Constrained optimization BUSINESS MATHEMATICS

Size: px
Start display at page:

Download "Constrained optimization BUSINESS MATHEMATICS"

Transcription

1 Constrained optimization BUSINESS MATHEMATICS 1

2 CONTENTS Unconstrained optimization Constrained optimization Lagrange method Old exam question Further study 2

3 UNCONSTRAINED OPTIMIZATION Recall extreme values in two dimensions 1. First-order conditions: stationary points occur when f x y 2. Second-order conditions: extreme value if 2 f 2 f x 2 y 2 2 f x y 3. (If. > 0 in 2.) Nature of extreme value: minimum when 2 f > 0 x 2 maximum when 2 f x 2 < 0 2 > 0 3

4 UNCONSTRAINED OPTIMIZATION Recall Cobb-Douglas production function q K, L = AK α L β Obviously (?) you want to maximize output so set and q = K AαKα 1 L β = 0 q = L AKα βl β 1 = 0 4

5 UNCONSTRAINED OPTIMIZATION Recall Cobb-Douglas production function q K, L = AK α L β Obviously (?) you want to maximize output so set and q = K AαKα 1 L β = 0 q = L AKα βl β 1 = 0 This never happens! [check!] But you still want to maximize output within the constraints of your budget 5

6 CONSTRAINED OPTIMIZATION Suppose: the price of 1 unit of K is k the price of 1 unit of L is l the available budget is m Budget line: kk + ll = m 6

7 CONSTRAINED OPTIMIZATION L Iso-production line for q 1 Optimum point on line for optimum production q Iso-production line for q 2 Budget line L q 1 q 2 q K K 7

8 CONSTRAINED OPTIMIZATION Problem formulation: maximize subject to q K, L = AKα L β kk + ll = m In general, ቊ max s.t. f x, y g x, y = c This is a constrained optimization problem f x, y is the objective function g x, y = c is the constraint x and y are the decision variables 8

9 EXERCISE 1 Given is the profit function π a, b = 5a b 2 and the capacity constraint 8a + 4b = 20. Write as ቊ min/max subject to. 9

10 CONSTRAINED OPTIMIZATION Visualisation of z = f x, y in 3D as level curve 11

11 How to solve the constrained optimization problem? ቊ max s.t. f x, y g x, y = c Trick: introduce extra variable (Lagrange multiplier) λ define new function (Lagrangian) L x, y, λ as follows L x, y, λ = f x, y λ g x, y c 12

12 How to solve the constrained optimization problem? ቊ max s.t. f x, y g x, y = c Trick: introduce extra variable (Lagrange multiplier) λ define new function (Lagrangian) L x, y, λ as follows L x, y, λ = f x, y λ g x, y c Observe that L is a function of 3 variables, while the objective function f is a function of 2 variables 13

13 Key: Solutions of the constrained optimization are among the stationary points of L Put differently: all stationary points of L are candidate solutions of the original constrained maximization problem Joseph-Louis Lagrange ( ) 14

14 max f x, y So, ቊ s.t. g x, y = c is equivalent to max L x, y, λ, where L x, y, λ = f x, y λ g x, y c We have written the constrained optimization problem with 2 decision variables as an unconstrained optimization problem with 3 decision variables Trade-off: (i) unconstrained easier than constrained, (ii) 3 decision variables harder than 2 15

15 EXERCISE 2 Given is the profit function π a, b = 5a b 2 and the capacity constraint 8a + 4b = 20. Write the Lagrangian. 16

16 Example 1 Constrained problem: max f x, y = x2 + y 2 s.t. g x, y = x 2 + xy + y 2 = 3 Lagrangian: L x, y, λ = x 2 + y 2 λ x 2 + xy + y 2 3 First-order conditions for stationary points: L L L = 0, = 0, x y λ = 0 18

17 Example 1 (continue) L x L y = 2x λ 2x + y = 0 = 2y λ x + 2y = 0 L λ = x2 xy y = 0 So: 2x = 2x+y 2y x+2y 2x2 + 4xy = 4xy + 2y 2 x 2 = y 2 In constraint: x 2 ± x 2 x = 0 3x 2 = 3 x 2 = 3 Solution: x = 1 x = 1 x = 3 x = 3 y follows, and so does λ 19

18 Example 1 (continued) Four stationary points x, y, λ of Lagrangian: 1,1, 2, 1, 1, 2, 3, 3, 2 and 3, 3, 2 [check!] 3 3 Four other points x, y, λ do not satisfy all equations: 1, 1,2, 1,1,2, 3, 3, 2 3 and 3, 3, 2 3 [check!] So, x, y = 1,1, 1, 1, 3, 3 and 3, 3 are candidate solutions to the original constrained problem 20

19 Example 1 (continued) Determine the function values at these points f 1,1 = = 2 f 1, 1 = = 2 f 3, 3 = = 6 f 3, 3 = = 6 Conclusion: 3, 3 and 3, 3 are maximum points and (1,1) and 1, 1 are mimimum points 21

20 Example 1 (continued) Determine the function values at these points f 1,1 = = 2 f 1, 1 = = 2 f 3, 3 = = 6 f 3, 3 = = 6 Conclusion: 3, 3 and 3, 3 are maximum points and (1,1) and 1, 1 are mimimum points [Constraint is closed curve.] 22

21 Example 2 Constrained problem: maximize q K, L = AK0.4 L 0.7 (A > 0) subject to 25K + 10L = m (m > 0) Lagrangian L K, L, λ = AK 0.4 L 0.7 λ 25K + 10L m Conditions for stationary points L = K 0.4AK 0.6 L λ = 0 L = L 0.7AK0.4 L λ = 0 L λ = 25K + 10L m = 0 23

22 Example 2 (continued) λ = 0.4AK 0.6 L 0.7 = 0.7AK0.4 L multiply both sides with K 0.6 (to get rid of K 0.6 ) and with L 0.3 (to get rid of L 0.3 ) 24

23 Example 2 (continued) λ = 0.4AK 0.6 L 0.7 = 0.7AK0.4 L multiply both sides with K 0.6 (to get rid of K 0.6 ) and with L 0.3 (to get rid of L 0.3 ) 0.4AL = 0.7AK K = L + 10L = m L = λ = (not intetesting) L m 10 and K = m 25 25

24 Example 2 (continued) λ = 0.4AK 0.6 L 0.7 = 0.7AK0.4 L multiply both sides with K 0.6 (to get rid of K 0.6 ) and with L 0.3 (to get rid of L 0.3 ) 0.4AL = 0.7AK K = L + 10L = m L = λ = (not intetesting) L m 10 and K = m 25 Candidate maximum point: K, L = m, m 25 26

25 Example 2 (continued) Determine nature of the stationary point of Lagrangian: take K = 0 L = m and see that q = 0 10 likewise take L = 0 K = m and see that q =

26 Example 2 (continued) Determine nature of the stationary point of Lagrangian: take K = 0 L = m and see that q = 0 10 likewise take L = 0 K = m and see that q = 0 25 So for 0 < m 25 < m 25 and 0 < m 10 < m 10, also q > 0 28

27 Example 2 (continued) Determine nature of the stationary point of Lagrangian: take K = 0 L = m and see that q = 0 10 likewise take L = 0 K = m and see that q = 0 25 So for 0 < m 25 < m 25 and 0 < m 10 < m 10, also q > 0 Here, we look at two neighbouring points of the stationary point: one to the left and one to the right. We find that both have a lower function value, so the stationary point is a maximum. 29

28 Example 2 (continued) Determine nature of the stationary point of Lagrangian: take K = 0 L = m and see that q = 0 10 likewise take L = 0 K = m and see that q = 0 25 So for 0 < m 25 < m 25 and 0 < m 10 < m 10, also q > 0 Here, we look at two neighbouring points of the stationary point: one to the left and one to the right. We find that both have a lower function value, so the stationary point is a maximum. Therefore K, L = m, m 10 is a maximum 30

29 Different point on the same budget line with q < q Optimal Cobb- Douglas line q = AK 0.4 L 0.7 L L = 0.7 m Optimum point on line for optimum production q Budget line 25K + 10L = m Different point on the same budget line with q < q K = 0.4 m K 31

30 : FULL PROCEDURE Transform into max f x, y ቊ s. t. g x, y = c max L x, y, λ L = 0 x L Find x and y such that = 0 y L = 0 λ Check if the stationary points are indeed a maximum 32

31 : FULL PROCEDURE Transform into max f x, y ቊ s. t. g x, y = c max L x, y, λ L = 0 x L Find x and y such that = 0 y L = 0 λ Check if the stationary points are indeed a maximum 2 L x 2 Do not use 2 L 2 L y 2 x y for this! 2 33

32 OLD EXAM QUESTION 22 October 2014, Q2a 34

33 OLD EXAM QUESTION 27 March 2015, Q2b 35

34 FURTHER STUDY Sydsæter et al. 5/E Tutorial exercises week 5 Lagrange method Lagrange for Cobb-Douglas Intuitive idea of Lagrange 36

Partial derivatives BUSINESS MATHEMATICS

Partial derivatives BUSINESS MATHEMATICS Partial derivatives BUSINESS MATHEMATICS 1 CONTENTS Derivatives for functions of two variables Higher-order partial derivatives Derivatives for functions of many variables Old exam question Further study

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2016, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Tutorial 3: Optimisation

Tutorial 3: Optimisation Tutorial : Optimisation ECO411F 011 1. Find and classify the extrema of the cubic cost function C = C (Q) = Q 5Q +.. Find and classify the extreme values of the following functions (a) y = x 1 + x x 1x

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

Lecture Notes: Math Refresher 1

Lecture Notes: Math Refresher 1 Lecture Notes: Math Refresher 1 Math Facts The following results from calculus will be used over and over throughout the course. A more complete list of useful results from calculus is posted on the course

More information

ECON 186 Class Notes: Optimization Part 2

ECON 186 Class Notes: Optimization Part 2 ECON 186 Class Notes: Optimization Part 2 Jijian Fan Jijian Fan ECON 186 1 / 26 Hessians The Hessian matrix is a matrix of all partial derivatives of a function. Given the function f (x 1,x 2,...,x n ),

More information

Econ Slides from Lecture 14

Econ Slides from Lecture 14 Econ 205 Sobel Econ 205 - Slides from Lecture 14 Joel Sobel September 10, 2010 Theorem ( Lagrange Multipliers ) Theorem If x solves max f (x) subject to G(x) = 0 then there exists λ such that Df (x ) =

More information

IE 5531 Midterm #2 Solutions

IE 5531 Midterm #2 Solutions IE 5531 Midterm #2 s Prof. John Gunnar Carlsson November 9, 2011 Before you begin: This exam has 9 pages and a total of 5 problems. Make sure that all pages are present. To obtain credit for a problem,

More information

How to Characterize Solutions to Constrained Optimization Problems

How to Characterize Solutions to Constrained Optimization Problems How to Characterize Solutions to Constrained Optimization Problems Michael Peters September 25, 2005 1 Introduction A common technique for characterizing maximum and minimum points in math is to use first

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

MATH529 Fundamentals of Optimization Constrained Optimization I

MATH529 Fundamentals of Optimization Constrained Optimization I MATH529 Fundamentals of Optimization Constrained Optimization I Marco A. Montes de Oca Mathematical Sciences, University of Delaware, USA 1 / 26 Motivating Example 2 / 26 Motivating Example min cost(b)

More information

Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1

Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1 Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1 Session: 15 Aug 2015 (Mon), 10:00am 1:00pm I. Optimization with

More information

SVM optimization and Kernel methods

SVM optimization and Kernel methods Announcements SVM optimization and Kernel methods w 4 is up. Due in a week. Kaggle is up 4/13/17 1 4/13/17 2 Outline Review SVM optimization Non-linear transformations in SVM Soft-margin SVM Goal: Find

More information

Review of Optimization Methods

Review of Optimization Methods Review of Optimization Methods Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Outline of the Course Lectures 1 and 2 (3 hours, in class): Linear and non-linear functions on Limits,

More information

School of Business. Blank Page

School of Business. Blank Page Maxima and Minima 9 This unit is designed to introduce the learners to the basic concepts associated with Optimization. The readers will learn about different types of functions that are closely related

More information

Microeconomic Theory -1- Introduction

Microeconomic Theory -1- Introduction Microeconomic Theory -- Introduction. Introduction. Profit maximizing firm with monopoly power 6 3. General results on maximizing with two variables 8 4. Model of a private ownership economy 5. Consumer

More information

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics

1 Objective. 2 Constrained optimization. 2.1 Utility maximization. Dieter Balkenborg Department of Economics BEE020 { Basic Mathematical Economics Week 2, Lecture Thursday 2.0.0 Constrained optimization Dieter Balkenborg Department of Economics University of Exeter Objective We give the \ rst order conditions"

More information

Econ 101A Midterm 1 Th 29 September 2004.

Econ 101A Midterm 1 Th 29 September 2004. Econ 0A Midterm Th 29 September 2004. You have approximately hour 20 minutes to answer the questions in the midterm. I will collect the exams at 2.30 sharp. Show your work, good luck! Problem. Utility

More information

where u is the decision-maker s payoff function over her actions and S is the set of her feasible actions.

where u is the decision-maker s payoff function over her actions and S is the set of her feasible actions. Seminars on Mathematics for Economics and Finance Topic 3: Optimization - interior optima 1 Session: 11-12 Aug 2015 (Thu/Fri) 10:00am 1:00pm I. Optimization: introduction Decision-makers (e.g. consumers,

More information

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice Economics 101 Lecture 2 - The Walrasian Model and Consumer Choice 1 Uncle Léon The canonical model of exchange in economics is sometimes referred to as the Walrasian Model, after the early economist Léon

More information

BEEM103 UNIVERSITY OF EXETER. BUSINESS School. January 2009 Mock Exam, Part A. OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions

BEEM103 UNIVERSITY OF EXETER. BUSINESS School. January 2009 Mock Exam, Part A. OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions BEEM03 UNIVERSITY OF EXETER BUSINESS School January 009 Mock Exam, Part A OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions Duration : TWO HOURS The paper has 3 parts. Your marks on the rst part will be

More information

March 8, 2010 MATH 408 FINAL EXAM SAMPLE

March 8, 2010 MATH 408 FINAL EXAM SAMPLE March 8, 200 MATH 408 FINAL EXAM SAMPLE EXAM OUTLINE The final exam for this course takes place in the regular course classroom (MEB 238) on Monday, March 2, 8:30-0:20 am. You may bring two-sided 8 page

More information

Lagrange Multiplier Method. Uwe A. Schneider

Lagrange Multiplier Method. Uwe A. Schneider Lagrange Multiplier Method Uwe A. Schneider Joseph Louis Lagrange 25 January 1736 10 April 1813 mathematician and astronomer born in Turin, Piedmont, Italy, lived in Prussia and France contributions to

More information

MULTIPLE REGRESSION ANALYSIS AND OTHER ISSUES. Business Statistics

MULTIPLE REGRESSION ANALYSIS AND OTHER ISSUES. Business Statistics MULTIPLE REGRESSION ANALYSIS AND OTHER ISSUES Business Statistics CONTENTS Multiple regression Dummy regressors Assumptions of regression analysis Predicting with regression analysis Old exam question

More information

Econ 101A Problem Set 1 Solution

Econ 101A Problem Set 1 Solution Econ 101A Problem Set 1 Solution Problem 1. Univariate unconstrained maximization. (10 points) Consider the following maximization problem: max x f(x; x 0)=exp( (x x 0 ) 2 ) 1. Write down the first order

More information

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL.

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. SEPTEMBER 2009. 3.1 Functions of more than one variable.

More information

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY UNIVERSITY OF MARYLAND: ECON 600 1. Some Eamples 1 A general problem that arises countless times in economics takes the form: (Verbally):

More information

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko

ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko ECON 582: Dynamic Programming (Chapter 6, Acemoglu) Instructor: Dmytro Hryshko Indirect Utility Recall: static consumer theory; J goods, p j is the price of good j (j = 1; : : : ; J), c j is consumption

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

z = f (x; y) f (x ; y ) f (x; y) f (x; y )

z = f (x; y) f (x ; y ) f (x; y) f (x; y ) BEEM0 Optimization Techiniques for Economists Lecture Week 4 Dieter Balkenborg Departments of Economics University of Exeter Since the fabric of the universe is most perfect, and is the work of a most

More information

g(x,y) = c. For instance (see Figure 1 on the right), consider the optimization problem maximize subject to

g(x,y) = c. For instance (see Figure 1 on the right), consider the optimization problem maximize subject to 1 of 11 11/29/2010 10:39 AM From Wikipedia, the free encyclopedia In mathematical optimization, the method of Lagrange multipliers (named after Joseph Louis Lagrange) provides a strategy for finding the

More information

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 01 Introduction to Optimization Today, we will start the constrained

More information

The Interpretation of λ

The Interpretation of λ The Interpretation of λ Lecture 49 Section 7.5 Robb T. Koether Hampden-Sydney College Wed, Apr 26, 2017 Robb T. Koether (Hampden-Sydney College) The Interpretation of λ Wed, Apr 26, 2017 1 / 6 Objectives

More information

Solutions. F x = 2x 3λ = 0 F y = 2y 5λ = 0. λ = 2x 3 = 2y 5 = x = 3y 5. 2y 1/3 z 1/6 x 1/2 = 5x1/2 z 1/6. 3y 2/3 = 10x1/2 y 1/3

Solutions. F x = 2x 3λ = 0 F y = 2y 5λ = 0. λ = 2x 3 = 2y 5 = x = 3y 5. 2y 1/3 z 1/6 x 1/2 = 5x1/2 z 1/6. 3y 2/3 = 10x1/2 y 1/3 econ 11b ucsc ams 11b Review Questions 3 Solutions Note: In these problems, you may generally assume that the critical point(s) you find produce the required optimal value(s). At the same time, you should

More information

Lagrangian Methods for Constrained Optimization

Lagrangian Methods for Constrained Optimization Pricing Communication Networks: Economics, Technology and Modelling. Costas Courcoubetis and Richard Weber Copyright 2003 John Wiley & Sons, Ltd. ISBN: 0-470-85130-9 Appendix A Lagrangian Methods for Constrained

More information

A time-to-event random variable T has survivor function F de ned by: F (t) := P ft > tg. The maximum likelihood estimator of F is ^F.

A time-to-event random variable T has survivor function F de ned by: F (t) := P ft > tg. The maximum likelihood estimator of F is ^F. Empirical Likelihood F. P. Treasure 12-May-05 3010a Objective: to obtain point- and interval- estimates of time-to-event probabilities using a non-parametric, empirical, maximum likelihood estimate of

More information

1 Theory of the Firm: Topics and Exercises

1 Theory of the Firm: Topics and Exercises 1 Theory of the Firm: Topics and Exercises Firms maximize profits, i.e. the difference between revenues and costs, subject to technological and other, here not considered) constraints. 1.1 Technology Technology

More information

SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

More information

Constrained Optimization. Unconstrained Optimization (1)

Constrained Optimization. Unconstrained Optimization (1) Constrained Optimization Unconstrained Optimization (Review) Constrained Optimization Approach Equality constraints * Lagrangeans * Shadow prices Inequality constraints * Kuhn-Tucker conditions * Complementary

More information

FINANCIAL OPTIMIZATION

FINANCIAL OPTIMIZATION FINANCIAL OPTIMIZATION Lecture 1: General Principles and Analytic Optimization Philip H. Dybvig Washington University Saint Louis, Missouri Copyright c Philip H. Dybvig 2008 Choose x R N to minimize f(x)

More information

Mathematical Economics: Lecture 16

Mathematical Economics: Lecture 16 Mathematical Economics: Lecture 16 Yu Ren WISE, Xiamen University November 26, 2012 Outline 1 Chapter 21: Concave and Quasiconcave Functions New Section Chapter 21: Concave and Quasiconcave Functions Concave

More information

ECON 255 Introduction to Mathematical Economics

ECON 255 Introduction to Mathematical Economics Page 1 of 5 FINAL EXAMINATION Winter 2017 Introduction to Mathematical Economics April 20, 2017 TIME ALLOWED: 3 HOURS NUMBER IN THE LIST: STUDENT NUMBER: NAME: SIGNATURE: INSTRUCTIONS 1. This examination

More information

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight.

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the multi-dimensional knapsack problem, additional

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa. Reducing dimensionality of DP page 1

2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa. Reducing dimensionality of DP page 1 2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa Reducing dimensionality of DP page 1 Consider a knapsack with a weight capacity of 15 and a volume capacity of 12. Item # Value

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them.

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. What is market design? Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. This requires different tools and ideas than neoclassical economics, which

More information

EconS Cost Structures

EconS Cost Structures EconS 425 - Cost Structures Eric Dunaway Washington State University eric.dunaway@wsu.edu Industrial Organization Eric Dunaway (WSU) EconS 425 Industrial Organization 1 / 34 Introduction Today, we ll review

More information

Optimization, constrained optimization and applications of integrals.

Optimization, constrained optimization and applications of integrals. ams 11b Study Guide econ 11b Optimization, constrained optimization and applications of integrals. (*) In all the constrained optimization problems below, you may assume that the critical values you find

More information

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Endogenous Growth with Human Capital Consider the following endogenous growth model with both physical capital (k (t)) and human capital (h (t)) in continuous time. The representative household solves

More information

3.7 Constrained Optimization and Lagrange Multipliers

3.7 Constrained Optimization and Lagrange Multipliers 3.7 Constrained Optimization and Lagrange Multipliers 71 3.7 Constrained Optimization and Lagrange Multipliers Overview: Constrained optimization problems can sometimes be solved using the methods of the

More information

The Kuhn-Tucker Problem

The Kuhn-Tucker Problem Natalia Lazzati Mathematics for Economics (Part I) Note 8: Nonlinear Programming - The Kuhn-Tucker Problem Note 8 is based on de la Fuente (2000, Ch. 7) and Simon and Blume (1994, Ch. 18 and 19). The Kuhn-Tucker

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

Lesson 11. Lagrange's Multiplier Rule / Constrained Optimization

Lesson 11. Lagrange's Multiplier Rule / Constrained Optimization Module 1: Differential Calculus Lesson 11 Lagrange's Multiplier Rule / Constrained Optimization 11.1 Introduction We presents an introduction to optimization problems that involve finding a maximum or

More information

Economics 101 Lecture 5 - Firms and Production

Economics 101 Lecture 5 - Firms and Production Economics 101 Lecture 5 - Firms and Production 1 The Second Welfare Theorem Last week we proved the First Basic Welfare Theorem, which states that under fairly weak assumptions, a Walrasian equilibrium

More information

Lec12p1, ORF363/COS323. The idea behind duality. This lecture

Lec12p1, ORF363/COS323. The idea behind duality. This lecture Lec12 Page 1 Lec12p1, ORF363/COS323 This lecture Linear programming duality + robust linear programming Intuition behind the derivation of the dual Weak and strong duality theorems Max-flow=Min-cut Primal/dual

More information

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask Machine Learning and Data Mining Support Vector Machines Kalev Kask Linear classifiers Which decision boundary is better? Both have zero training error (perfect training accuracy) But, one of them seems

More information

CSC236 Week 11. Larry Zhang

CSC236 Week 11. Larry Zhang CSC236 Week 11 Larry Zhang 1 Announcements Next week s lecture: Final exam review This week s tutorial: Exercises with DFAs PS9 will be out later this week s. 2 Recap Last week we learned about Deterministic

More information

Practice Problems #1 Practice Problems #2

Practice Problems #1 Practice Problems #2 Practice Problems #1 Interpret the following equations where C is the cost, and Q is quantity produced by the firm a) C(Q) = 10 + Q Costs depend on quantity. If the firm produces nothing, costs are 10,

More information

Maximum Theorem, Implicit Function Theorem and Envelope Theorem

Maximum Theorem, Implicit Function Theorem and Envelope Theorem Maximum Theorem, Implicit Function Theorem and Envelope Theorem Ping Yu Department of Economics University of Hong Kong Ping Yu (HKU) MIFE 1 / 25 1 The Maximum Theorem 2 The Implicit Function Theorem 3

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

PRESENTATION OF MATHEMATICAL ECONOMICS SYLLABUS FOR ECONOMICS HONOURS UNDER CBCS, UNIVERSITY OF CALCUTTA

PRESENTATION OF MATHEMATICAL ECONOMICS SYLLABUS FOR ECONOMICS HONOURS UNDER CBCS, UNIVERSITY OF CALCUTTA PRESENTATION OF MATHEMATICAL ECONOMICS SYLLABUS FOR ECONOMICS HONOURS UNDER CBCS, UNIVERSITY OF CALCUTTA Kausik Gupta Professor of Economics, University of Calcutta Introductory Remarks The paper/course

More information

CHAPTER 1-2: SHADOW PRICES

CHAPTER 1-2: SHADOW PRICES Essential Microeconomics -- CHAPTER -: SHADOW PRICES An intuitive approach: profit maimizing firm with a fied supply of an input Shadow prices 5 Concave maimization problem 7 Constraint qualifications

More information

Problem Set 3

Problem Set 3 4.02 Problem Set 3 Due Thursday, October 2, 2004, in class Starred (*) problems will not count for the grade on this problem set; they are based on material from lectures on 0/2 and 0/26, and provide practice

More information

Chapter 4 Differentiation

Chapter 4 Differentiation Chapter 4 Differentiation 08 Section 4. The derivative of a function Practice Problems (a) (b) (c) 3 8 3 ( ) 4 3 5 4 ( ) 5 3 3 0 0 49 ( ) 50 Using a calculator, the values of the cube function, correct

More information

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity 30C00300 Mathematical Methods for Economists (6 cr) 7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity Abolfazl Keshvari Ph.D. Aalto University School of Business

More information

Let f(x) = x, but the domain of f is the interval 0 x 1. Note

Let f(x) = x, but the domain of f is the interval 0 x 1. Note I.g Maximum and Minimum. Lagrange Multipliers Recall: Suppose we are given y = f(x). We recall that the maximum/minimum points occur at the following points: (1) where f = 0; (2) where f does not exist;

More information

Advanced Microeconomic Analysis, Lecture 6

Advanced Microeconomic Analysis, Lecture 6 Advanced Microeconomic Analysis, Lecture 6 Prof. Ronaldo CARPIO April 10, 017 Administrative Stuff Homework # is due at the end of class. I will post the solutions on the website later today. The midterm

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Name: Final Exam EconS 527 (December 12 th, 2016)

Name: Final Exam EconS 527 (December 12 th, 2016) Name: Final Exam EconS 527 (December 12 th, 2016) Question #1 [20 Points]. Consider the car industry in which there are only two firms operating in the market, Trotro (T) and Fido (F). The marginal production

More information

Bi-Variate Functions - ACTIVITES

Bi-Variate Functions - ACTIVITES Bi-Variate Functions - ACTIVITES LO1. Students to consolidate basic meaning of bi-variate functions LO2. Students to learn how to confidently use bi-variate functions in economics Students are given the

More information

Lecture 4: Optimization. Maximizing a function of a single variable

Lecture 4: Optimization. Maximizing a function of a single variable Lecture 4: Optimization Maximizing or Minimizing a Function of a Single Variable Maximizing or Minimizing a Function of Many Variables Constrained Optimization Maximizing a function of a single variable

More information

Revealed Preferences and Utility Functions

Revealed Preferences and Utility Functions Revealed Preferences and Utility Functions Lecture 2, 1 September Econ 2100 Fall 2017 Outline 1 Weak Axiom of Revealed Preference 2 Equivalence between Axioms and Rationalizable Choices. 3 An Application:

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

ECON 304 MIDTERM EXAM ANSWERS

ECON 304 MIDTERM EXAM ANSWERS ECON 30 MIDTERM EXAM ANSWERS () The short questions: (a) Transitivity says that if y and y z, then z. Note the three bundles in diagram 0.. y because they are on the same indifference curve. y z because

More information

Solutions. ams 11b Study Guide 9 econ 11b

Solutions. ams 11b Study Guide 9 econ 11b ams 11b Study Guide 9 econ 11b Solutions 1. A monopolistic firm sells one product in two markets, A and B. The daily demand equations for the firm s product in these markets are given by Q A = 100 0.4P

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

Competitive Equilibrium and the Welfare Theorems

Competitive Equilibrium and the Welfare Theorems Competitive Equilibrium and the Welfare Theorems Craig Burnside Duke University September 2010 Craig Burnside (Duke University) Competitive Equilibrium September 2010 1 / 32 Competitive Equilibrium and

More information

Algebra 1B notes and problems March 12, 2009 Factoring page 1

Algebra 1B notes and problems March 12, 2009 Factoring page 1 March 12, 2009 Factoring page 1 Factoring Last class, you worked on a set of problems where you had to do multiplication table calculations in reverse. For example, given the answer x 2 + 4x + 2x + 8,

More information

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II Section 13.3 Concavity and Curve Sketching College of Science MATHS 104: Mathematics for Business II (University of Bahrain) Concavity 1 / 18 Concavity Increasing Function has three cases (University of

More information

Introduction to Real Business Cycles: The Solow Model and Dynamic Optimization

Introduction to Real Business Cycles: The Solow Model and Dynamic Optimization Introduction to Real Business Cycles: The Solow Model and Dynamic Optimization Vivaldo Mendes a ISCTE IUL Department of Economics 24 September 2017 (Vivaldo M. Mendes ) Macroeconomics (M8674) 24 September

More information

Optimality Conditions

Optimality Conditions Chapter 2 Optimality Conditions 2.1 Global and Local Minima for Unconstrained Problems When a minimization problem does not have any constraints, the problem is to find the minimum of the objective function.

More information

Review of Optimization Basics

Review of Optimization Basics Review of Optimization Basics. Introduction Electricity markets throughout the US are said to have a two-settlement structure. The reason for this is that the structure includes two different markets:

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Lecture 4 September 15

Lecture 4 September 15 IFT 6269: Probabilistic Graphical Models Fall 2017 Lecture 4 September 15 Lecturer: Simon Lacoste-Julien Scribe: Philippe Brouillard & Tristan Deleu 4.1 Maximum Likelihood principle Given a parametric

More information

Macroeconomic Theory and Analysis Suggested Solution for Midterm 1

Macroeconomic Theory and Analysis Suggested Solution for Midterm 1 Macroeconomic Theory and Analysis Suggested Solution for Midterm February 25, 2007 Problem : Pareto Optimality The planner solves the following problem: u(c ) + u(c 2 ) + v(l ) + v(l 2 ) () {c,c 2,l,l

More information

Economics 101A (Lecture 3) Stefano DellaVigna

Economics 101A (Lecture 3) Stefano DellaVigna Economics 101A (Lecture 3) Stefano DellaVigna January 24, 2017 Outline 1. Implicit Function Theorem 2. Envelope Theorem 3. Convexity and concavity 4. Constrained Maximization 1 Implicit function theorem

More information

Link lecture - Lagrange Multipliers

Link lecture - Lagrange Multipliers Link lecture - Lagrange Multipliers Lagrange multipliers provide a method for finding a stationary point of a function, say f(x, y) when the variables are subject to constraints, say of the form g(x, y)

More information

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case

The Necessity of the Transversality Condition at Infinity: A (Very) Special Case The Necessity of the Transversality Condition at Infinity: A (Very) Special Case Peter Ireland ECON 772001 - Math for Economists Boston College, Department of Economics Fall 2017 Consider a discrete-time,

More information

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming 1. Government Purchases and Endogenous Growth Consider the following endogenous growth model with government purchases (G) in continuous time. Government purchases enhance production, and the production

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017

CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 CSC373: Algorithm Design, Analysis and Complexity Fall 2017 DENIS PANKRATOV NOVEMBER 1, 2017 Linear Function f: R n R is linear if it can be written as f x = a T x for some a R n Example: f x 1, x 2 =

More information

Maximum Value Functions and the Envelope Theorem

Maximum Value Functions and the Envelope Theorem Lecture Notes for ECON 40 Kevin Wainwright Maximum Value Functions and the Envelope Theorem A maximum (or minimum) value function is an objective function where the choice variables have been assigned

More information

Algebra Year 10. Language

Algebra Year 10. Language Algebra Year 10 Introduction In Algebra we do Maths with numbers, but some of those numbers are not known. They are represented with letters, and called unknowns, variables or, most formally, literals.

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2 LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 2010/11 Math for Microeconomics September Course, Part II Problem Set 1 with Solutions 1. Show that the general

More information