Disordered Elastic s s y t s em e s stems T. Giamarchi h c / h/gr_gi hi/ amarc

Size: px
Start display at page:

Download "Disordered Elastic s s y t s em e s stems T. Giamarchi h c / h/gr_gi hi/ amarc"

Transcription

1 Disordered Elastic sstems systems T. Giamarchi h/ i hi/

2 P. Le Doussal (ENS) S. SB Barnes (Miami iu) U.) S. Bustingorry (Bariloche Bariloche) D. Carpentier (ENS Lyon) P. Chauve (Orsay/ENS) R. Chitra (Jussieu) L. Cugliandolo (Jussieu) J. P. Eckmann (Geneva) A. AKl Kolton (Bariloche Bariloche) W. Krauth (ENS) V. Lecomte (Geneva) E. Orignac (ENS) A. Rosso (LPTMS) G. Schehr (ENS) S. Lemerle (Orsay) J. Ferré (Orsay) J.P. Jamet (Orsay) TKli T. Klein (Grenoble) bl) I. Joumard (Grenoble) J.M. Triscone (Geneva) P. Paruch (Geneva/Cornell) T. Tybell (Trondheim)

3 Common denominator of:

4 Common denominator of:

5 Common denominator of: Superconductor

6 Common denominator of: Superconductor

7 Common denominator of: Superconductor Magnet Ferroelectric

8 Common denominator of: Superconductor Magnet Ferroelectric

9 Common denominator of: Superconductor Magnet Ferroelectric

10 Common denominator of: Superconductor Magnet Ferroelectric

11 Common denominator of: Superconductor Magnet Ferroelectric Contact line

12 Common denominator of: Superconductor Magnet Ferroelectric I V Contact line

13 Common denominator of: Superconductor Magnet Ferroelectric I V Contact line Two dimensional electron gas

14 Common denominator of: Superconductor Magnet Ferroelectric I V Contact line Two dimensional electron gas

15 Magnetic domain wall

16 Magnetic domain wall

17 Magnetic domain wall S. Lemerle et al. PRL (98)

18 Vortices in superconductors Magneto-optics NbSe 2 Y. Baselevitch T. Johansen Oslo Bitter decoration NbSe 2 Scanning SQUID Nb C. Veauvy, D. Mailly, & K Hasselbach CRTBT Grenoble M Marchevsky J Aarts P H Kes M. Marchevsky, J. Aarts, P.H. Kes (Kamerlingh Onnes Laboratorium, Leiden University)

19 Two dimensional electron gas V I Strong repulsion : Wigner crystal Quantum fluctuations instead (in addition to) thermal fluctuations

20 Wigner Crystal E.Y. Andrei, et al PRL (1988) R.L. Willett, et al. PRB 38 R7881 (1989)

21 Disordered Elastic Systems Interfaces (magnetic domain walls, ferroelectrics, growth interfaces, contact lines, crack propagation,...) Periodic systems (vortex lattice, Charge density waves, colloids, magnetic bubbles, charges spheres, es,...) Quantum systems (Wigner crystal, Luttinger liquids, Spin density waves,...)

22 Basic Features

23 Basic Features

24 Basic Features

25 Basic Features c Z H = dz( u(z)) ( Z dzv (u(z),z)( )

26 Should we care about disorder

27 Should we care about disorder

28 Should we care about disorder Larkin (1970 ) :Yes!!!

29 Very difficult stat-mech problem

30 Very difficult stat-mech problem

31 Very difficult stat-mech problem

32 Very difficult stat-mech problem

33 Very difficult stat-mech problem Optimization : many solutions

34 Very difficult stat-mech problem Optimization : many solutions Glass!

35 Very difficult stat-mech problem Optimization : many solutions Glass!

36 Very difficult stat-mech problem Optimization : many solutions Glass!

37 Very difficult stat-mech problem Optimization : many solutions Glass!

38 Very difficult stat-mech problem Optimization : many solutions Glass!

39 Very difficult stat-mech problem Optimization : many solutions Glass!

40 Very difficult stat-mech problem Optimization : many solutions Glass!

41 Very difficult stat-mech problem Optimization : many solutions Glass!

42 Questions Competition ``Order / ``Disorder

43 Questions Competition ``Order / ``Disorder Statics (what does it looks like)

44 Questions Competition ``Order / ``Disorder Statics (what does it looks like) Dynamics (how does it responds when one pulls on it)

45 Domain walls

46 What to measure (statics) Br () [() ur u(0)] 2 Positional order

47 Mean field arguments c 2 d Hel ( u( r)) d r 2 V( z, x) V( z', x') D ( x x') ( z z') u H dis V(, r u()) r d d r 2 d 2 cu L 1/2 d/2 m/2 RB urf L 4 d 4 m 4 d L4 m D L u Flory argument (mean field)

48 Magnetic systems u L S. Lemerle et al. PRL (98)

49 Magnetic systems u L S. Lemerle et al. PRL (98)

50 Magnetic systems u L S. Lemerle et al. PRL (98)

51 Magnetic systems u L Theory: = 2/3 S. Lemerle et al. PRL (98)

52 Magnetic systems u L Theory: = 2/3 S. Lemerle et al. PRL (98)

53 How to see it is a glass?

54 How to see it is a glass? Statics ti not a good criterium i (can look ordered!)

55 How to see it is a glass? Statics ti not a good criterium i (can look ordered!) Look at the dynamics

56 + Dynamics 50 m - Groupe J. Ferre/J.P. Jamet; Exp: V. Repain

57 Questions for dynamics Disorder = pinning Finite temperature probes barriers

58 Questions for dynamics Disorder = pinning Finite temperature probes barriers v T 0 Large v: Nature of moving phase? Fc T=0 F Depinning: v v F-FF c

59 Questions for dynamics Disorder = pinning Finite temperature probes barriers v T 0 Large v: Nature of moving phase? Fc T=0 F Depinning: v v F-FF c

60 Questions for dynamics Disorder = pinning Finite temperature probes barriers v T 0 Large v: Nature of moving phase? f 0 v =???? Fc T=0 F Depinning: v v F-FF c

61 Questions for dynamics Disorder = pinning Finite temperature probes barriers v T 0 Large v: Nature of moving phase? f 0 v =???? Fc T=0 F Depinning: v v F-FF c

62 Response to a small force v T 0 T=0 Fc F v e F

63 Response to a small force v T 0 T=0 Fc F TAFF : typical barrier v e F Linear response

64 Response to a small force v T 0 E Fc T=0 F x TAFF : typical barrier v e F Linear response

65 Response to a small force v T 0 E Fc T=0 F x TAFF : typical barrier v e F Linear response

66 Creep Glassy system (L. Ioffe + V. Vinokur; T. Nattermann) c ( ( )) el 2 H () d el Fu r d r 2 d Hel u r d r R d 2 2 cr FR d 2 U ( L ) 2 opt L F v e opt U( L ) opt F d 2 2 2

67 Strong hypothesis

68 Strong hypothesis Barriers scale as minima

69 Strong hypothesis Barriers scale as minima Dominated by tpicalmo typical move

70 Strong hypothesis Barriers scale as minima Dominated by tpicalmo typical move Exponents are equilibrium ones

71 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...)

72 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...)

73 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...)

74 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...)

75 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...)

76 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...)

77 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...)

78 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...) u

79 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...) Correlator of disorder d u

80 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...) Correlator of disorder d u

81 How to study microscopically u c u F u f 2 [ ] t pin 2 t DuDue ˆ iu ˆ( u c u...) Correlator of disorder d u Study by RG

82 Usual vs Functional RG

83 Usual vs Functional RG In usual RG : 2 4 ( u ) a bu cu...

84 Usual vs Functional RG In usual RG : 2 4 ( u ) a bu cu... Needs only to keep b and c (higher powers are irrelevant)

85 Usual vs Functional RG In usual RG : 2 4 ( u ) a bu cu... Needs only to keep b and c (higher powers are irrelevant) Disorder: all powers are important

86 Usual vs Functional RG In usual RG : 2 4 ( u ) a bu cu... Needs only to keep b and c (higher powers are irrelevant) Disorder: all powers are important Renormalize the whole function

87 u

88 u u

89 u u Nonanalyticity at a finite lengthscale Rc such that u(rc) ~lc

90 u u Nonanalyticity at a finite lengthscale Rc such that u(rc) ~lc (A. Larkin, D. Fisher) Cusp signals metastability and glassy states

91 u u Nonanalyticity at a finite lengthscale Rc such that u(rc) ~lc (A. Larkin, D. Fisher) Cusp signals metastability and glassy states

92 u u Nonanalyticity at a finite lengthscale Rc such that u(rc) ~lc (A. Larkin, D. Fisher) Cusp signals metastability and glassy states

93 Example: static

94 Example: static Periodic system (crystal): (u) = A cos(u)

95 Example: static Periodic system (crystal): (u) = A cos(u) Fixed point:

96 Example: static Periodic system (crystal): (u) = A cos(u) Fixed point: = 0 TG + P. Le Doussal, PRB (95)

97 Example: static Periodic system (crystal): (u) = A cos(u) Fixed point: = 0 TG + P. Le Doussal, PRB (95)

98 Example: static Periodic system (crystal): (u) = A cos(u) Fixed point: = 0 TG + P. Le Doussal, PRB (95)

99 Creep from FRG

100 Creep from FRG P Chauve T Giamarchi P Le Doussal EPL (98); P. Chauve, T. Giamarchi, P. Le Doussal EPL (98); PRB (2000)

101 Creep from FRG P Chauve T Giamarchi P Le Doussal EPL (98); P. Chauve, T. Giamarchi, P. Le Doussal EPL (98); PRB (2000)

102 Creep from FRG P Chauve T Giamarchi P Le Doussal EPL (98); P. Chauve, T. Giamarchi, P. Le Doussal EPL (98); PRB (2000)

103 Creep from FRG P Chauve T Giamarchi P Le Doussal EPL (98); P. Chauve, T. Giamarchi, P. Le Doussal EPL (98); PRB (2000)

104 Creep from FRG P Chauve T Giamarchi P Le Doussal EPL (98); P. Chauve, T. Giamarchi, P. Le Doussal EPL (98); PRB (2000)

105 Dynamics: rounding of cusp thermal RT depinning Rv flat u

106 Dynamics: rounding of cusp thermal RT depinning Rv flat u u

107 Dynamics: rounding of cusp thermal RT depinning Rv flat u u u

108 Dynamics: rounding of cusp thermal RT depinning Rv flat u u u

109 Dynamics: rounding of cusp thermal RT depinning Rv flat u u u

110 Dynamics: rounding of cusp thermal RT depinning Rv flat u u u

111 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T Thermal activation i

112 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T Slow Thermal activation i

113 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T Slow Thermal activation i

114 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T Slow Thermal activation i

115 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T Slow Thermal activation i

116 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T R V Slow Thermal activation i

117 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T R V Slow Thermal activation i

118 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T R V Slow Thermal activation i

119 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T R V Slow Thermal activation i Fast: Avalanche Depinning i like

120 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T R V Slow Thermal activation i Fast: Avalanche Depinning i like

121 New lengthscale: avalanches Motion different from phenomenological picture (two regimes) R T R V Slow Thermal activation i Fast: Avalanche Depinning i like

122 Numerical study d=1

123 Numerical study d=1 Molecular dynamics simulations

124 Numerical study d=1 Molecular dynamics simulations A. B. Kolton, A. Rosso, TG, PRL (03)

125 Numerical study d=1 Molecular dynamics simulations A. B. Kolton, A. Rosso, TG, PRL (03) A. B. Kolton, A. Rosso, TG, cond-mat/

126 Numerical study d=1 Molecular dynamics simulations A. B. Kolton, A. Rosso, TG, PRL (03) A. B. Kolton, A. Rosso, TG, cond-mat/

127 Numerical study d=1 Molecular dynamics simulations A. B. Kolton, A. Rosso, TG, PRL (03) A. B. Kolton, A. Rosso, TG, cond-mat/

128 Numerical study d=1 Molecular dynamics simulations A. B. Kolton, A. Rosso, TG, PRL (03) A. B. Kolton, A. Rosso, TG, cond-mat/

129

130

131

132 Experiments

133 Vortex Lattice Bragg glass: V e (1/ J) RM 0.5 BrG D.T. Fuchs et al. PRL (98) C. Van der Beek et al. cond-mat

134 S. Lemerle et al. PRL (98) v e (1/ B) d 2 2 2/3 1/4 2

135 S. Lemerle et al. PRL (98) v e (1/ B) d 2 2 2/3 1/4 2

136 S. Lemerle et al. PRL (98) v e (1/ B) d 2 2 2/3 1/4 2

137 Ferroelectrics P Par ch et al P. Paruch et al. cond-mat/

138 Ferroelectrics P Par ch et al P. Paruch et al. cond-mat/

139 Ferroelectrics P. Paruch et al. cond-mat/ m

140 Ferroelectrics P. Paruch et al. cond-mat/ m 500 nm

141 Questions

142 Questions What is the mechanism of propagation of domain wall (nucleation? Miller-Weinreich)

143 Questions What is the mechanism of propagation of domain wall (nucleation? Miller-Weinreich) What is the dimensionality of the films?

144 Questions What is the mechanism of propagation of domain wall (nucleation? Miller-Weinreich) What is the dimensionality of the films? Only the surface is accessible!!

145 Ferroelectics T. Tybell et al. PRL (02) P. Paruch et al. PRL (05)

146 Ferroelectics T. Tybell et al. PRL (02) μ = d 2+2ζ d ζ P. Paruch et al. PRL (05)

147 Ferroelectics T. Tybell et al. PRL (02) 0.26 μ = d 2+2ζ d ζ Compatible with d=2 + dipolar interactions P. Paruch et al. PRL (05) p

148 Ferroelectics T. Tybell et al. PRL (02) 0.26 μ = d 2+2ζ d ζ Compatible with d=2 + dipolar interactions P. Paruch et al. PRL (05) p

149 Probe the lengthscale R T K.J. Kim et al. Nature (09)

150 Probe the lengthscale R T K.J. Kim et al. Nature (09)

151 Probing R T and R v V. Repain et al. EPL (04)

152 Probing R T and R v V. Repain et al. EPL (04) R T 1 m

153 Probing R T and R v V. Repain et al. EPL (04) R T 1 m R v 17 m

154 Tough challenges

155 Defects

156 (V. Repain et al. (Orsay)) 210 m Pt/Co(0,5 nm)/pt/sio 2

157 P. J. Metaxas et al. PRL 99, (2007)

158 P. J. Metaxas et al. PRL 99, (2007)

159 Out of equilibrium

160 Glasses : Aging T f(t1,t2) t0 t1 t2 f : Depends on both times Aging of the Bragg glass or the interfaces?

161 Aging in interfaces A. B. Kolton, A. Rosso, TG, PRL (05)

162 Aging in interfaces A. B. Kolton, A. Rosso, TG, PRL (05)

163 Creep: Exp[- L ] eq = 1/3 eq A. B. Kolton, A. Rosso, TG, PRL (05)

164 Novel systems

165 Novel systems Spintronic i

166 Novel systems Spintronic i Multiferroics

167 Yamanouchi et al. Science (2007)

168 Yamanouchi et al. Science (2007)

169 Wall with internal degree of freedom V. Lecomte, S. Barnes, J.P. JP Eckmann, TG PRB (09)

170 Wall with internal degree of freedom V. Lecomte, S. Barnes, J.P. JP Eckmann, TG PRB (09)

171 Wall with internal degree of freedom V. Lecomte, S. Barnes, J.P. JP Eckmann, TG PRB (09)

172 Rigid wall approximation

173 Rigid wall approximation

174 Different from standard depinning

175 Different from standard depinning

176 Conclusions

177 Conclusions Slow dynamics of domain walls : glassy process

178 Conclusions Slow dynamics of domain walls : glassy process Steady state: creep

179 Conclusions Slow dynamics of domain walls : glassy process Steady state: creep FRG: scaling for the velocity; two lengthscales R T and R v

180 Conclusions Slow dynamics of domain walls : glassy process Steady state: creep FRG: scaling for the velocity; two lengthscales R T and R v Relevant and testable in several experimental systems

181 Many open questions

182 Many open questions Good methods (analytical/numerical) beyond scaling or FRG

183 Many open questions Good methods (analytical/numerical) beyond scaling or FRG Out of equilibrium issues (aging aging)

184 Many open questions Good methods (analytical/numerical) beyond scaling or FRG Out of equilibrium issues (aging aging) Defects (overhangs, bubbles)

185 Many open questions Good methods (analytical/numerical) beyond scaling or FRG Out of equilibrium issues (aging aging) Defects (overhangs, bubbles) Internal degrees of freedom (spintronic etc.)

An Introduction to Disordered Elastic Systems. T. Giamarchi

An Introduction to Disordered Elastic Systems. T. Giamarchi An Introduction to Disordered Elastic Systems T. Giamarchi Many Physical Systems Interfaces Classical Crystals Quantum crystals Interfaces Magnetic domain walls Ferroelectrics Contact line in wetting Epitaxial

More information

Disordered Elastic Media

Disordered Elastic Media Disordered Elastic Media T. Giamarchi DPMC-MaNEP University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland March 3, 2008 Contents 1 Glossary 1 2 Definition of the subject and its importance

More information

Domain wall in a ferromagnetic Ising Co thin film

Domain wall in a ferromagnetic Ising Co thin film Domain wall in a ferromagnetic Ising Co thin film Lemerle, Ferre, Chappert, Mathe, Giamarchi, PLD (Phys. Rev. Lett. 1998) D =1+1 interface (d=1,n=1) x x D =1+1 interface (d=1,n=1) short-range disorder

More information

Functional RG for disordered elastic systems: what is it? what is it useful for?

Functional RG for disordered elastic systems: what is it? what is it useful for? Functional RG for disordered elastic systems: what is it? what is it useful for? tests and applications model: elastic manifolds statics Functional RG measuring R(u) depinning transition activated dynamics

More information

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Elisabeth Agoritsas (1), Thierry Giamarchi (2) Vincent Démery (3), Alberto Rosso (4) Reinaldo García-García (3),

More information

Depinning transition for domain walls with an internal degree of freedom

Depinning transition for domain walls with an internal degree of freedom Depinning transition for domain walls with an internal degree of freedom Vivien Lecomte 1, Stewart Barnes 1,2, Jean-Pierre Eckmann 3, Thierry Giamarchi 1 1 Département de Physique de la Matière Condensée,

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 19 Mar 2002

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 19 Mar 2002 Domain wall creep in epitaxial ferroelectric Pb(Zr 0.2 Ti 0.8 )O 3 thin films arxiv:cond-mat/0203381v1 [cond-mat.dis-nn] 19 Mar 2002 T. Tybell, 1,2 P. Paruch, 1 T. Giamarchi, 3 and J.-M. Triscone 1 1 DPMC,

More information

Article. Reference. Creep dynamics of elastic manifolds via exact transition pathways. KOLTON, Alejandro, et al.

Article. Reference. Creep dynamics of elastic manifolds via exact transition pathways. KOLTON, Alejandro, et al. Article Creep dynamics of elastic manifolds via exact transition pathways KOLTON, Alejandro, et al. Abstract We study the steady state of driven elastic strings in disordered media below the depinning

More information

Physica B 407 (2012) Contents lists available at SciVerse ScienceDirect. Physica B. journal homepage:

Physica B 407 (2012) Contents lists available at SciVerse ScienceDirect. Physica B. journal homepage: Physica B 407 (2012) 1725 1733 Contents lists available at SciVerse ScienceDirect Physica B journal homepage: www.elsevier.com/locate/physb Disordered elastic systems and one-dimensional interfaces E.

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Outline: I. Introduction: materials, transport, Hall effects II. III. IV. Composite particles FQHE, statistical transformations Quasiparticle charge

More information

Koivisto, Juha; Illa Tortos, Xavier; Rosti, Jari; Alava, Mikko Line Creep in Paper Peeling

Koivisto, Juha; Illa Tortos, Xavier; Rosti, Jari; Alava, Mikko Line Creep in Paper Peeling Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Koivisto, Juha; Illa Tortos, Xavier;

More information

Koivisto, Juha; Rosti, J.; Alava, Mikko Creep of a fracture line in paper peeling

Koivisto, Juha; Rosti, J.; Alava, Mikko Creep of a fracture line in paper peeling Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Koivisto, Juha; Rosti, J.; Alava,

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France

Quantum (spin) glasses. Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Quantum (spin) glasses Leticia F. Cugliandolo LPTHE Jussieu & LPT-ENS Paris France Giulio Biroli (Saclay) Daniel R. Grempel (Saclay) Gustavo Lozano (Buenos Aires) Homero Lozza (Buenos Aires) Constantino

More information

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning.

Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Conclusions. Flux pinning. Department of Physics and Astronomy 14.6.2011 Contents Introduction Critical state models Pinning regimes Kinds of pinning sites HTS Results on YBCO Type II superconductors and vortices Type I ξ < λ S/N

More information

L. E. Aragón et al. f pin

L. E. Aragón et al. f pin epl draft Avalanches in Tip-Driven Interfaces in Random Media arxiv:1510.06795v1 [cond-mat.dis-nn] 23 Oct 2015 L.E. Aragón, A.B. Kolton 1, P. Le Doussal, K.J. Wiese 2 and E.A. Jagla 1 1 CONICET - Centro

More information

Mesoscopic conductance fluctuations and spin glasses

Mesoscopic conductance fluctuations and spin glasses GdR Meso 2010 G Thibaut CAPRON Track of a potential energy landscape evolving on geological time scales B Mesoscopic conductance fluctuations and spin glasses www.neel.cnrs.fr Team project Quantum coherence

More information

Intermittence and roughening of periodic elastic media

Intermittence and roughening of periodic elastic media PHYSICAL REVIEW E, VOLUME 63, 036126 Intermittence and roughening of periodic elastic media E. T. Seppälä, 1 M. J. Alava, 1 and P. M. Duxbury 2 1 Laboratory of Physics, Helsinki University of Technology,

More information

Heterogeneous vortex dynamics in high temperature superconductors

Heterogeneous vortex dynamics in high temperature superconductors Heterogeneous vortex dynamics in high temperature superconductors Feng YANG Laboratoire des Solides Irradiés, Ecole Polytechnique, 91128 Palaiseau, France. June 18, 2009/PhD thesis defense Outline 1 Introduction

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Vortex lattice pinning in high-temperature superconductors.

Vortex lattice pinning in high-temperature superconductors. Vortex lattice ning in high-temperature superconductors. Victor Vakaryuk. Abstract. Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex lattice,

More information

Crackling dynamics during the failure of heterogeneous material: Optical and acoustic tracking of slow interfacial crack growth

Crackling dynamics during the failure of heterogeneous material: Optical and acoustic tracking of slow interfacial crack growth Crackling dynamics during the failure of heterogeneous material: Optical and acoustic tracking of slow interfacial crack growth S. Santucci 1,2,3, M. Grob 4, R.Toussaint 4,5, J. Schmittbuhl 4,5, A. Hansen

More information

Zhenhua Ning Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. (Dated: December 13, 2006) Abstract

Zhenhua Ning Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. (Dated: December 13, 2006) Abstract Vortex Glass Transition in High T c Superconductor Zhenhua Ning Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (Dated: December 13, 2006) Abstract This paper tries

More information

Reduced dimensionality. T. Giamarchi

Reduced dimensionality. T. Giamarchi Reduced dimensionality T. Giamarchi http://dpmc.unige.ch/gr_giamarchi/ References TG, arxiv/0605472 (Salerno lectures) TG arxiv/1007.1030 (Les Houches-Singapore) M.A. Cazalilla et al. arxiv/1101.5337 (RMP)

More information

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS T. Nattermann University of Cologne * F.Li, TN and V. Pokrovsky Phys. Rev.Lett. 108, 107302 (2012) TN arxiv:1210.1358 Acknowledgments to SFB 608 of DFG.

More information

Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials

Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials Disorder and Quantum Fluctuations in Effective Field Theories for Highly Correlated Materials T. Nattermann and S. Scheidl Insitut für Theoretische Physik Universität zu öln Introduction motivation: central

More information

STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS

STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS Classical spin liquids, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University Outline Geometrically

More information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Peter Young Talk at MPIPKS, September 12, 2013 Available on the web at http://physics.ucsc.edu/~peter/talks/mpipks.pdf

More information

Superconductivity: approaching the century jubilee

Superconductivity: approaching the century jubilee SIMTECH KICK-OFF MEETING, March, 18, 2011 Superconductivity: approaching the century jubilee Andrey Varlamov Institute of Superconductivity & Innovative Materials (SPIN), Consiglio Nazionale delle Ricerche,

More information

Criteria for the validity of Amontons Coulomb s law; Study of friction using dynamics of driven vortices of superconductor

Criteria for the validity of Amontons Coulomb s law; Study of friction using dynamics of driven vortices of superconductor ISSP International Workshops on Soft Matter Physics structural rheology- (2010.8.10, ISSP, Chiba, JAPAN) Criteria for the validity of Amontons Coulomb s law; Study of friction using dynamics of driven

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

Gauged Cosmic Strings and Superconductor Vortices

Gauged Cosmic Strings and Superconductor Vortices Gauged Cosmic Strings and Superconductor Vortices Hindmarsh&Rajantie, PRL2000 Rajantie, IJMPA2001 Kibble&Rajantie, PRB2003 Donaire,Kibble&Rajantie, cond-mat/0409172 Donaire&Rajantie, hep-ph/0508272 3 September

More information

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor

Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor Physica C 404 (2004) 166 170 www.elsevier.com/locate/physc Commensurability effects induced by a periodic array of nanoscale anti-dots in Nb superconductor A.A. Zhukov a, *, E.T. Filby a, P.A.J. de Groot

More information

Thermodynamics of histories: application to systems with glassy dynamics

Thermodynamics of histories: application to systems with glassy dynamics Thermodynamics of histories: application to systems with glassy dynamics Vivien Lecomte 1,2, Cécile Appert-Rolland 1, Estelle Pitard 3, Kristina van Duijvendijk 1,2, Frédéric van Wijland 1,2 Juan P. Garrahan

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Noise- and microwave experiments in moving CDW, Wigner crystals and vortex lattice

Noise- and microwave experiments in moving CDW, Wigner crystals and vortex lattice Carcassonne, France (9/26, 2002) Noise- and microwave experiments in moving CDW, Wigner crystals and vortex lattice Atsutaka MAEDA Dep. Basic Science, The Univ. Tokyo Outline 1) Dynamic Phase diagram of

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 21 Sep 1998

arxiv:cond-mat/ v1 [cond-mat.supr-con] 21 Sep 1998 Critical Currents of Josephson-Coupled Wire Arrays J. Kent Harbaugh and D. Stroud (March 7, 217) arxiv:cond-mat/989279v1 cond-mat.supr-con 21 Sep 1998 We calculate the current-voltage characteristics and

More information

Quantum oscillations in insulators with neutral Fermi surfaces

Quantum oscillations in insulators with neutral Fermi surfaces Quantum oscillations in insulators with neutral Fermi surfaces ITF-Seminar IFW Institute - Dresden October 4, 2017 Inti Sodemann MPI-PKS Dresden Contents Theory of quantum oscillations of insulators with

More information

Baruch Rosenstein Nat. Chiao Tung University

Baruch Rosenstein Nat. Chiao Tung University Dissipationless current carrying states in type II superconductors in magnetic field Baruch Rosenstein Nat. Chiao Tung University D. P. Li Peking University, Beijing, China B. Shapiro Bar Ilan University,

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 6 Mar 2005

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 6 Mar 2005 arxiv:cond-mat/0503133v1 [cond-mat.dis-nn] 6 Mar 2005 Variant Monte Carlo algorithm for driven elastic strings in random media Abstract Alberto Rosso a and Werner Krauth b a Université de Genève 4, DPMC,

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 18 Oct 1996

arxiv:cond-mat/ v1 [cond-mat.supr-con] 18 Oct 1996 Stability of Elastic Glass Phases in Random Field XY Magnets and Vortex Lattices in Type II Superconductors arxiv:cond-mat/9610146v1 [cond-mat.supr-con] 18 Oct 1996 Daniel S. Fisher Department of Physics,

More information

Crack propagation in brittle heterogeneous solids: Material disorder and crack dynamics

Crack propagation in brittle heterogeneous solids: Material disorder and crack dynamics Int J Fract (2010) 162:21 31 DOI 10.1007/s10704-010-9481-x ORIGINAL PAPER Crack propagation in brittle heterogeneous solids: Material disorder and crack dynamics Laurent Ponson Daniel Bonamy Received:

More information

arxiv: v1 [cond-mat.supr-con] 11 Feb 2016

arxiv: v1 [cond-mat.supr-con] 11 Feb 2016 Review Article arxiv:1602.03798v1 [cond-mat.supr-con] 11 Feb 2016 Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review Submitted to: Rep.

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 13 Jan 2000

arxiv:cond-mat/ v1 [cond-mat.supr-con] 13 Jan 2000 arxiv:cond-mat/0001185v1 [cond-mat.supr-con] 13 Jan 2000 Strong vortex pinning in the low temperature superconducting phase of (U 1 x Th x )Be 13 Ana Celia Mota, Elisabeth Dumont, and James L. Smith Laboratorium

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Sliding Friction in the Frenkel-Kontorova Model

Sliding Friction in the Frenkel-Kontorova Model arxiv:cond-mat/9510058v1 12 Oct 1995 to appear in "The Physics of Sliding Friction", Ed. B.N.J. Persson (Kluwer Academic Publishers), 1995 Sliding Friction in the Frenkel-Kontorova Model E. Granato I.N.P.E.,

More information

Liquid Scattering X-ray School November University of California San Diego

Liquid Scattering X-ray School November University of California San Diego Off-specular Diffuse Scattering Liquid Scattering X-ray School November 2007 Oleg Shpyrko, University of California San Diego These notes are available Visit http://oleg.ucsd.edu edu on the web Or email

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

UNIVERSITÀ DEGLI STUDI DI GENOVA

UNIVERSITÀ DEGLI STUDI DI GENOVA UNIVERSITÀ DEGLI STUDI DI GENOVA Outline Story of superconductivity phenomenon going through the discovery of its main properties. Microscopic theory of superconductivity and main parameters which characterize

More information

Driven Interfaces: From Flow to Creep Through Model Reduction

Driven Interfaces: From Flow to Creep Through Model Reduction J Stat Phys (2016) 164:1394 1428 DOI 10.1007/s10955-016-1588-7 Driven Interfaces: From Flow to Creep Through Model Reduction Elisabeth Agoritsas 1,2 Reinaldo García-García 3 Vivien Lecomte 4 Lev Truskinovsky

More information

arxiv: v1 [cond-mat.supr-con] 23 Dec 2008

arxiv: v1 [cond-mat.supr-con] 23 Dec 2008 An experimental study of narrow band noise due to the moving vortex lattice in Niobium. Alain Pautrat 1 and Joseph Scola 2 1 Laboratoire CRISMAT, UMR 6508 du CNRS, ENSICAEN et Université de Caen, 6 Bd

More information

A Tour of Spin Glasses and Their Geometry

A Tour of Spin Glasses and Their Geometry A Tour of Spin Glasses and Their Geometry P. Le Doussal, D. Bernard, LPTENS A. Alan Middleton, Syracuse University Support from NSF, ANR IPAM: Random Shapes - Workshop I 26 March, 2007 Goals Real experiment

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

Coulomb Blockade and Transport in a Chain of 1-dimensional Quantum Dots *

Coulomb Blockade and Transport in a Chain of 1-dimensional Quantum Dots * Coulomb Blockade and Transport in a Chain of 1-dimensional 1 Quantum Dots * Thomas Nattermann Michael M.Fogler Sergey Malinin Cologne UCSD Detroit * e=h=k B =1 Hangzhou 2007 Sino-German Workshop on Disordered

More information

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Large deviations of the top eigenvalue of random matrices and applications in statistical physics Large deviations of the top eigenvalue of random matrices and applications in statistical physics Grégory Schehr LPTMS, CNRS-Université Paris-Sud XI Journées de Physique Statistique Paris, January 29-30,

More information

What s so super about superconductivity?

What s so super about superconductivity? What s so super about superconductivity? Mark Rzchowski Physics Department Electrons can flow through the wire when pushed by a battery. Electrical resistance But remember that the wire is made of atoms.

More information

Vortex glass scaling in Pb-doped Bi2223 single crystal

Vortex glass scaling in Pb-doped Bi2223 single crystal Vortex glass scaling in Pb-doped Bi2223 single crystal Yu. Eltsev a, S. Lee b, K. Nakao b, S. Tajima c a P. N. Lebedev Physical Institute, RAS, Moscow, 119991, Russia b Superconductivity Research Laboratory,

More information

Dynamic creation and annihilation of metastable vortex phase as a source of excess noise

Dynamic creation and annihilation of metastable vortex phase as a source of excess noise EUROPHYSICS LETTERS 1 April Europhys. Lett., 5 (1), pp. 11 11 () Dynamic creation and annihilation of metastable vortex phase as a source of excess noise Y. Paltiel 1,G.Jung 1, ( ),Y.Myasoedov 1,M.L.Rappaport

More information

Ferroelectric Phenomena in Crystals

Ferroelectric Phenomena in Crystals В. А. Strukov А. Р. Levanyuk Ferroelectric Phenomena in Crystals Physical Foundations With 153 Figures and 14 Tables Springer Contents 1. General Characteristics of Structural Phase Transitions in Crystals

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Marc-Henri Julien Laboratoire de Spectrométrie Physique Université J. Fourier Grenoble I Acknowledgments

More information

Coulomb Gap and Correlated Vortex Pinning in. Superconductors

Coulomb Gap and Correlated Vortex Pinning in. Superconductors Coulomb Gap and Correlated Vortex Pinning in Superconductors Uwe C. Täuber, 1 Hongjie Dai, 2 David R. Nelson, 1 and Charles M. Lieber 2 1 Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts

More information

Part III: Impurities in Luttinger liquids

Part III: Impurities in Luttinger liquids Functional RG for interacting fermions... Part III: Impurities in Luttinger liquids 1. Luttinger liquids 2. Impurity effects 3. Microscopic model 4. Flow equations 5. Results S. Andergassen, T. Enss (Stuttgart)

More information

Aging, rejuvenation and memory: the example of spin glasses

Aging, rejuvenation and memory: the example of spin glasses Aging, rejuvenation and memory: the example of spin glasses F. Bert, J.-P. Bouchaud, V. Dupuis, J. Hammann, D. Hérisson, F. Ladieu, M. Ocio, D. Parker, E. Vincent Service de Physique de l Etat Condensé,

More information

arxiv: v2 [cond-mat.supr-con] 24 Aug 2007

arxiv: v2 [cond-mat.supr-con] 24 Aug 2007 Phase diagram of randomly pinned vortex matter in layered superconductors: dependence on the details of the point pinning Chandan Dasgupta Centre for Condensed Matter Theory, Department of Physics, Indian

More information

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids

Dynamical phase transition and prethermalization. Mobile magnetic impurity in Fermi superfluids Dynamical phase transition and prethermalization Pietro Smacchia, Alessandro Silva (SISSA, Trieste) Dima Abanin (Perimeter Institute, Waterloo) Michael Knap, Eugene Demler (Harvard) Mobile magnetic impurity

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 Jan 1998

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 Jan 1998 Pinning-induced transition to disordered vortex phase in layered superconductors A.E.Koshelev and V.M.Vinokur Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (July 8, 013) arxiv:cond-mat/9801144v1

More information

Critical Dynamics of The Superconductor Transition

Critical Dynamics of The Superconductor Transition 1 INTRODUCTION 1 Critical Dynamics of The Superconductor Transition T. Siegfried Ip Department of Physics University of Illinois, Urbana Champaign This paper aims to be a brief survey to recent development

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 7 Jan 2002

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 7 Jan 2002 Microscopic foundations of the Rayleigh law of hysteresis arxiv:cond-mat/0106332v2 [cond-mat.dis-nn] 7 Jan 2002 Stefano Zapperi a, Alessandro Magni b Gianfranco Durin b a INFM sezione di Roma 1, Dipartimento

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

Spherical models of interface growth

Spherical models of interface growth Spherical models of interface growth Malte Henkel Groupe de Physique Statistique Institut Jean Lamour, Université de Lorraine Nancy, France co-author: X. Durang (KIAS Seoul) CompPhys 14, Leipzig, 27 th

More information

Mott metal-insulator transition on compressible lattices

Mott metal-insulator transition on compressible lattices Mott metal-insulator transition on compressible lattices Markus Garst Universität zu Köln T p in collaboration with : Mario Zacharias (Köln) Lorenz Bartosch (Frankfurt) T c Mott insulator p c T metal pressure

More information

Possibility of Kauzmann points in the vortex matter phase diagram of single crystal YBa 2 Cu 3 O 7 d

Possibility of Kauzmann points in the vortex matter phase diagram of single crystal YBa 2 Cu 3 O 7 d Physica C 39 (23) 56 62 www.elsevier.com/locate/physc Possibility of Kauzmann points in the vortex matter phase diagram of single crystal YBa 2 Cu 3 O 7 d S.B. Roy a,b, *, Y. Radzyner a, D. Giller a, Y.

More information

Verwey transition in magnetite (Fe3O4), unveiled?

Verwey transition in magnetite (Fe3O4), unveiled? Verwey transition in magnetite (Fe3O4), unveiled? J.E. Lorenzo Keywords: Charge, orbital orderings; lattice distortion; spin reorientation; resonant X ray scattering S. Grenier N. Jaouen Y. Joly D. Mannix

More information

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion D. Carpentier, (Ecole Normale Supérieure de Lyon) Theory : A. Fedorenko, E. Orignac, G. Paulin (PhD) (Ecole Normale Supérieure

More information

Let There Be Topological Superconductors

Let There Be Topological Superconductors Let There Be Topological Superconductors K K d Γ ~q c µ arxiv:1606.00857 arxiv:1603.02692 Eun-Ah Kim (Cornell) Boulder 7.21-22.2016 Q. Topological Superconductor material? Bulk 1D proximity 2D proximity?

More information

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC Laura Fanfarillo FROM FERMI LIQUID TO NON-FERMI LIQUID Strong Correlation Bad Metal High Temperature Fermi Liquid Low Temperature Tuning parameter

More information

FROM NODAL LIQUID TO NODAL INSULATOR

FROM NODAL LIQUID TO NODAL INSULATOR FROM NODAL LIQUID TO NODAL INSULATOR Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto) GORDON, 2004, Oxford Doped Mott insulator? Mott physics: U Antiferro fluctuations: J SC fluctuations

More information

3. General properties of phase transitions and the Landau theory

3. General properties of phase transitions and the Landau theory 3. General properties of phase transitions and the Landau theory In this Section we review the general properties and the terminology used to characterise phase transitions, which you will have already

More information

Hexatic and microemulsion phases in a 2D quantum Coulomb gas

Hexatic and microemulsion phases in a 2D quantum Coulomb gas Hexatic and microemulsion phases in a 2D quantum Coulomb gas Bryan K Clark (University of Illinois at Urbana Champaign) Michele Casula (Ecole Polytechnique, Paris) David M Ceperley (University of Illinois

More information

A simple model for block-copolymer layer morphology formation

A simple model for block-copolymer layer morphology formation A simple model for block-copolymer layer morphology formation A. J. Wagner and A. Croll, Department of Physics, North Dakota State University, Fargo, ND 58102 Prato Workshop, February 12, 2016 A big thanks

More information

Dynamics of unbinding of polymers in a random medium

Dynamics of unbinding of polymers in a random medium Dynamics of unbinding of polymers in a random medium Somendra M. Bhattacharjee Institute of Physics, Bhubaneswar 751 005, India A. Baumgärtner Forum Modellierung, Forschungzentrum, Jülich D51245, Germany

More information

Crack growth in brittle heterogeneous materials

Crack growth in brittle heterogeneous materials Crack growth in brittle heterogeneous materials D. Bonamy 1, S. Santucci, L. Ponson 3, K.-J. Måløy 4 1 CEA, IRAMIS, SPCSI, Grp. Comple Systems & Fracture, F-91191 Gif sur Yvette France; Physics of Geological

More information

Statistical Mechanics of Jamming

Statistical Mechanics of Jamming Statistical Mechanics of Jamming Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points Lecture 2: Statistical ensembles: inherent structures and blocked states Lecture 3: Example of

More information

Complex dynamics ofmagnetic domain walls

Complex dynamics ofmagnetic domain walls Physica A 314 (2002) 230 234 www.elsevier.com/locate/physa Complex dynamics ofmagnetic domain walls G. Durin a;, S. Zapperi b a Istituto Elettrotecnico Nazionale, Galileo Ferraris and INFM, str. delle

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass Bull. Mater. Sci., Vol. 9, No. 4, August 6, pp. 357 363. Indian Academy of Sciences. Acoustic study of nano-crystal embedded PbO P O 5 glass SUDIP K BATABYAL, A PAUL, P ROYCHOUDHURY and C BASU* Department

More information