ž1. G Ž. Ž E O. Ž E. Ž O.. 0 Hece ž / ž 21/ Ž. Ž1. 2 Ž1. 2 E Ž E. Ž O., 2 Ž. Ž1. 21 Ž1. 21 O Ž E. Ž O.. O the other had, we have ž / Ž1. Ž1. Ž1. Ž GŽ. E O Ž E. O. Applyg 2, we the have 1 0 ž / Ž1. 2 Ž1. 2 GŽ. Ž E. Ž O. 2 For b p, we have 1 ž / Ž1. 21 Ž1. 21 Ž E. Ž O.. 21 Q.E.D. b 0 0 b 1 G 1 G 1. It follows that ad p G Ž 1. Ž 1. G Ž 1. pg Ž 1. b b Ž 1. G Ž 1. p G Ž 1..

10 508 CHIANG AND HUNG Thus, f we wrte b 0 b 0 0 p1 1 p 1 G u u u, we wll have up už1.p1 p 1, ad the W Ž Ž 1. b G 0 Ž.. s of the for b By otg that u p u p p p p 1 p u0 u0. ad that b 0 Ž 1. b G Ž Ž p1. 0 p1 b 1 0 b Ž p1. p1 1 G 0 0, we have u u 0 Ž p1. p ad the ž / p u u 1 b u0 p u 0 0 b W 1 G. 18 O the other had, by coparg wth b b Ž. Ž. Ž 1. b GŽ. Ž 1. b Ž E 1O. b 0 b Ž. Ž. b b we have ether 1 G 1 E O, or ž / 0 2u p 2u p 1 b 0 0 b 1 0 W 1 G ž / p 2u 0 1 b 0 p 2u 0 b 1 0 W 1 G.

11 ON HILBERTKUNZ FUNCTIONS 509 The we get the followg propostos: PROPOSITION If p s odd, the egealues of t b 0 b ž 1 / W 1 G 1 Ž t are p ad the poste egealue of W Ž 1. b G. 1 b. Moreoer, p t2 3 f t 2 3. If p 2, 1, ad 1, we hae Ž t Ž 1. b. G 0 Ž. 2 1 Ž.. 1 b 0 If p s odd, the proposto ca be proved by Proposto 2.8, ad by the 2 fact that G. The case of p 2 s easy. Ž p1.2 Aother Multplcato F. Now we troduce aother ultplcato represetato rgs. If M ad N are two F-objects, o M F N we defe the T-acto to be T T. The M F N s a F-object. We deote the correspodg ultplcato F to be ad call ths ultplcato the crcle product. It s easy to see that Ž,,. F fors a coutatve rg wthout detty. Actually, f j, we have the followg ultplcato forula Ž,,.: j 2Ž Ž j 1.. F Fx. Let 3. PROOF OF THE THEOREM ad p p M F X,Y Ž X,Y. d, dj M d p FXŽ X. be FT-odules such that the T-acto o M Ž resp. M. d, d d s ultplca- j d d j Ž d. to by X Y resp. X.If p dar where 0 r d ad d1 d 2, the by the theory of odules ad soe sple calculatos, we have For M d 1, d2, we ay let a d a a M d r Ž 1.. Ž 19. a 1 2 M u. d 1, d2 1

12 510 CHIANG AND HUNG The we have for j a, ad 2 d F Md, d T j M 1 2 d 1, d2 u 2u 3u ju ju ju j j1 a p p jd a21 2 u p. 1 Fro ths, we ca evaluate u s. The results are j j u 2 p jd p j 1 d p j 1 d 2dd 1 2 for 1 j a 1; 2 ad Thus we have 2 2 a Ž 2. Ž u 2 p a d p a 1 d p a d Ž d r. d Ž d r., a Ž u p a d p a d r. M dd d 1, d a21 a2 ž / r2 2 d1 a 2 d1 2dr 1 2 a2 Ž 1. a2 p 1 Ž M d2.. Ž 20. d d By E. 19 ad E. 20, we get 2 2 ž / d1 d 1 Ž Md, d. Ž Md, d. p 1 Ž M d., d d 2 2

13 ON HILBERTKUNZ FUNCTIONS 511.e., ž / d1 d 1 Ž Md. Ž Md. Ž Md. Ž Md. p 1 Ž M d., Ž d d 2 2 f d1 d 2. Fro ow o, we wll always tae the ultplcato F to be the HaMosy ultplcato f we do ot specfy t. Cosder the FTodule p Ž, j, j. N F X j1,...,t X j1,...,t such that the T-acto o N s ultplcato by t defto of the crcle product, we have j1, j N M M M. d,1 d,2 d, t Tae d d d d. By E. 21, we have,1,2,t X d, j. The by the t Ž t1. 2 Ž t2.,0 d,1 d,2 d N x M p x M p x M p Žt 1. x M,, t1 d where the x, j s are ratoal fuctos of d,1, d,2,...,d,t ad Md eas the th power of Ž M. d wth respect to the crcle product. Now Ž we have to evaluate D Ž N..,.e., the D value of F 1 F t Ž t1. 2 Ž t2. x,0 Ž M d. p x,1 Ž M d. p x,2 Ž M d. 1 Žt1. p x, t 1 M d. 22 We cosder frstly the case of d d d. Let d d.,1,2,t, j For a fxed, tae p dar where 0 r d. Oe ay fd t a t t a a Ž N. r Ž 1. Ž r d. r a1 t ½ j1 2 r jd r j 1 d t t aj r Ž j1. d Ž 23. 5

14 512 CHIANG AND HUNG by a slar process as above. Wrte 1d to p-adc for: b Ž 0. b Ž 1. p b Ž 2. p. d For fxed, let p adr wth 0 r d. The abž 0. p bž 1. p 1 bž 2. p 2 bž.. For ay, defe cž,. b p bž 1. p 1 bž., t x t t K x r 1 r d r x x x1 t t ½2rjd r Ž j 1. d j1 t 5 xj r j1 d. For 1 l t, p, defe ž / b l t tl l 1 Žb. L, d p od d 1 d Žb Ž.. 1, l where the sybol a od b deotes the reader of a dvded by b. Let e be a postve teger, 1 l e 1, ad ay power of p. Defe ž/ p1 l e l Ž p1. GeŽ. Ž 1. Ž p1.. l 1 Ž. By E. 5 through E. 11, oe ca easly chec that ad that e1 e 0 e l e l el l1 D Ž p. G Ž. D Ž. G Ž. D Ž. Ž 24. b Ž. b Ž. Ž. t1 l l tl l0 K b c,1 1 K c,1 L Ž,. D Ž.. Ž 25.

15 ON HILBERTKUNZ FUNCTIONS 513 Let I 0*,0,1,2,...,t 1, 4 II1 I2 I. For cove- ece, we defe 0* for all 0*. We say that Ž 1,...,. Ž,...,. 1 f for all. We deote f ad. Such a order I ca be exteded to a lear order the followg way. Let S Ž j. : j4 1,2,..., 4. Ž. 1 If S Ž 0*. S Ž 0*., ad S Ž 0*. S Ž 0*. the. If S Ž 0*. S Ž 0*. ad S Ž 0*. S Ž 0*. the accordg to the lexcographc order of S Ž 0*. ad S Ž 0*. Žcf.. 6 ; e.g., Ž 0*, 2, 1, 0*, 3. Ž 1, 0, 0*, 4, 2. ad Ž 3, 1, 0*, 2, 0*. Ž 1, 2, 1, 0*, 0*.. Ž 2. If S Ž j. S Ž j. for all j ad S Ž. S Ž. the. If S Ž j. S Ž j. for all j ad S S ad S Ž. S Ž. the accordg to the lexcographc order of S Ž. ad S Ž. ; e.g., Ž 2, 0*, 0, 1, 0. Ž 1, 0*, 0, 1, 1. ad Ž 0, 0*, 1, 2, 0. Ž 0, 0*, 2, 1, 0.. It s easy to see that f. Let ad for 0 l t 1. Let v Ž,. K c Ž,.,0* l t l, l v, p D p v Ž,. v Ž,., 1, 0 f Ž 0*,...,0*., ½ f otherwse 0* for all Ž,...,. 1 I. For exaple, f 5, t1 t2 t5 4 ad Ž 1, 0*, 0, 3, 2. I, the Ž. t 1 1 t v, pd p K2 c2, D 3 p 3 t t 5 2 p D p p D p. Now to evaluate the HlbertKuz fucto of the hypersurface defed by Ž. 1, we have to evaluate Fž / F 1 D K c Ž,0. D v Ž,0.

16 514 CHIANG AND HUNG for Ž 0*, 0*,..., 0*.. We wll gve a recursve algorth to evaluate t. I geeral, we fx soe Ž,...,. 1 I ad soe o-egatve teger. Let b b Ž., c c Ž,1.. By E. Ž 24. ad E. Ž 25., we have vž,., 1 v Ž,. K b c p D t p 0* 0* t1 b l l tl b l0 Ž 1. K Ž c. LŽ,. D Ž. 0* Ž. 0 t 0* p G D t1 l l t l Gt D l1 t1 b l l tl b l0 Ž 1. K Ž c. LŽ,. D Ž. 0* 0 t p G D 0* t1 l l tl p Gt Ž. D Ž.. l1 There wll be Ž t 1. Ž t. 0* 0* ters whe we ultply out the above euato. Let b, b 0* 0*, 0* A, 1 L, f ad A, t p G 0 p G Ž., 0* 0*, Ž,. 0 otherwse. The v Ž,. A Ž,. v Ž, 1.., I

17 ON HILBERTKUNZ FUNCTIONS 515 Let Ž,. A Ž,. v Ž, 1.,, where the su taes over all wth soe t 1. By otg that t t t K c r dc p od d, l D t l tl l t ad by E. 13 ad E. 14, we have Ž,. 1 t A,, p p od d 0* p a, j j j1 p, Ž. where a 1 t 1 ad, j s are fuctos of b ad p od d, thus are evetually perodc fuctos of. Let The vž,. p Ž,. p, j j. j1 t a t l tl l b l2 0* b Ž,. L Ž,. D Ž. Ž 1. K Ž c. t1 tl tl l 0 t t 0* l2 p G Ž. D Ž. G Ž. D Ž.. Multplyg out the product of the above euato, we have a v, A,, v, 1,, J where J I: t 1, for all 4. Arrage v Ž,. to a colu vector vž,. v Ž,. J the lear order defed above such a way that v Ž,. coes after v Ž,. f. It s easy to see that the correspodg atrx AŽ,. t

18 516 CHIANG AND HUNG A Ž,. s a upper tragular atrx the atrx rg M Ž.,, J J F. We ca also create the colu vector Ž,. Ž,. J by the sae way. The we get the recursve forula vž,. AŽ,. vž, 1. p až. Ž,.. Note that A Ž,., E O. Let Ã, WŽ A,Ž,.., TpŽ v Ž,.. Ž v,., D v Ž,. F Ž. Ž. Ž. Tp,. D, The by E. Ž. 7 ad E. Ž. 8, we have až v Ž,. A v Ž, 1. p. Ž., where v Ž,. ad are 2J 1 atrces ad A s a Ž2J. Ž2J. atrx over. Moreover, A ad are evetually perodc as fuctos of. We ay fd tegers ad such that A ad are perodc for wth a coo ultple of ther perods. For large, there exst Ž. ad Ž. such that 1 Ž. Ž. where 0 Ž.. Because AŽ,. s a upper tragular atrx, the set of egevalues of A s the uo of the sets of egevalues of A, for J. Cosder A Ž,. p G Ž. Ž 1.., F 0 b 0* 0* For odd p, by Proposto 2.14, f Ž 0*,..., 0*., the egevalues of A, are p Ž SŽ 0*.,. Ž * Ž 1. ad p, where ŽS Ž 0*.,. s the postve egevalue of Let b ž b Ž. / 0* 0* b W Ž 1. GŽ.. Ž Q

19 ON HILBERTKUNZ FUNCTIONS 517 We have 1 2, 2 Q A Q 1 0* Ž1. p 0 0 for all Ž 0*,..., 0*.. For Ž 0*,..., 0*., the A Ž., s are ether 0 dagoal or of the for For p 2, by Proposto 2.14, we have A or f, * Ž *,..., 0*, ad A 2 f Ž 0*,..., 0*.,. Thus, all the absolute values of the egevalues of 01 Ž A. wll be less tha a a p ad the all the egevalues of B wll ever be p. The followg atrces ca be well-defed: ad The CA Ž 0. A Ž., a až bp Ž 0. p 1. AŽ 0. Ž 1. A Ž 0. A Ž 1. Ž., BA 1 A, až1. až2. v 1 p A 1 2 Oe ca easly chec that A 1 A 2 A 1, a a 1 up p IB v, zp až 1. Cu p a b, Ž. Ž v, Ž.. p a Ž. u. v,0 C B Ž. p a z. Ž. Ž. 1 a a p I B p v, v,. Now suppose that p s odd ad that t 2 for soe. We wll show that the -copoet of Ž., deoted by Ž., s a scalar 1 ultple of. Let 1 p v Ž,. u. j, j j 1

20 518 CHIANG AND HUNG The ad by E. 16, we have O the other had, p p t 2 2 ž / 1 v, u p D p, p t 1 pž. FŽ. 1 T v, D v, 2 p u. ž j / F j, FŽ j,. u d v Ž,. d v Ž,., j 1 j j tj tj FŽ j,. FŽ jž j.. Ž j. j d v, d K c, p p od d f 0*; j j t t j j j d v Ž,. d Ž p. D Ž p. Ž p. f 0*. Hece j F j, j F Ž 1 t. t j1 j j p F j T v, D v, 2 p p od d, where p. The 0* j p a v, Ž. v, Ž. T Ž.1 p Ž vž, Ž... p a D v, Ž. F Ž. Ž Ž.. Ž Ž.. T Ž.1 p v,. D v, Because p od d p od d for 0, we have p a vž, Ž.. v Ž, Ž.. a p T Ž.1 v, Ž. p F Ž. 1 T Ž.1 p Ž vž, Ž.... 1

21 ON HILBERTKUNZ FUNCTIONS 519 Let w p a v Ž, Ž.. v Ž, Ž... The the -copoet of w s ad a w p B,, B A Ž 1. A Ž 2.,,Ž 1. Ž 1,2. A Ž 3. A Ž., 2,3 1, where the su s tae over all Ž. J such that Ž 1. Ž 2. Ž 1.. Because t 2 for soe, we have t 2 for all. Thus all AŽ,. have the factor G 0 Ž. Ž., Žj., ad the by E. Ž 18., we have u u WŽ AŽ,. Ž.,Ž j.. u u 0 p1 p1 0 for soe o-egatve tegers u s. The B, s also of the for as above. We ow prove by ducto o that Ž. s also a scalar 1 ultple of. If s the axal eleet J, the 1 a a w p Ž. B Ž. p Ž. B Ž..,, , 1t Žt Suppose that s ot a scalar ultple of. The u for soe u 0. Because u s a egevector of B wth respect to the egevalue p, the -copoet of w s ot zero. Ths s cotrary to the fact that w s a scalar ultple of. For a geeral wth soe t 2, we have a wp B,. 1 1 By ductve hypothess, the vector s a scalar ultple of for all,sos B Ž.. Suppose that Ž., s ot a scalar ultple 1 of. The by a slar dscusso as above, oe ca easly see that w s 1

22 520 CHIANG AND HUNG ot a scalar ultple of , ether. We the get a cotradcto ad thus s a scalar ultple of. I ths case, the egevalue 1 0* Ž 1. p wll ot volve ay etry of v Ž,0.. Let Q dagž I, Q, Q,...,Q We ca, by doublg the teger f ecessary, ae the atrx Q1 BQ upper tragular. We wll gve soe dscussos o the dagoalzablty of B. Let A : 0* 4 S 1,...,s 4. Cosder frstly for the case that p s odd. If Ž 0*,..., 0*., let By 26, we have Ž.. 1 p Ž SŽ 0*.,.. 1 Let l ŽS Ž 0*.,.. The, we have A 1 1 2, 2 1 0* Ž1. p 0 Q B Q. 0 If Ž 0*,..., 0*., t s easy to see that oly oe of the egevalues of B s volved the secod copoet of vž, 0.,, ad we tae ths egevalue to be l. We are gog to prove that la lb f A B ad that l la f oreover l 1. Wthout loss of geeralty, oe ay assue that A 1,..., j4 ad that B 1,..., j1 4. By Ž 27., we copare the followg two eleets the represetato rg: wth L G A j j1 b Ž j1. j2 L G. B b Wrte u00 u1 21u2 2 j GŽ. b or Ž 28. j2 u u u

23 ON HILBERTKUNZ FUNCTIONS 521 The L u u u A bj u u bj1 0 p1bj1 p1 or L u u u A bj u u, bj1 1 p1bj1 Ž p1. ad LB u0 0u1 21u2 2 GŽ. or p1 p1 u u p1 0 LB u0 1u1 u2 31 GŽ. p1 p1 u u. 0 1 Ž p1. 0 I ether case, u 0 for all. Thus u u, ad we have la l B.If for soe 1,..., 4, : 0, 1,..., p 1, u 04 2, the the ozero etres W Ž L. ust be larger tha those W Ž L. B A, ad we wll have l l. Note that f j 0,.e., A, the u A B 0 for 0,..., p1, thus, we have la l B.If la1, there ust be at least two s such that u 0 for soe 1, 2,..., 4, the la l B. Thus, the oly possble Jorda blocs of B that are ot dagoal are those whch correspod to the egevalues of powers of p. If oe of these l s a power of p, the t s clear that B A ca be dagoalzed, ad the j the fj Theore 1.1 s p whe. For the case of p 2, the dagoalzablty of B s sple. The oly thg we have to cosder s the dagoalzablty of the bloc A A,, 0 A,

24 522 CHIANG AND HUNG for 0*,..., 0*, 0* ad 0*,..., 0*, 0. We have A A L j b j Ž,.,,, 0 A 0, 0 Ž 1. where j 1 b od 2. If b 0, we have L Ž,. 0. I ths case, A A,, or. 0 A, If b 1, we have L,. I ths case, j j A A,, or. 0 A, It s easy to see that the products of the above four atrces are dagoalzable. Thus the correspodg bloc of B s dagoalzable, ad the B s dagoalzable. Theore 1.1 ow ca be easly proved f we trasfor the atrx B to ts Jorda for. For the proof of Corollary 1, we ultply out E. Ž 22. ad obta a lear cobato Ž ratoal coeffcets. of the ters where w s p Ž M d., 1 w s t, Ž 29. j1 ad 1 s Ž s j j t j. The value DF j1 Md. j s just the value of the s HlbertKuz fucto for the hypersurface X d 1 j1, j. By Theo- re 1.1 the doate ter for ths value s cp s 1 for soe ratoal w uber c ad by E. 29, the D s F-value of p 1 Md s doated by cp Ž 1 t 1.. By our algorth for the evaluato of l A, the set 4 s l correspodg to X d A A 1 j1, j ust be cotaed that to t X d. Aga, by Theore 1.1 ad E. Ž 29., oe ay easly 1 j1, j 1

25 ON HILBERTKUNZ FUNCTIONS 523 Ž. chec that the secod su E. 3 s tae fro j 0to j Ž s 2. Ž t s. Ž t 1. AŽ A. A 1 1 ad that the thrd su s tae fro j 0to 1 Ž s2. Ž ts. 1 Ž t 2. t. s2 1 t2 Ths proves Corollary 1. We ow gve soe exaples below. Soe of the data s obtaed by a progra wrtte Maple V. EXAMPLE 1. Let F Ž. 5. By the algorth we have lsted above, we ca obta the HlbertKuz fucto of the hypersurface Ž XY. 4 T 4 U 4 W 4. By the coputer progra wrtte Maple V, we ay fd that Ã, , for all 1. Let B A Ž Ž v 1, Fro these, oe ca fd that the HlbertKuz fucto of the hypersurface s EXAMPLE 2. Let F Ž. 5. We fd by our algorth that the HlbertKuz fucto of the hypersurface Ž XYZ. 4 T 4 U 4 W 4 s

26 524 CHIANG AND HUNG By the progra Maple V, we ay fd that à Ž. for all 1. Let B A 1. Arrage the egevectors of B to P ad oe has P , z , Ž , P Ž

27 ON HILBERTKUNZ FUNCTIONS 525 ad C I. The oe ay easly fd that the secod copoet of s v,0 C B Ž. p a z Cobg the two exaples above wth the exaple preseted 8 for the HlbertKuz fucto of the hypersurface X 4 T 4 U 4 W 4 ŽŽ Ž , ad by E. Ž 21., oe ay fd that the HlbertKuz fucto for the hypersurface s X d 1 Y d 2 Z 4 T 4 U 4 W 4 dd ž / ž / ž /ž / d1 d2 d2 d d1 d , where d 1, d2 4. EXAMPLE 3. Let F Ž. 7. We obta by our algorth that the HlbertKuz fucto of the hypersurface Ž XYZT. 6 U 6 W 6 S 6 s Aga by the progra Maple V, we obta the atrces A ad as à ,

28 526 CHIANG AND HUNG ad for 1. The Jorda for of B A Ž. 1 s D Ths s a exaple such that the atrx B caot be dagoalzed. We tha Dr. Mosy who gves us aother exaple such that the dagoalzablty also fals. Whe p 19 ad the hypersurface s XYZT U 19 V 19 W 19, fro the coputer data, we have that the Jorda for of B s D , ad the HlbertKuz fucto for ths hypersurface s

29 ON HILBERTKUNZ FUNCTIONS 527 ACKNOWLEDGMENT We tha Dr. M. C. Kag, who gave us soe suggestos for ths artcle. REFERENCES 1. S. T. Chag, The Asyptotc Behavour of HlbertKuz Fuctos ad Ther Geeralzatos, Doctoral Thess, Uversty of Mchga, L. Chag, HlbertKuz Fuctos, Doctoral Thess, Natoal Tawa Noral Uversty, I Chese 3. L. Chag ad Y. C. Hug, O HlbertKuz fucto ad represetato rg, Bull. Ist. Math. Acad. Sca Ž 1998., press. 4. A. Coca, HlbertKuz fucto of ooal deals ad boal hypersurfaces, Mauscrpta Math. 90 Ž 1996., M. Cotessa, O the HlbertKuz fucto ad Koszul hoology, J. Algebra 175 Ž 1995., D. Cox, J. Lttle, ad D. O Shea, Ideals, Varetes, ad Algorths, Sprger-Verlag, New YorBerlHedelburg, C. Ha, The HlbertKuz Fucto of a Dagoal Hypersurface, Doctoral Thess, Brades Uversty, C. Ha ad P. Mosy, Soe surprsg HlbertKuz fuctos, Math. Z. 214 Ž 1993., E. Kuz, Characterzatos of regular local rgs of characterstc p, Aer. J. Math. 41 Ž 1969., E. Kuz, O Noethera rgs of characterstc p, Aer. J. Math. 98 Ž 1976., P. Mosy, The HlbertKuz fucto, Math. A. 263 Ž 1993., 4349.

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A Desty of dagoalzable square atrces Studet: Dael Cervoe; Metor: Saravaa Thyagaraa Uversty of Chcago VIGRE REU, Suer 7. For ths etre aer, we wll refer to V as a vector sace over ad L(V) as the set of lear

More information

A Characterization of Jacobson Radical in Γ-Banach Algebras

A Characterization of Jacobson Radical in Γ-Banach Algebras Advaces Pure Matheatcs 43-48 http://dxdoorg/436/ap66 Publshed Ole Noveber (http://wwwscrporg/joural/ap) A Characterzato of Jacobso Radcal Γ-Baach Algebras Nlash Goswa Departet of Matheatcs Gauhat Uversty

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures Lecture 8 A lttle bt of fu ath Read: Chapter 7 (ad 8) Fte Algebrac Structures Groups Abela Cyclc Geerator Group order Rgs Felds Subgroups Euclda Algorth CRT (Chese Reader Theore) 2 GROUPs DEFINITION: A

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers ELEMENTS OF NUMBER THEORY I the followg we wll use aly tegers a ostve tegers Ζ = { ± ± ± K} - the set of tegers Ν = { K} - the set of ostve tegers Oeratos o tegers: Ato Each two tegers (ostve tegers) ay

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming Aerca Joural of Operatos Research, 4, 4, 33-339 Publshed Ole Noveber 4 ScRes http://wwwscrporg/oural/aor http://ddoorg/436/aor4463 A Pealty Fucto Algorth wth Obectve Paraeters ad Costrat Pealty Paraeter

More information

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi Faculty of Sceces ad Matheatcs, Uversty of Nš, Serba Avalable at: http://wwwpfacyu/float Float 3:3 (009), 303 309 DOI:098/FIL0903303J SUBCLASS OF ARMONIC UNIVALENT FUNCTIONS ASSOCIATED WIT SALAGEAN DERIVATIVE

More information

Coherent Potential Approximation

Coherent Potential Approximation Coheret Potetal Approxato Noveber 29, 2009 Gree-fucto atrces the TB forals I the tght bdg TB pcture the atrx of a Haltoa H s the for H = { H j}, where H j = δ j ε + γ j. 2 Sgle ad double uderles deote

More information

LECTURES ON REPRESENTATION THEORY AND INVARIANT THEORY

LECTURES ON REPRESENTATION THEORY AND INVARIANT THEORY LECTUES ON EPESENTATION THEOY AND INVAIANT THEOY These are the otes for a lecture course o the syetrc group, the geeral lear group ad varat theory. The a of the course was to cover as uch of the beautful

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Vertex Operator Algebras and Associative Algebras

Vertex Operator Algebras and Associative Algebras JOURNAL OF ALGEBRA 6, 6796 998 ARTICLE NO. JA98745 Vertex Operator Algebras ad Assocatve Algebras Chogyg Dog* Departet of Matheatcs, Uersty of Calfora, Sata Cru, Calfora 9564 E-al: dog@cats.ucsc.edu Hasheg

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Order Nonlinear Vector Differential Equations

Order Nonlinear Vector Differential Equations It. Joural of Math. Aalyss Vol. 3 9 o. 3 39-56 Coverget Power Seres Solutos of Hgher Order Nolear Vector Dfferetal Equatos I. E. Kougas Departet of Telecoucato Systes ad Networs Techologcal Educatoal Isttute

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

Fibonacci Identities as Binomial Sums

Fibonacci Identities as Binomial Sums It. J. Cotemp. Math. Sceces, Vol. 7, 1, o. 38, 1871-1876 Fboacc Idettes as Bomal Sums Mohammad K. Azara Departmet of Mathematcs, Uversty of Evasvlle 18 Lcol Aveue, Evasvlle, IN 477, USA E-mal: azara@evasvlle.edu

More information

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES Joural of Algebra Number Theory: Advaces ad Applcatos Volume 6 Number 6 Pages 5-7 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/.864/ataa_77 A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

THE TRUNCATED RANDIĆ-TYPE INDICES

THE TRUNCATED RANDIĆ-TYPE INDICES Kragujeac J Sc 3 (00 47-5 UDC 547:54 THE TUNCATED ANDIĆ-TYPE INDICES odjtaba horba, a ohaad Al Hossezadeh, b Ia uta c a Departet of atheatcs, Faculty of Scece, Shahd ajae Teacher Trag Uersty, Tehra, 785-3,

More information

On the energy of complement of regular line graphs

On the energy of complement of regular line graphs MATCH Coucato Matheatcal ad Coputer Chetry MATCH Cou Math Coput Che 60 008) 47-434 ISSN 0340-653 O the eergy of copleet of regular le graph Fateeh Alaghpour a, Baha Ahad b a Uverty of Tehra, Tehra, Ira

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Solving the fuzzy shortest path problem on networks by a new algorithm

Solving the fuzzy shortest path problem on networks by a new algorithm Proceedgs of the 0th WSEAS Iteratoal Coferece o FUZZY SYSTEMS Solvg the fuzzy shortest path proble o etworks by a ew algorth SADOAH EBRAHIMNEJAD a, ad REZA TAVAKOI-MOGHADDAM b a Departet of Idustral Egeerg,

More information

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION Bars Erkus, 4 March 007 Itroducto Ths docuet provdes a revew of fudaetal cocepts structural dyacs ad soe applcatos hua-duced vbrato aalyss ad tgato of

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions Sebastá Martí Ruz Alcatos of Saradache Fucto ad Pre ad Core Fuctos 0 C L f L otherwse are core ubers Aerca Research Press Rehoboth 00 Sebastá Martí Ruz Avda. De Regla 43 Choa 550 Cadz Sa Sarada@telele.es

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

Review Exam I Complex Analysis. Cauchy s Integral Formula (#0). Let G be a region in C, let Bar (, ) G and let γ be the circle C(a,r), oriented.

Review Exam I Complex Analysis. Cauchy s Integral Formula (#0). Let G be a region in C, let Bar (, ) G and let γ be the circle C(a,r), oriented. Revew Exa I Coplex Aalyss Uderled Deftos: May be ased for o exa Uderled Propostos or Theores: Proofs ay be ased for o exa Cauchy s Itegral Forula (#) Let G be a rego C, let Bar (, ) G ad let be the crcle

More information

SUPER GRACEFUL LABELING FOR SOME SPECIAL GRAPHS

SUPER GRACEFUL LABELING FOR SOME SPECIAL GRAPHS IJRRAS 9 ) Deceber 0 www.arpapress.co/volues/vol9issue/ijrras_9 06.pdf SUPER GRACEFUL LABELING FOR SOME SPECIAL GRAPHS M.A. Perual, S. Navaeethakrsha, S. Arockara & A. Nagaraa 4 Departet of Matheatcs,

More information

Interval extension of Bézier curve

Interval extension of Bézier curve WSEAS TRANSACTIONS o SIGNAL ROCESSING Jucheg L Iterval exteso of Bézer curve JUNCHENG LI Departet of Matheatcs Hua Uversty of Huates Scece ad Techology Dxg Road Loud cty Hua rovce 47 R CHINA E-al: ljucheg8@6co

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

3.1 Introduction to Multinomial Logit and Probit

3.1 Introduction to Multinomial Logit and Probit ES3008 Ecooetrcs Lecture 3 robt ad Logt - Multoal 3. Itroducto to Multoal Logt ad robt 3. Estato of β 3. Itroducto to Multoal Logt ad robt The ultoal Logt odel s used whe there are several optos (ad therefore

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

-Pareto Optimality for Nondifferentiable Multiobjective Programming via Penalty Function

-Pareto Optimality for Nondifferentiable Multiobjective Programming via Penalty Function JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 198, 248261 1996 ARTICLE NO. 0080 -Pareto Otalty for Nodfferetable Multobectve Prograg va Pealty Fucto J. C. Lu Secto of Matheatcs, Natoal Uersty Prearatory

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices Deartet of Matheatcs UNIVERSITY OF OSLO FORMULAS FOR STK4040 (verso Seteber th 0) A - Vectors ad atrces A) For a x atrx A ad a x atrx B we have ( AB) BA A) For osgular square atrces A ad B we have ( )

More information

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences Appl Math If Sc 7, No 6, 59-53 03 59 Appled Matheatcs & Iforato Sceces A Iteratoal Joural http://dxdoorg/0785/as/070647 Háje-Réy Type Iequaltes ad Strog Law of Large Nuers for NOD Sequeces Ma Sogl Departet

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

On Convergence a Variation of the Converse of Fabry Gap Theorem

On Convergence a Variation of the Converse of Fabry Gap Theorem Scece Joural of Appled Matheatcs ad Statstcs 05; 3(): 58-6 Pulshed ole Aprl 05 (http://www.scecepulshggroup.co//sas) do: 0.648/.sas.05030.5 ISSN: 376-949 (Prt); ISSN: 376-953 (Ole) O Covergece a Varato

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Knots, Skein Theory and q-series

Knots, Skein Theory and q-series Lousaa State Uversty LSU Dgtal Coos LSU Doctoral Dssertatos Graduate School 205 Kots, Se Theory ad q-seres Mustafa Hajj Lousaa State Uversty ad Agrcultural ad Mechacal College, ustafahajj@galco Follow

More information

Expanding Super Edge-Magic Graphs

Expanding Super Edge-Magic Graphs PROC. ITB Sas & Tek. Vol. 36 A, No., 00, 7-5 7 Exadg Suer Edge-Magc Grahs E. T. Baskoro & Y. M. Cholly, Deartet of Matheatcs, Isttut Tekolog Badug Jl. Gaesa 0 Badug 03, Idoesa Eals : {ebaskoro,yus}@ds.ath.tb.ac.d

More information

The Mathematics of Portfolio Theory

The Mathematics of Portfolio Theory The Matheatcs of Portfolo Theory The rates of retur of stocks, ad are as follows Market odtos state / scearo) earsh Neutral ullsh Probablty 0. 0.5 0.3 % 5% 9% -3% 3% % 5% % -% Notato: R The retur of stock

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Baxter Algebras and the Umbral Calculus

Baxter Algebras and the Umbral Calculus Baxter Algebras ad the Ubral Calculus arxv:ath/0407159v1 [ath.ra] 9 Jul 2004 L Guo Departet of Matheatcs ad Coputer Scece Rutgers Uversty at Newar Abstract We apply Baxter algebras to the study of the

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials IOSR Joural of Mathematcs (IOSR-JM) e-issn: 78-78, p-issn: 19-76X. Volume 1, Issue Ver. II (Jul. - Aug.016), PP -0 www.osrjourals.org Bvarate Veta-Fboacc ad Bvarate Veta-Lucas Polomals E. Gokce KOCER 1

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

On the characteristics of partial differential equations

On the characteristics of partial differential equations Sur les caractérstques des équatos au dérvées artelles Bull Soc Math Frace 5 (897) 8- O the characterstcs of artal dfferetal equatos By JULES BEUDON Traslated by D H Delhech I a ote that was reseted to

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

Some identities involving the partial sum of q-binomial coefficients

Some identities involving the partial sum of q-binomial coefficients Some dettes volvg the partal sum of -bomal coeffcets Bg He Departmet of Mathematcs, Shagha Key Laboratory of PMMP East Cha Normal Uversty 500 Dogchua Road, Shagha 20024, People s Republc of Cha yuhe00@foxmal.com

More information

Stationary states of atoms and molecules

Stationary states of atoms and molecules Statoary states of atos ad olecules I followg wees the geeral aspects of the eergy level structure of atos ad olecules that are essetal for the terpretato ad the aalyss of spectral postos the rotatoal

More information

A CHARACTERIZATION OF THE CLIFFORD TORUS

A CHARACTERIZATION OF THE CLIFFORD TORUS PROCEEDINGS OF THE AERICAN ATHEATICAL SOCIETY Volue 17, Nuber 3, arch 1999, Pages 819 88 S 000-9939(99)05088-1 A CHARACTERIZATION OF THE CLIFFORD TORUS QING-ING CHENG AND SUSUU ISHIKAWA (Coucated by Chrstopher

More information

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph Aals of Pure ad Appled Mathematcs Vol. 3, No., 7, -3 ISSN: 79-87X (P, 79-888(ole Publshed o 3 March 7 www.researchmathsc.org DOI: http://dx.do.org/.7/apam.3a Aals of O Eccetrcty Sum Egealue ad Eccetrcty

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

A unified matrix representation for degree reduction of Bézier curves

A unified matrix representation for degree reduction of Bézier curves Computer Aded Geometrc Desg 21 2004 151 164 wwwelsevercom/locate/cagd A ufed matrx represetato for degree reducto of Bézer curves Hask Suwoo a,,1, Namyog Lee b a Departmet of Mathematcs, Kokuk Uversty,

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

On the Capacity of Bounded Rank Modulation for Flash Memories

On the Capacity of Bounded Rank Modulation for Flash Memories O the Capacty of Bouded Rak Modulato for Flash Meores Zhyg Wag Electrcal Egeerg Departet Calfora Isttute of Techology Pasadea, CA 95, USA Eal: zhyg@paradsecaltechedu Axao (Adrew) Jag Coputer Scece Departet

More information

Odd-elegant Labeling Algorithm of Generalized Ring Core Networks

Odd-elegant Labeling Algorithm of Generalized Ring Core Networks 6th Iteratoal Coferece o Machery Materals Eroet Botechology ad Coputer (MMEBC 06) Odd-elegat Labelg Algorth of Geeralzed Rg Core Networs Ja Xe a Bg Yao b ad Wee Hogc College of Matheatcs ad Statstcs Northwest

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

The Number of the Two Dimensional Run Length Constrained Arrays

The Number of the Two Dimensional Run Length Constrained Arrays 2009 Iteratoal Coferece o Mache Learg ad Coutg IPCSIT vol.3 (20) (20) IACSIT Press Sgaore The Nuber of the Two Desoal Ru Legth Costraed Arrays Tal Ataa Naohsa Otsua 2 Xuerog Yog 3 School of Scece ad Egeerg

More information

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction Computer Aded Geometrc Desg 9 79 78 www.elsever.com/locate/cagd Applcato of Legedre Berste bass trasformatos to degree elevato ad degree reducto Byug-Gook Lee a Yubeom Park b Jaechl Yoo c a Dvso of Iteret

More information

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a Jacobi sybols efiitio Let be a odd positive iteger If 1, the Jacobi sybol : Z C is the costat fuctio 1 1 If > 1, it has a decopositio ( as ) a product of (ot ecessarily distict) pries p 1 p r The Jacobi

More information