Tute 10. Liam O'Connor. May 23, 2017

Size: px
Start display at page:

Download "Tute 10. Liam O'Connor. May 23, 2017"

Transcription

1 Tute 10 Liam O'Connor May 23, 2017 proc Search(value g : G, value s : V g, value k : K, result v : T, result f : B) Where a graph g : G is dened as a 4-tuple (V, Γ, κ, λ) containing a set of vertices V, a successor function Γ : V P(V), a key function κ : V K and a payload function λ : V T, all much the same as the assignment. Like the assignment, we will use subscripts (e.g. Γ g ) to refer to a particular component of a graph. As we plan to do DFS using an unbounded stack on a graph, we do not need either of the preconditions from the assignment. Our postconditions, however, look quite similar, with the added assertion that a ne will be found i it is reachable from the start ne { a trivial assertion for a tree, but not for a graph. f, v : True, (1) For our purposes, we will extend the toy language with sets and set operations, and operations on abstract stacks, which we will later eliminate via data renement. S(τ) ::= (empty stack) x, t where x τ and t S(τ) Each of the stack operations is given a renement rule below: initialise t : True, t = t := pop t, x : t = h, r, x = h t = r x := pop(t) push t : True, t = x, t 0 push(t, x) We will also allow comparisons to the empty stack (t = ) in guards with the obvious semantics. 1

2 To begin deriving the implementation, let us rst intruce our stack and our visited set, which will contain all nes that we have already seen. This set is needed in a graph search, but not in a tree search as trees are guaranteed to be acyclic. (1) i-loc,... var t : S(V g ) := var S : P(V g ) := f, v, t, S : t = S =, (2) Now, we know we need a loop, and we have a pretty go idea of what the guard should be: We will exit the loop when we either nd what we're looking for (i.e. f is true), or when we have nowhere else to look (the stack t is empty). (2) sc,... f, v, t, S : t = S =, ϕ (3) f, v, t, S : ϕ, ϕ (f t = ) (4) (f n V f, v, t, S : ϕ (f t = ), g. κ g (n) = k λ g (n) = v n Γg(s)) (5) Here ϕ stands for our loop invariant, which, like the postcondition, is made of two components. ( f ( x S. x Γ ϕ = g(s) κ g (x) k Γ g (x) S t ) ( x t. x Γg(s)) s S t ) In the successful case, when f is true, we have found the ne we are looking for. Note that, because the loop guard tells us that f starts false, this case in the loop invariant only becomes true in the nal iteration of the loop. If we have found the ne we're looking for, then we no longer care about the state of the stack or the visited set, and we can just include the successful postcondition directly in the invariant. If f is false, however, we must describe in the invariant all the relevant properties of our stack t and visited set S. We use the notation t to refer to the set of all elements of a stack t: = x, s = {x} s At the end of the loop, if f is still false, then we know the stack is empty at the end of our loop from our guard. In such a situation, our invariant can be simplied to: ϕ f t = ( x S. x Γ g(s) κ g (x) k Γ g (x) S) s S We must ensure two main conditions: 2

3 1. Everything we have visited is not the ne we're looking for ( n S.κ g (n) k) 2. We have visited every reachable ne from the start ne (Γ g(s) S) With those two facts, we can conclude that no reachable ne from the start ne is the one we're looking for, which is what the postcondition requires ( n V g. n Γ g(s) κ g (n) k). The rst condition trivially follows from the invariant here, because we explicitly state that the visited set does not contain the key. The second condition can be rephrased as x Γ g(s). x S. We can show this from our invariant above using induction on the length of the path from s to x. In the base case, where x = s, we know from the nal conjunct in the invariant that s S. In the inductive case, where x Γ g (k), we have the inductive hypothesis that k S. Because our simplied invariant says that every successor of every ne in S must also be in S, we can conclude that x S as required, as x is a successor of k S. Thus, because in the case where f is true our invariant includes our postcondition directly, and in the case where f is false it directly implies the postcondition, we can just rene the third statement directly to skip: (5)..., skip skip We must also derive ce to establish our invariant initially. We'll do that by setting f to False, and pushing the start ne s onto the stack: Now we can intruce the while loop: (4) while (3) sc,... f := False; push(t, s) while (f t = ) do f, v, t, S : ϕ f t, ϕ (6) Rening the loop by is mostly tedious, but we begin by rst popping a ne o the stack. We know this is safe as our guard guarantees the stack is non-empty: (6) sc, pop, c-frame,... var n := pop(t); f, v, t, S : ϕ n,t / t f, ϕ (7) 3

4 Then, we check to see of the ne we just popped is the one we're looking for, in which case we can set f to true, thus making it very easy to re-establish the invariant by simply setting v to be the payload. (7) if, sc, assign,... if κ g (n) = k then else fi f := True; v := λ g (n); f, v, t, S : ϕ n,t / t f κ g (n) k, ϕ (8) In the else case, because we know the key is not the one we're looking for, we may be inclined to add n to the set S, however to do that we must ensure that n satises all the other conditions imposed on elements of S by the invariant. Firstly, there must be a path from the start ne s to n, which we know is true from our precondition, which states that all elements of the stack n, t (which clearly includes n) are reachable from s. Secondly, we must ensure that all successors of the ne n are in either the stack or the set S. To accomplish this we will simply loop through the set of unvisited successors and push each one to the stack. (8)... var m := Γ g (n) \ S while m do var c : m push(t, c) m := m \ {c} S := S {n} 4

5 Now, gathering all the ce together, we get: proc Search(value g : G, value s : V g, value k : K, result v : T, result f : B) var t : S(V g ) := ; var S : P(V g ) := ; f := False; push(t, s); while (f t = ) do var n := pop(t); if κ g (n) = k then f := True; v := λ g (n); else var m := Γ g (n) \ S while m do var c : m push(t, c) m := m \ {c} S := S {n} fi 5

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

Proving Inter-Program Properties

Proving Inter-Program Properties Unité Mixte de Recherche 5104 CNRS - INPG - UJF Centre Equation 2, avenue de VIGNATE F-38610 GIERES tel : +33 456 52 03 40 fax : +33 456 52 03 50 http://www-verimag.imag.fr Proving Inter-Program Properties

More information

COP4020 Programming Languages. Introduction to Axiomatic Semantics Prof. Robert van Engelen

COP4020 Programming Languages. Introduction to Axiomatic Semantics Prof. Robert van Engelen COP4020 Programming Languages Introduction to Axiomatic Semantics Prof. Robert van Engelen Assertions and Preconditions Assertions are used by programmers to verify run-time execution An assertion is a

More information

Hoare Logic: Part II

Hoare Logic: Part II Hoare Logic: Part II COMP2600 Formal Methods for Software Engineering Jinbo Huang Australian National University COMP 2600 Hoare Logic II 1 Factorial {n 0} fact := 1; i := n; while (i >0) do fact := fact

More information

COMP2111 Glossary. Kai Engelhardt. Contents. 1 Symbols. 1 Symbols 1. 2 Hoare Logic 3. 3 Refinement Calculus 5. rational numbers Q, real numbers R.

COMP2111 Glossary. Kai Engelhardt. Contents. 1 Symbols. 1 Symbols 1. 2 Hoare Logic 3. 3 Refinement Calculus 5. rational numbers Q, real numbers R. COMP2111 Glossary Kai Engelhardt Revision: 1.3, May 18, 2018 Contents 1 Symbols 1 2 Hoare Logic 3 3 Refinement Calculus 5 1 Symbols Booleans B = {false, true}, natural numbers N = {0, 1, 2,...}, integers

More information

Hoare Logic and Model Checking

Hoare Logic and Model Checking Hoare Logic and Model Checking Kasper Svendsen University of Cambridge CST Part II 2016/17 Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft Introduction In the

More information

Proof Rules for Correctness Triples

Proof Rules for Correctness Triples Proof Rules for Correctness Triples CS 536: Science of Programming, Fall 2018 A. Why? We can t generally prove that correctness triples are valid using truth tables. We need proof axioms for atomic statements

More information

Axiomatic Semantics: Verification Conditions. Review of Soundness and Completeness of Axiomatic Semantics. Announcements

Axiomatic Semantics: Verification Conditions. Review of Soundness and Completeness of Axiomatic Semantics. Announcements Axiomatic Semantics: Verification Conditions Meeting 12, CSCI 5535, Spring 2009 Announcements Homework 4 is due tonight Wed forum: papers on automated testing using symbolic execution 2 Questions? Review

More information

MIT Loop Optimizations. Martin Rinard

MIT Loop Optimizations. Martin Rinard MIT 6.035 Loop Optimizations Martin Rinard Loop Optimizations Important because lots of computation occurs in loops We will study two optimizations Loop-invariant code motion Induction variable elimination

More information

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed Another Form of Data-Flow Analysis Propagation of values for a variable reference, where is the value produced? for a variable definition, where is the value consumed? Possible answers reaching definitions,

More information

Axiomatic Semantics. Semantics of Programming Languages course. Joosep Rõõmusaare

Axiomatic Semantics. Semantics of Programming Languages course. Joosep Rõõmusaare Axiomatic Semantics Semantics of Programming Languages course Joosep Rõõmusaare 2014 Direct Proofs of Program Correctness Partial correctness properties are properties expressing that if a given program

More information

Lecture Notes on Software Model Checking

Lecture Notes on Software Model Checking 15-414: Bug Catching: Automated Program Verification Lecture Notes on Software Model Checking Matt Fredrikson André Platzer Carnegie Mellon University Lecture 19 1 Introduction So far we ve focused on

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems 5. Linear hybrid automata I Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October

More information

Modeling and Analysis of Hybrid Systems Linear hybrid automata I Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017

More information

The L Machines are very high-level, in two senses:

The L Machines are very high-level, in two senses: What is a Computer? State of the machine. CMPSCI 630: Programming Languages An Abstract Machine for Control Spring 2009 (with thanks to Robert Harper) Internal registers, memory, etc. Initial and final

More information

Reasoning About Imperative Programs. COS 441 Slides 10b

Reasoning About Imperative Programs. COS 441 Slides 10b Reasoning About Imperative Programs COS 441 Slides 10b Last time Hoare Logic: { P } C { Q } Agenda If P is true in the initial state s. And C in state s evaluates to s. Then Q must be true in s. Program

More information

Axiomatic Semantics: Verification Conditions. Review of Soundness of Axiomatic Semantics. Questions? Announcements

Axiomatic Semantics: Verification Conditions. Review of Soundness of Axiomatic Semantics. Questions? Announcements Axiomatic Semantics: Verification Conditions Meeting 18, CSCI 5535, Spring 2010 Announcements Homework 6 is due tonight Today s forum: papers on automated testing using symbolic execution Anyone looking

More information

Chapter 3 Deterministic planning

Chapter 3 Deterministic planning Chapter 3 Deterministic planning In this chapter we describe a number of algorithms for solving the historically most important and most basic type of planning problem. Two rather strong simplifying assumptions

More information

Hoare Examples & Proof Theory. COS 441 Slides 11

Hoare Examples & Proof Theory. COS 441 Slides 11 Hoare Examples & Proof Theory COS 441 Slides 11 The last several lectures: Agenda Denotational semantics of formulae in Haskell Reasoning using Hoare Logic This lecture: Exercises A further introduction

More information

Assignment 4. CSci 3110: Introduction to Algorithms. Sample Solutions

Assignment 4. CSci 3110: Introduction to Algorithms. Sample Solutions Assignment 4 CSci 3110: Introduction to Algorithms Sample Solutions Question 1 Denote the points by p 1, p 2,..., p n, ordered by increasing x-coordinates. We start with a few observations about the structure

More information

Verification of Recursive Programs. Andreas Podelski February 8, 2012

Verification of Recursive Programs. Andreas Podelski February 8, 2012 Verification of Recursive Programs Andreas Podelski February 8, 2012 1 m(x) = x 10 if x > 100 m(m(x + 11)) if x 100 2 procedure m(x) returns (res) `0: if x>100 `1: res:=x-10 else `2: x m := x+11 `3: res

More information

What happens to the value of the expression x + y every time we execute this loop? while x>0 do ( y := y+z ; x := x:= x z )

What happens to the value of the expression x + y every time we execute this loop? while x>0 do ( y := y+z ; x := x:= x z ) Starter Questions Feel free to discuss these with your neighbour: Consider two states s 1 and s 2 such that s 1, x := x + 1 s 2 If predicate P (x = y + 1) is true for s 2 then what does that tell us about

More information

CSC D70: Compiler Optimization Static Single Assignment (SSA)

CSC D70: Compiler Optimization Static Single Assignment (SSA) CSC D70: Compiler Optimization Static Single Assignment (SSA) Prof. Gennady Pekhimenko University of Toronto Winter 08 The content of this lecture is adapted from the lectures of Todd Mowry and Phillip

More information

Loop Invariants and Binary Search. Chapter 4.4, 5.1

Loop Invariants and Binary Search. Chapter 4.4, 5.1 Loop Invariants and Binary Search Chapter 4.4, 5.1 Outline Iterative Algorithms, Assertions and Proofs of Correctness Binary Search: A Case Study Outline Iterative Algorithms, Assertions and Proofs of

More information

2 Ralph J. R. Back, Qiwen. Xu systems with respect to total correctness. Reactive renement of action systems was investigated by Back [4] basing on th

2 Ralph J. R. Back, Qiwen. Xu systems with respect to total correctness. Reactive renement of action systems was investigated by Back [4] basing on th Acta Informatica Manuscript-Nr. (will be inserted by hand later) Renement of fair action systems Ralph J. R. Back?, Qiwen. Xu?? Department of Computer Science, Abo Akademi, Lemminkainenkatu 14, SF-20520

More information

Programming Languages and Compilers (CS 421)

Programming Languages and Compilers (CS 421) Programming Languages and Compilers (CS 421) Sasa Misailovic 4110 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421a Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul

More information

Lecture Notes: Axiomatic Semantics and Hoare-style Verification

Lecture Notes: Axiomatic Semantics and Hoare-style Verification Lecture Notes: Axiomatic Semantics and Hoare-style Verification 17-355/17-665/17-819O: Program Analysis (Spring 2018) Claire Le Goues and Jonathan Aldrich clegoues@cs.cmu.edu, aldrich@cs.cmu.edu It has

More information

Design of Distributed Systems Melinda Tóth, Zoltán Horváth

Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Publication date 2014 Copyright 2014 Melinda Tóth, Zoltán Horváth Supported by TÁMOP-412A/1-11/1-2011-0052

More information

In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and

In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and shows how a program can sometimes be systematically constructed

More information

Constraint Solving for Program Verification: Theory and Practice by Example

Constraint Solving for Program Verification: Theory and Practice by Example Constraint Solving for Program Verification: Theory and Practice by Example Andrey Rybalchenko Technische Universität München Abstract. Program verification relies on the construction of auxiliary assertions

More information

Logic: Bottom-up & Top-down proof procedures

Logic: Bottom-up & Top-down proof procedures Logic: Bottom-up & Top-down proof procedures Alan Mackworth UBC CS 322 Logic 3 March 4, 2013 P & M Textbook 5.2 Lecture Overview Recap: Soundness, Completeness, Bottom-up proof procedure Bottom-up Proof

More information

Completeness for FOL

Completeness for FOL Completeness for FOL Overview Adding Witnessing Constants The Henkin Theory The Elimination Theorem The Henkin Construction Lemma 12 This lemma assures us that our construction of M h works for the atomic

More information

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Stavros Tripakis Abstract We introduce problems of decentralized control with communication, where we explicitly

More information

TIMED automata, introduced by Alur and Dill in [3], have

TIMED automata, introduced by Alur and Dill in [3], have 1 Language Inclusion Checking of Timed Automata with Non-Zenoness Xinyu Wang, Jun Sun, Ting Wang, and Shengchao Qin Abstract Given a timed automaton P modeling an implementation and a timed automaton S

More information

Soundness and Completeness of Axiomatic Semantics

Soundness and Completeness of Axiomatic Semantics #1 Soundness and Completeness of Axiomatic Semantics #2 One-Slide Summary A system of axiomatic semantics is sound if everything we can prove is also true: if ` { A } c { B } then ² { A } c { B } We prove

More information

Computing Static Single Assignment (SSA) Form

Computing Static Single Assignment (SSA) Form Computing Static Single Assignment (SSA) Form Overview What is SSA? Advantages of SSA over use-def chains Flavors of SSA Dominance frontiers revisited Inserting φ-nodes Renaming the variables Translating

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 2b Andrew Tolmach Portland State University 1994-2017 Semantics Informal vs. Formal Informal semantics Descriptions in English (or other natural language)

More information

THE AUSTRALIAN NATIONAL UNIVERSITY Second Semester COMP2600/COMP6260 (Formal Methods for Software Engineering)

THE AUSTRALIAN NATIONAL UNIVERSITY Second Semester COMP2600/COMP6260 (Formal Methods for Software Engineering) THE AUSTRALIAN NATIONAL UNIVERSITY Second Semester 2016 COMP2600/COMP6260 (Formal Methods for Software Engineering) Writing Period: 3 hours duration Study Period: 15 minutes duration Permitted Materials:

More information

A Short Introduction to Hoare Logic

A Short Introduction to Hoare Logic A Short Introduction to Hoare Logic Supratik Chakraborty I.I.T. Bombay June 23, 2008 Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 1 / 34 Motivation Assertion checking

More information

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE Axiomatic Semantics Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE 6341 1 Outline Introduction What are axiomatic semantics? First-order logic & assertions about states Results (triples)

More information

Automatic Verification of Parameterized Data Structures

Automatic Verification of Parameterized Data Structures Automatic Verification of Parameterized Data Structures Jyotirmoy V. Deshmukh, E. Allen Emerson and Prateek Gupta The University of Texas at Austin The University of Texas at Austin 1 Outline Motivation

More information

Constraint Solving for Program Verification: Theory and Practice by Example

Constraint Solving for Program Verification: Theory and Practice by Example Constraint Solving for Program Verification: Theory and Practice by Example Andrey Rybalchenko Technische Universität München Abstract. Program verification relies on the construction of auxiliary assertions

More information

Notes. Corneliu Popeea. May 3, 2013

Notes. Corneliu Popeea. May 3, 2013 Notes Corneliu Popeea May 3, 2013 1 Propositional logic Syntax We rely on a set of atomic propositions, AP, containing atoms like p, q. A propositional logic formula φ Formula is then defined by the following

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program Program verification Assertional semantics of a program Meaning of a program: relation between its inputs and outputs; specified by input assertions (pre-conditions) and output assertions (post-conditions)

More information

Coinductive big-step semantics and Hoare logics for nontermination

Coinductive big-step semantics and Hoare logics for nontermination Coinductive big-step semantics and Hoare logics for nontermination Tarmo Uustalu, Inst of Cybernetics, Tallinn joint work with Keiko Nakata COST Rich Models Toolkit meeting, Madrid, 17 18 October 2013

More information

Space-aware data flow analysis

Space-aware data flow analysis Space-aware data flow analysis C. Bernardeschi, G. Lettieri, L. Martini, P. Masci Dip. di Ingegneria dell Informazione, Università di Pisa, Via Diotisalvi 2, 56126 Pisa, Italy {cinzia,g.lettieri,luca.martini,paolo.masci}@iet.unipi.it

More information

Context Free Grammars: Introduction. Context Free Grammars: Simplifying CFGs

Context Free Grammars: Introduction. Context Free Grammars: Simplifying CFGs Context Free Grammars: Introduction CFGs are more powerful than RGs because of the following 2 properties: 1. Recursion Rule is recursive if it is of the form X w 1 Y w 2, where Y w 3 Xw 4 and w 1, w 2,

More information

Decision Procedures. Jochen Hoenicke. Software Engineering Albert-Ludwigs-University Freiburg. Winter Term 2016/17

Decision Procedures. Jochen Hoenicke. Software Engineering Albert-Ludwigs-University Freiburg. Winter Term 2016/17 Decision Procedures Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Winter Term 2016/17 Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 1 / 436 Program

More information

Program Analysis Part I : Sequential Programs

Program Analysis Part I : Sequential Programs Program Analysis Part I : Sequential Programs IN5170/IN9170 Models of concurrency Program Analysis, lecture 5 Fall 2018 26. 9. 2018 2 / 44 Program correctness Is my program correct? Central question for

More information

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach EDA045F: Program Analysis LECTURE 10: TYPES 1 Christoph Reichenbach In the last lecture... Performance Counters Challenges in Dynamic Performance Analysis Taint Analysis Binary Instrumentation 2 / 44 Types

More information

Classes and conversions

Classes and conversions Classes and conversions Regular expressions Syntax: r = ε a r r r + r r Semantics: The language L r of a regular expression r is inductively defined as follows: L =, L ε = {ε}, L a = a L r r = L r L r

More information

Average Case Analysis of Marking Algorithms

Average Case Analysis of Marking Algorithms Average Case Analysis of Marking Algorithms D.S. Hirschberg and L.L. Larmore University of California, Irvine California State University, Dominguez Hills Abstract. The Lindstrom marking algorithm uses

More information

Denotational Semantics

Denotational Semantics 5 Denotational Semantics In the operational approach, we were interested in how a program is executed. This is contrary to the denotational approach, where we are merely interested in the effect of executing

More information

An Alternative To The Iteration Operator Of. Propositional Dynamic Logic. Marcos Alexandre Castilho 1. IRIT - Universite Paul Sabatier and

An Alternative To The Iteration Operator Of. Propositional Dynamic Logic. Marcos Alexandre Castilho 1. IRIT - Universite Paul Sabatier and An Alternative To The Iteration Operator Of Propositional Dynamic Logic Marcos Alexandre Castilho 1 IRIT - Universite Paul abatier and UFPR - Universidade Federal do Parana (Brazil) Andreas Herzig IRIT

More information

Artificial Intelligence. Non-deterministic state model. Model for non-deterministic problems. Solutions. Blai Bonet

Artificial Intelligence. Non-deterministic state model. Model for non-deterministic problems. Solutions. Blai Bonet Artificial Intelligence Blai Bonet Non-deterministic state model Universidad Simón Boĺıvar, Caracas, Venezuela Model for non-deterministic problems Solutions State models with non-deterministic actions

More information

Formal Specification and Verification. Specifications

Formal Specification and Verification. Specifications Formal Specification and Verification Specifications Imprecise specifications can cause serious problems downstream Lots of interpretations even with technicaloriented natural language The value returned

More information

1 First-order logic. 1 Syntax of first-order logic. 2 Semantics of first-order logic. 3 First-order logic queries. 2 First-order query evaluation

1 First-order logic. 1 Syntax of first-order logic. 2 Semantics of first-order logic. 3 First-order logic queries. 2 First-order query evaluation Knowledge Bases and Databases Part 1: First-Order Queries Diego Calvanese Faculty of Computer Science Master of Science in Computer Science A.Y. 2007/2008 Overview of Part 1: First-order queries 1 First-order

More information

Central Algorithmic Techniques. Iterative Algorithms

Central Algorithmic Techniques. Iterative Algorithms Central Algorithmic Techniques Iterative Algorithms Code Representation of an Algorithm class InsertionSortAlgorithm extends SortAlgorithm { void sort(int a[]) throws Exception { for (int i = 1; i < a.length;

More information

Models of Computation. by Costas Busch, LSU

Models of Computation. by Costas Busch, LSU Models of Computation by Costas Busch, LSU 1 Computation CPU memory 2 temporary memory input memory CPU output memory Program memory 3 Example: f ( x) x 3 temporary memory input memory Program memory compute

More information

Topics on Compilers

Topics on Compilers Assignment 2 4541.775 Topics on Compilers Sample Solution 1. Test for dependences on S. Write down the subscripts. Which positions are separable, which are coupled? Which dependence test would you apply

More information

Formal Methods in Software Engineering

Formal Methods in Software Engineering Formal Methods in Software Engineering An Introduction to Model-Based Analyis and Testing Vesal Vojdani Department of Computer Science University of Tartu Fall 2014 Vesal Vojdani (University of Tartu)

More information

Axiomatic Semantics. Lecture 9 CS 565 2/12/08

Axiomatic Semantics. Lecture 9 CS 565 2/12/08 Axiomatic Semantics Lecture 9 CS 565 2/12/08 Axiomatic Semantics Operational semantics describes the meaning of programs in terms of the execution steps taken by an abstract machine Denotational semantics

More information

Deductive Verification

Deductive Verification Deductive Verification Mooly Sagiv Slides from Zvonimir Rakamaric First-Order Logic A formal notation for mathematics, with expressions involving Propositional symbols Predicates Functions and constant

More information

Hoare Logic: Reasoning About Imperative Programs

Hoare Logic: Reasoning About Imperative Programs Hoare Logic: Reasoning About Imperative Programs COMP1600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2017 Catch Up / Drop in Lab When Fridays, 15.00-17.00 Where N335, CSIT Building

More information

Predicative Semantics of Loops Theodore S. Norvell Faculty of Engineering Memorial University of Newfoundland St. John's NF A1B 3X5 Canada

Predicative Semantics of Loops Theodore S. Norvell Faculty of Engineering Memorial University of Newfoundland St. John's NF A1B 3X5 Canada Predicative Semantics of Loops Theodore S. Norvell Faculty of Engineering Memorial University of Newfoundland St. John's NF A1B 3X5 Canada theo@engr.mun.ca www.engr.mun.ca/theo/ Abstract A predicative

More information

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules).

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). 1a) G = ({R, S, T}, {0,1}, P, S) where P is: S R0R R R0R1R R1R0R T T 0T ε (S generates the first 0. R generates

More information

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof.

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Overview I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Propositional formulas Grammar: ::= p j (:) j ( ^ )

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation Page 1 of 61 CS156: The Calculus of Computation Zohar Manna Winter 2010 Chapter 5: Program Correctness: Mechanics Page 2 of 61 Program A: LinearSearch with function specification @pre 0 l u < a @post rv

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

Introduction to Metalogic

Introduction to Metalogic Philosophy 135 Spring 2008 Tony Martin Introduction to Metalogic 1 The semantics of sentential logic. The language L of sentential logic. Symbols of L: Remarks: (i) sentence letters p 0, p 1, p 2,... (ii)

More information

Mechanics of Static Analysis

Mechanics of Static Analysis Escuela 03 III / 1 Mechanics of Static Analysis David Schmidt Kansas State University www.cis.ksu.edu/~schmidt Escuela 03 III / 2 Outline 1. Small-step semantics: trace generation 2. State generation and

More information

Lecture Notes on Inductive Definitions

Lecture Notes on Inductive Definitions Lecture Notes on Inductive Definitions 15-312: Foundations of Programming Languages Frank Pfenning Lecture 2 August 28, 2003 These supplementary notes review the notion of an inductive definition and give

More information

INDEPENDENCE OF THE CONTINUUM HYPOTHESIS

INDEPENDENCE OF THE CONTINUUM HYPOTHESIS INDEPENDENCE OF THE CONTINUUM HYPOTHESIS CAPSTONE MATT LUTHER 1 INDEPENDENCE OF THE CONTINUUM HYPOTHESIS 2 1. Introduction This paper will summarize many of the ideas from logic and set theory that are

More information

Principles of AI Planning

Principles of AI Planning Principles of 5. Planning as search: progression and regression Malte Helmert and Bernhard Nebel Albert-Ludwigs-Universität Freiburg May 4th, 2010 Planning as (classical) search Introduction Classification

More information

Nested Interpolants. Matthias Heizmann Jochen Hoenicke Andreas Podelski. Abstract. 1. Introduction. University of Freiburg, Germany

Nested Interpolants. Matthias Heizmann Jochen Hoenicke Andreas Podelski. Abstract. 1. Introduction. University of Freiburg, Germany c ACM 2010. This is the author s version of the work. t is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Principles of Programming

More information

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees

Discrete Wiskunde II. Lecture 5: Shortest Paths & Spanning Trees , 2009 Lecture 5: Shortest Paths & Spanning Trees University of Twente m.uetz@utwente.nl wwwhome.math.utwente.nl/~uetzm/dw/ Shortest Path Problem "#$%&'%()*%"()$#+,&- Given directed "#$%&'()*+,%+('-*.#/'01234564'.*,'7+"-%/8',&'5"4'84%#3

More information

Program Verification Using Separation Logic

Program Verification Using Separation Logic Program Verification Using Separation Logic Cristiano Calcagno Adapted from material by Dino Distefano Lecture 1 Goal of the course Study Separation Logic having automatic verification in mind Learn how

More information

The algorithmic analysis of hybrid system

The algorithmic analysis of hybrid system The algorithmic analysis of hybrid system Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002 Summary What s a hybrid system? Definition of Hybrid Automaton

More information

Lecture Notes on Invariants for Arbitrary Loops

Lecture Notes on Invariants for Arbitrary Loops 15-414: Bug Catching: Automated Program Verification Lecture Notes on Invariants for Arbitrary Loops Matt Fredrikson Ruben Martins Carnegie Mellon University Lecture 5 1 Introduction The previous lecture

More information

Models of Computation,

Models of Computation, Models of Computation, 2010 1 Induction We use a lot of inductive techniques in this course, both to give definitions and to prove facts about our semantics So, it s worth taking a little while to set

More information

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN

MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN MODEL-CHECKING IN DENSE REAL-TIME SHANT HARUTUNIAN 1. Introduction These slides are for a talk based on the paper Model-Checking in Dense Real- Time, by Rajeev Alur, Costas Courcoubetis, and David Dill.

More information

Spring 2015 Program Analysis and Verification. Lecture 4: Axiomatic Semantics I. Roman Manevich Ben-Gurion University

Spring 2015 Program Analysis and Verification. Lecture 4: Axiomatic Semantics I. Roman Manevich Ben-Gurion University Spring 2015 Program Analysis and Verification Lecture 4: Axiomatic Semantics I Roman Manevich Ben-Gurion University Agenda Basic concepts of correctness Axiomatic semantics (pages 175-183) Hoare Logic

More information

Hoare Logic (I): Axiomatic Semantics and Program Correctness

Hoare Logic (I): Axiomatic Semantics and Program Correctness Hoare Logic (I): Axiomatic Semantics and Program Correctness (Based on [Apt and Olderog 1991; Gries 1981; Hoare 1969; Kleymann 1999; Sethi 199]) Yih-Kuen Tsay Dept. of Information Management National Taiwan

More information

7 RC Simulates RA. Lemma: For every RA expression E(A 1... A k ) there exists a DRC formula F with F V (F ) = {A 1,..., A k } and

7 RC Simulates RA. Lemma: For every RA expression E(A 1... A k ) there exists a DRC formula F with F V (F ) = {A 1,..., A k } and 7 RC Simulates RA. We now show that DRC (and hence TRC) is at least as expressive as RA. That is, given an RA expression E that mentions at most C, there is an equivalent DRC expression E that mentions

More information

Spring 2016 Program Analysis and Verification. Lecture 3: Axiomatic Semantics I. Roman Manevich Ben-Gurion University

Spring 2016 Program Analysis and Verification. Lecture 3: Axiomatic Semantics I. Roman Manevich Ben-Gurion University Spring 2016 Program Analysis and Verification Lecture 3: Axiomatic Semantics I Roman Manevich Ben-Gurion University Warm-up exercises 1. Define program state: 2. Define structural semantics configurations:

More information

Decidable Subsets of CCS

Decidable Subsets of CCS Decidable Subsets of CCS based on the paper with the same title by Christensen, Hirshfeld and Moller from 1994 Sven Dziadek Abstract Process algebra is a very interesting framework for describing and analyzing

More information

Petri nets. s 1 s 2. s 3 s 4. directed arcs.

Petri nets. s 1 s 2. s 3 s 4. directed arcs. Petri nets Petri nets Petri nets are a basic model of parallel and distributed systems (named after Carl Adam Petri). The basic idea is to describe state changes in a system with transitions. @ @R s 1

More information

Programming Languages

Programming Languages CSE 230: Winter 2008 Principles of Programming Languages Lecture 6: Axiomatic Semantics Deriv. Rules for Hoare Logic `{A} c {B} Rules for each language construct ` {A} c 1 {B} ` {B} c 2 {C} ` {A} skip

More information

Predicates and Predicate Transformers for. Systems 1. Ratnesh Kumar. Department of Electrical Engineering. University of Kentucky

Predicates and Predicate Transformers for. Systems 1. Ratnesh Kumar. Department of Electrical Engineering. University of Kentucky Predicates and Predicate Transformers for Supervisory Control of Discrete Event Dynamical Systems 1 Ratnesh Kumar Department of Electrical Engineering University of Kentucy Lexington, KY 40506-0046 Vijay

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

Verifying Java-KE Programs

Verifying Java-KE Programs Verifying Java-KE Programs A Small Case Study Arnd Poetzsch-Heffter July 22, 2014 Abstract This report investigates the specification and verification of a simple list class. The example was designed such

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Roy L. Crole. Operational Semantics Abstract Machines and Correctness. University of Leicester, UK

Roy L. Crole. Operational Semantics Abstract Machines and Correctness. University of Leicester, UK Midlands Graduate School, University of Birmingham, April 2008 1 Operational Semantics Abstract Machines and Correctness Roy L. Crole University of Leicester, UK Midlands Graduate School, University of

More information

Finite Universes. L is a fixed-length language if it has length n for some

Finite Universes. L is a fixed-length language if it has length n for some Finite Universes Finite Universes When the universe is finite (e.g., the interval 0, 2 1 ), all objects can be encoded by words of the same length. A language L has length n 0 if L =, or every word of

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 10/22, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Foundations of Computation

Foundations of Computation The Australian National University Semester 2, 2018 Research School of Computer Science Tutorial 6 Dirk Pattinson Foundations of Computation The tutorial contains a number of exercises designed for the

More information

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic).

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C 1, C 2,..., C r, Suppose e = (u, v) / E, u C i, v C j. (a) i = j ω(g + e) = ω(g).

More information

Spring 2015 Program Analysis and Verification. Lecture 6: Axiomatic Semantics III. Roman Manevich Ben-Gurion University

Spring 2015 Program Analysis and Verification. Lecture 6: Axiomatic Semantics III. Roman Manevich Ben-Gurion University Spring 2015 Program Analysis and Verification Lecture 6: Axiomatic Semantics III Roman Manevich Ben-Gurion University Tentative syllabus Semantics Static Analysis Abstract Interpretation fundamentals Analysis

More information

Top Down Design. Gunnar Gotshalks 03-1

Top Down Design. Gunnar Gotshalks 03-1 Top Down Design 03-1 Top Down Description Top down is also known as step wise refinement and functional decomposition Given an operation, there are only the following three choices for refinement» Sequence

More information