Generalized Power Method for Sparse Principal Component Analysis

Size: px
Start display at page:

Download "Generalized Power Method for Sparse Principal Component Analysis"

Transcription

1 Generalized Power Method for Sparse Principal Component Analysis Peter Richtárik CORE/INMA Catholic University of Louvain Belgium VOCAL 2008, Veszprém, Hungary CORE Discussion Paper #2008/70 joint work with M. Journée, Yu. Nesterov and R. Sepulchre

2 1. Outline Sparse PCA Optimization reformulations Algorithm and complexity analysis Numerical experiments

3 2. Sparse PCA (spca) Input: Matrix A = [a 1,..., a n ] R p n, p n Goal: Find unit-norm vector z R n which simultaneously 1. maximizes variance z T A T Az 2. is sparse If sparsity is not required, z is the dominant right singular vector of A: max z T A T Az = λ max (A T A) = (σ max (A)) 2. z T z 1 Extracting more components: Discussion above is about the single-unit case (m = 1). Often more components (sparse dominant singular directions) are needed: block case (m > 1). Applications: gene expression, finance, data visualization, signal processing, vision,...

4 3. Our approach to spca 1. Formulate spca as an optimization problem with sparsityinducing penalty (l 1 or l 0 ) controlled by a single parameter 2. Reformulate to get problem of a suitable form: suitable for analysis suitable for computation 3. Solve reformulation using a simple gradient scheme 4. Recover solution of the original problem Will illustrate steps 1) and 2) and 4) on the single-unit l 1 penalized case and then jump to general analysis of step 3).

5 4. Three observations about the l 1 penalty Notation: z 1 = i z i. Penalty formulation of single-unit spca: Observations: φ l1 (γ) def = max zt A T Az γ z 1. (1) z T z 1 1. γ = 0 no reason to expect zero coordinates in z 2. γ a i 2 def = max i a i, then z = 0. Indeed, since max z 0 Az 2 z 1 = max z 0 max z 0 i z ia i 2 z 1 i z i a i 2 i z i = max i a i In fact, γ a i 2 zi (γ) = 0 for all i

6 5. Reformulation Note that: φ l1 (γ) = max Az 2 γ z 1 = max max z B n z B n x B xt Az γ z 1 p = max x B p max z B n n z i (a T i x) γ z i. For fixed x, the inner max-problem has the closed-form solution i=1 z i = sign(a T i x)[ a T i x γ] +, z = z/ z 2. Hence to solve (1), we only need to solve this reformulation: φ 2 l 1 (γ) = max x R p x T x=1 n [ a T i x γ] 2 +, (2) i=1 Note: The objective function of (2) is convex and smooth and the feasible region is in R p instead of R n (p n).

7 6. Single-unit spca via l 0 penalty Similar story as in the l 1 case, so only briefly: Notation: z 0 = Card{i : z i 0}. Penalty formulation: φ l0 (γ) def = max z T A T Az γ z 0, (3) z T z 1 To solve (3), first solve this reformulation: and then set φ l1 (γ) = max x R p x T x=1 n [(a T i x) 2 γ] +, (4) i=1 z i = [sign((a T i x) 2 γ)] + a T i x, z = z/ z 2.

8 7. Maximizing convex functions Problems (2) and (4) (and their block generalizations) are of the form f = max f(x), (P) x Q where E is a finite-dimensional vector space, f : E R is a convex function, Q E is compact. In particular, Q = unit Euclidean sphere in R p / Single-unit case (m = 1) Q = Stiefel manifold in R p m, i.e. the set of p m matrices with orthonormal columns / Block case (m > 1) How to solve (P)?

9 8. Gradient algorithm We solve (P) using this simple gradient method: 1. Input: Initial iterate x 0 Q 2. For k 0 repeat x k+1 Arg max{f(x k ) + f (x k ), y x k y Q} k k + 1 This algorithm generalizes the power method for computing the largest eigenvalue of a symmetric positive definite matrix C: f(x) = 1 2 xt Cx x k+1 = Cx k Cx k 2. Hence Generalized Power Method (GPower).

10 9. Iteration complexity: basic result At any point x Q we introduce a measure for the first-order optimality conditions: (x) def = max y Q f (x), y x. Clearly, (x) 0 and it vanishes only at the points where the gradient f (x) belongs to the normal cone to Conv(Q) at x. Denote k def = min 0 i k (x i). Theorem Let sequence {x k } k=0 be generated by GPower as applied to a convex function f. Then the sequence {f(x k )} k=0 is monotonically increasing and lim (x k ) = 0. Moreover, k k f f(x 0 ). (5) k + 1

11 10. Strong convexity of functions and sets Function f is strongly convex if there exists a constant σ f > 0 such that for any x, y E f(y) f(x) + f (x), y x + σ f 2 y x 2. The set Conv(Q) is strongly convex if there exists a constant σ Q > 0 such that for any x, y Conv(Q) and α [0, 1] the following inclusion holds: αx + (1 α)y + σ Q 2 α(1 α) x y 2 S Conv(Q). Theorem If f : E R is nonnegative, has σ f L f -Lipschitz, then for any ω > 0, the level set Q ω def = {x f(x) ω} is strongly convex with parameter σ Qω = σ f / 2ωL f. > 0 and f is

12 11. Refined analysis under strong convexity Theorem Let f be convex with strong convexity parameter σ f 0, and Conv(Q) be convex with strong convexity parameter σ Q 0. If 0 < δ f = inf x Q f (x) and either σ f > 0 or σ Q > 0, then N k=0 x k+1 x k 2 2(f f(x 0 )) σ Q δ f + σ f. Note: If f is not minimized on Q, then δ f > 0.

13 12. Computational experiments We compare the following Sparse PCA algorithms: GPower l1 Single-unit sparse PCA via l 1 -penalty [1] GPower l0 Single-unit sparse PCA via l 0 -penalty [1] GPower l1,m Block sparse PCA via l 1 -penalty [1] GPower l0,m Block sparse PCA via l 0 -penalty [1] SPCA SPCA algorithm [2] Greedy Greedy method [3] rsvd l1 Method [4] with l 1 -penalty ( soft thresholding ) rsvd l0 Method [4] with l 0 -penalty ( hard thresholding ) Greedy slows down dramatically, compared to the other methods, if aimed at obtaining a component of higher cardinality. Test Problems: Randomly generated A = Gaussian with zero mean and unit variance Gene-expression data

14 13. Trade-off curves Trade-off between explained variance and cardinality. The algorithms aggregate in two groups. The methods GPower l1, GPower l0, Greedy and rsvd l0 do better (black solid lines), and SPCA and rsvd l1 do worse (red dashed lines). Based on 100 random test problems of size p = 100, n = 300.

15 14. Controlling sparsity with γ Dependence of cardinality on the value of the sparsity-inducing parameter γ. The horizontal axis shows a normalized interval of reasonable values of γ. The vertical axis shows percentage of nonzero coefficients of the resulting sparse loading vector z. Based on 100 random test problems of size p = 100, n = 300.

16 15. How does the trade-off evolve in time? Evolution of the explained variance (solid lines and left axis) and cardinality (dashed lines and right axis) in time for the methods GPower l1 and rsvd l1. Based on random test problem of size p = 250 and n = 2500.

17 16. Random data: speed Fixed n/p ratio: p n GPower l GPower l SPCA rsvd l rsvd l Fixed p, growing n: p n GPower l GPower l SPCA rsvd l rsvd l

18 17. Gene expression data: speed Data sets (breast cancer cohorts): Study Samples (p) Genes (n) Reference Vijver van de Vijver et al. [2002] Wang Wang et al. [2005] Naderi Naderi et al. [2006] JRH Sotiriou et al. [2006] Speed (in seconds): Vijver Wang Naderi JRH-2 GPower l GPower l GPower l1,m GPower l0,m SPCA rsvd l rsvd l

19 18. Gene expression data: content PEI-values based on 536 cancer-related pathways: Vijver Wang Naderi JRH-2 PCA GPower l GPower l GPower l1,m GPower l0,m SPCA rsvd l rsvd l Pathway Enrichment Index (PEI) measures the statistical significance of the overlap between two kinds of gene sets.

20 19. Summary We have developed 4 reformulations (single unit/block l 1 /l 0 ) of the spca problem which enabled us to devise a very fast method (we work in dimension p n and use only gradients), and analyze the iteration complexity of the method; analyzed a simple gradient method (Generalized Power Method) for maximizing convex functions on compact sets; applied GPower to 4 reformulations and ended-up with 4 algorithms for spca; tested our algorithms on random and gene expression data: they outperform other methods significantly in speed (finish before some other algorithms initialize), for the biological data, they produce slightly higher quality of solution in terms of PEI.

21 20. References [1] M. Journée, Yu. Nesterov, P. Richtárik, R. Sepulchre. Generalized Power Method for Sparse Principal Component Analysis (this talk). submitted to Journal of Machine Learning Research, November [2] H. Zou, T. Hastie, R. Tibshirani. Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics, 15(2): , [3] A. d Aspremont, F. R. Bach, L. El Ghaoui. Optimal Solutions for Sparse Principal Component Analysis. Journal of Machine Learning Research, 9: , [4] H. Shen, J. Z. Huang. Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation. Journal of Multivariate Analysis, 99(6): , 2008.

Generalized power method for sparse principal component analysis

Generalized power method for sparse principal component analysis CORE DISCUSSION PAPER 2008/70 Generalized power method for sparse principal component analysis M. JOURNÉE, Yu. NESTEROV, P. RICHTÁRIK and R. SEPULCHRE November 2008 Abstract In this paper we develop a

More information

Generalized Power Method for Sparse Principal Component Analysis

Generalized Power Method for Sparse Principal Component Analysis Journal of Machine Learning Research () Submitted 11/2008; Published Generalized Power Method for Sparse Principal Component Analysis Yurii Nesterov Peter Richtárik Center for Operations Research and Econometrics

More information

Sparse Principal Component Analysis via Alternating Maximization and Efficient Parallel Implementations

Sparse Principal Component Analysis via Alternating Maximization and Efficient Parallel Implementations Sparse Principal Component Analysis via Alternating Maximization and Efficient Parallel Implementations Martin Takáč The University of Edinburgh Joint work with Peter Richtárik (Edinburgh University) Selin

More information

arxiv: v1 [math.oc] 28 Nov 2008

arxiv: v1 [math.oc] 28 Nov 2008 arxiv:0811.4724v1 [math.oc] 28 Nov 2008 Generalized power method for sparse principal component analysis Michel Journée Yurii Nesterov Peter Richtárik Rodolphe Sepulchre Abstract In this paper we develop

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley A. d Aspremont, INFORMS, Denver,

More information

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12

STATS 306B: Unsupervised Learning Spring Lecture 13 May 12 STATS 306B: Unsupervised Learning Spring 2014 Lecture 13 May 12 Lecturer: Lester Mackey Scribe: Jessy Hwang, Minzhe Wang 13.1 Canonical correlation analysis 13.1.1 Recap CCA is a linear dimensionality

More information

Conditional Gradient Algorithms for Rank-One Matrix Approximations with a Sparsity Constraint

Conditional Gradient Algorithms for Rank-One Matrix Approximations with a Sparsity Constraint Conditional Gradient Algorithms for Rank-One Matrix Approximations with a Sparsity Constraint Marc Teboulle School of Mathematical Sciences Tel Aviv University Joint work with Ronny Luss Optimization and

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon

More information

Sparse PCA with applications in finance

Sparse PCA with applications in finance Sparse PCA with applications in finance A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon 1 Introduction

More information

An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA

An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA Matthias Hein Thomas Bühler Saarland University, Saarbrücken, Germany {hein,tb}@cs.uni-saarland.de

More information

Inverse Power Method for Non-linear Eigenproblems

Inverse Power Method for Non-linear Eigenproblems Inverse Power Method for Non-linear Eigenproblems Matthias Hein and Thomas Bühler Anubhav Dwivedi Department of Aerospace Engineering & Mechanics 7th March, 2017 1 / 30 OUTLINE Motivation Non-Linear Eigenproblems

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

Note on the convex hull of the Stiefel manifold

Note on the convex hull of the Stiefel manifold Note on the convex hull of the Stiefel manifold Kyle A. Gallivan P.-A. Absil July 9, 00 Abstract In this note, we characterize the convex hull of the Stiefel manifold and we find its strong convexity parameter.

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

Supplement to A Generalized Least Squares Matrix Decomposition. 1 GPMF & Smoothness: Ω-norm Penalty & Functional Data

Supplement to A Generalized Least Squares Matrix Decomposition. 1 GPMF & Smoothness: Ω-norm Penalty & Functional Data Supplement to A Generalized Least Squares Matrix Decomposition Genevera I. Allen 1, Logan Grosenic 2, & Jonathan Taylor 3 1 Department of Statistics and Electrical and Computer Engineering, Rice University

More information

Sparse Gaussian conditional random fields

Sparse Gaussian conditional random fields Sparse Gaussian conditional random fields Matt Wytock, J. ico Kolter School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 {mwytock, zkolter}@cs.cmu.edu Abstract We propose sparse Gaussian

More information

Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time

Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time Zhaoran Wang Huanran Lu Han Liu Department of Operations Research and Financial Engineering Princeton University Princeton, NJ 08540 {zhaoran,huanranl,hanliu}@princeton.edu

More information

Sparse Principal Component Analysis Formulations And Algorithms

Sparse Principal Component Analysis Formulations And Algorithms Sparse Principal Component Analysis Formulations And Algorithms SLIDE 1 Outline 1 Background What Is Principal Component Analysis (PCA)? What Is Sparse Principal Component Analysis (spca)? 2 The Sparse

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Expectation-Maximization for Sparse and Non-Negative PCA

Expectation-Maximization for Sparse and Non-Negative PCA Christian D. Sigg Joachim M. Buhmann Institute of Computational Science, ETH Zurich, 8092 Zurich, Switzerland chrsigg@inf.ethz.ch jbuhmann@inf.ethz.ch Abstract We study the problem of finding the dominant

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming Alexandre d Aspremont alexandre.daspremont@m4x.org Department of Electrical Engineering and Computer Science Laurent El Ghaoui elghaoui@eecs.berkeley.edu

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA

An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA An Inverse Power Method for Nonlinear Eigenproblems with Applications in -Spectral Clustering and Sparse PCA Matthias Hein Thomas Bühler Saarland University, Saarbrücken, Germany {hein,tb}@csuni-saarlandde

More information

Lasso: Algorithms and Extensions

Lasso: Algorithms and Extensions ELE 538B: Sparsity, Structure and Inference Lasso: Algorithms and Extensions Yuxin Chen Princeton University, Spring 2017 Outline Proximal operators Proximal gradient methods for lasso and its extensions

More information

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints By I. Necoara, Y. Nesterov, and F. Glineur Lijun Xu Optimization Group Meeting November 27, 2012 Outline

More information

Sparse Principal Component Analysis with Constraints

Sparse Principal Component Analysis with Constraints Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence Sparse Principal Component Analysis with Constraints Mihajlo Grbovic Department of Computer and Information Sciences, Temple University

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

DISCUSSION OF INFLUENTIAL FEATURE PCA FOR HIGH DIMENSIONAL CLUSTERING. By T. Tony Cai and Linjun Zhang University of Pennsylvania

DISCUSSION OF INFLUENTIAL FEATURE PCA FOR HIGH DIMENSIONAL CLUSTERING. By T. Tony Cai and Linjun Zhang University of Pennsylvania Submitted to the Annals of Statistics DISCUSSION OF INFLUENTIAL FEATURE PCA FOR HIGH DIMENSIONAL CLUSTERING By T. Tony Cai and Linjun Zhang University of Pennsylvania We would like to congratulate the

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

Proximal Methods for Optimization with Spasity-inducing Norms

Proximal Methods for Optimization with Spasity-inducing Norms Proximal Methods for Optimization with Spasity-inducing Norms Group Learning Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology

More information

Truncated Power Method for Sparse Eigenvalue Problems

Truncated Power Method for Sparse Eigenvalue Problems Journal of Machine Learning Research 14 (2013) 899-925 Submitted 12/11; Revised 10/12; Published 4/13 Truncated Power Method for Sparse Eigenvalue Problems Xiao-Tong Yuan Tong Zhang Department of Statistics

More information

ECON 4117/5111 Mathematical Economics

ECON 4117/5111 Mathematical Economics Test 1 September 29, 2006 1. Use a truth table to show the following equivalence statement: (p q) (p q) 2. Consider the statement: A function f : X Y is continuous on X if for every open set V Y, the pre-image

More information

Sparse Principal Component Analysis for multiblocks data and its extension to Sparse Multiple Correspondence Analysis

Sparse Principal Component Analysis for multiblocks data and its extension to Sparse Multiple Correspondence Analysis Sparse Principal Component Analysis for multiblocks data and its extension to Sparse Multiple Correspondence Analysis Anne Bernard 1,5, Hervé Abdi 2, Arthur Tenenhaus 3, Christiane Guinot 4, Gilbert Saporta

More information

Sparse principal component analysis via regularized low rank matrix approximation

Sparse principal component analysis via regularized low rank matrix approximation Journal of Multivariate Analysis 99 (2008) 1015 1034 www.elsevier.com/locate/jmva Sparse principal component analysis via regularized low rank matrix approximation Haipeng Shen a,, Jianhua Z. Huang b a

More information

c 2010 Society for Industrial and Applied Mathematics

c 2010 Society for Industrial and Applied Mathematics SIAM J. OPTIM. Vol. 20, No. 5, pp. 2327 2351 c 2010 Society for Industrial and Applied Mathematics LOW-RANK OPTIMIZATION ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES M. JOURNÉE, F. BACH, P.-A. ABSIL,

More information

Optimization on the Grassmann manifold: a case study

Optimization on the Grassmann manifold: a case study Optimization on the Grassmann manifold: a case study Konstantin Usevich and Ivan Markovsky Department ELEC, Vrije Universiteit Brussel 28 March 2013 32nd Benelux Meeting on Systems and Control, Houffalize,

More information

Matrix stabilization using differential equations.

Matrix stabilization using differential equations. Matrix stabilization using differential equations. Nicola Guglielmi Universitá dell Aquila and Gran Sasso Science Institute, Italia NUMOC-2017 Roma, 19 23 June, 2017 Inspired by a joint work with Christian

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Compressed Sensing in Cancer Biology? (A Work in Progress)

Compressed Sensing in Cancer Biology? (A Work in Progress) Compressed Sensing in Cancer Biology? (A Work in Progress) M. Vidyasagar FRS Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar University

More information

Frist order optimization methods for sparse inverse covariance selection

Frist order optimization methods for sparse inverse covariance selection Frist order optimization methods for sparse inverse covariance selection Katya Scheinberg Lehigh University ISE Department (joint work with D. Goldfarb, Sh. Ma, I. Rish) Introduction l l l l l l The field

More information

PROJECTION ALGORITHMS FOR NONCONVEX MINIMIZATION WITH APPLICATION TO SPARSE PRINCIPAL COMPONENT ANALYSIS

PROJECTION ALGORITHMS FOR NONCONVEX MINIMIZATION WITH APPLICATION TO SPARSE PRINCIPAL COMPONENT ANALYSIS PROJECTION ALGORITHMS FOR NONCONVEX MINIMIZATION WITH APPLICATION TO SPARSE PRINCIPAL COMPONENT ANALYSIS WILLIAM W. HAGER, DZUNG T. PHAN, AND JIAJIE ZHU Abstract. We consider concave minimization problems

More information

Applied Machine Learning for Biomedical Engineering. Enrico Grisan

Applied Machine Learning for Biomedical Engineering. Enrico Grisan Applied Machine Learning for Biomedical Engineering Enrico Grisan enrico.grisan@dei.unipd.it Data representation To find a representation that approximates elements of a signal class with a linear combination

More information

Full Regularization Path for Sparse Principal Component Analysis

Full Regularization Path for Sparse Principal Component Analysis Full Regularization Path for Sparse Principal Component Analysis Alexandre d Aspremont ORFE, Princeton University, Princeton NJ 08544, USA. aspremon@princeton.edu Francis R. Bach francis.bach@mines.org

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Lecture 7: September 17

Lecture 7: September 17 10-725: Optimization Fall 2013 Lecture 7: September 17 Lecturer: Ryan Tibshirani Scribes: Serim Park,Yiming Gu 7.1 Recap. The drawbacks of Gradient Methods are: (1) requires f is differentiable; (2) relatively

More information

Sparse representation classification and positive L1 minimization

Sparse representation classification and positive L1 minimization Sparse representation classification and positive L1 minimization Cencheng Shen Joint Work with Li Chen, Carey E. Priebe Applied Mathematics and Statistics Johns Hopkins University, August 5, 2014 Cencheng

More information

Lecture 1: September 25

Lecture 1: September 25 0-725: Optimization Fall 202 Lecture : September 25 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Subhodeep Moitra Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

An Augmented Lagrangian Approach for Sparse Principal Component Analysis

An Augmented Lagrangian Approach for Sparse Principal Component Analysis An Augmented Lagrangian Approach for Sparse Principal Component Analysis Zhaosong Lu Yong Zhang July 12, 2009 Abstract Principal component analysis (PCA) is a widely used technique for data analysis and

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

Adaptive First-Order Methods for General Sparse Inverse Covariance Selection

Adaptive First-Order Methods for General Sparse Inverse Covariance Selection Adaptive First-Order Methods for General Sparse Inverse Covariance Selection Zhaosong Lu December 2, 2008 Abstract In this paper, we consider estimating sparse inverse covariance of a Gaussian graphical

More information

DATA MINING AND MACHINE LEARNING

DATA MINING AND MACHINE LEARNING DATA MINING AND MACHINE LEARNING Lecture 5: Regularization and loss functions Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Loss functions Loss functions for regression problems

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

High-dimensional Statistics

High-dimensional Statistics High-dimensional Statistics Pradeep Ravikumar UT Austin Outline 1. High Dimensional Data : Large p, small n 2. Sparsity 3. Group Sparsity 4. Low Rank 1 Curse of Dimensionality Statistical Learning: Given

More information

An augmented Lagrangian approach for sparse principal component analysis

An augmented Lagrangian approach for sparse principal component analysis Math. Program., Ser. A DOI 10.1007/s10107-011-0452-4 FULL LENGTH PAPER An augmented Lagrangian approach for sparse principal component analysis Zhaosong Lu Yong Zhang Received: 12 July 2009 / Accepted:

More information

Deflation Methods for Sparse PCA

Deflation Methods for Sparse PCA Deflation Methods for Sparse PCA Lester Mackey Computer Science Division University of California, Berkeley Berkeley, CA 94703 Abstract In analogy to the PCA setting, the sparse PCA problem is often solved

More information

A tutorial on sparse modeling. Outline:

A tutorial on sparse modeling. Outline: A tutorial on sparse modeling. Outline: 1. Why? 2. What? 3. How. 4. no really, why? Sparse modeling is a component in many state of the art signal processing and machine learning tasks. image processing

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

A DIRECT FORMULATION FOR SPARSE PCA USING SEMIDEFINITE PROGRAMMING

A DIRECT FORMULATION FOR SPARSE PCA USING SEMIDEFINITE PROGRAMMING A DIRECT FORMULATION FOR SPARSE PCA USING SEMIDEFINITE PROGRAMMING ALEXANDRE D ASPREMONT, LAURENT EL GHAOUI, MICHAEL I. JORDAN, AND GERT R. G. LANCKRIET Abstract. Given a covariance matrix, we consider

More information

Lecture 5 : Projections

Lecture 5 : Projections Lecture 5 : Projections EE227C. Lecturer: Professor Martin Wainwright. Scribe: Alvin Wan Up until now, we have seen convergence rates of unconstrained gradient descent. Now, we consider a constrained minimization

More information

2.3. Clustering or vector quantization 57

2.3. Clustering or vector quantization 57 Multivariate Statistics non-negative matrix factorisation and sparse dictionary learning The PCA decomposition is by construction optimal solution to argmin A R n q,h R q p X AH 2 2 under constraint :

More information

High-dimensional Statistical Models

High-dimensional Statistical Models High-dimensional Statistical Models Pradeep Ravikumar UT Austin MLSS 2014 1 Curse of Dimensionality Statistical Learning: Given n observations from p(x; θ ), where θ R p, recover signal/parameter θ. For

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms François Caron Department of Statistics, Oxford STATLEARN 2014, Paris April 7, 2014 Joint work with Adrien Todeschini,

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

Sparse PCA: Convex Relaxations, Algorithms and Applications

Sparse PCA: Convex Relaxations, Algorithms and Applications Sparse PCA: Convex Relaxations, Algorithms and Applications Youwei Zhang, Alexandre d Aspremont 2, and Laurent El Ghaoui 3 EECS, U.C. Berkeley. Berkeley, CA 9472. zyw@eecs.berkeley.edu 2 ORFE, Princeton

More information

Algorithms for Nonsmooth Optimization

Algorithms for Nonsmooth Optimization Algorithms for Nonsmooth Optimization Frank E. Curtis, Lehigh University presented at Center for Optimization and Statistical Learning, Northwestern University 2 March 2018 Algorithms for Nonsmooth Optimization

More information

Package sgpca. R topics documented: July 6, Type Package. Title Sparse Generalized Principal Component Analysis. Version 1.0.

Package sgpca. R topics documented: July 6, Type Package. Title Sparse Generalized Principal Component Analysis. Version 1.0. Package sgpca July 6, 2013 Type Package Title Sparse Generalized Principal Component Analysis Version 1.0 Date 2012-07-05 Author Frederick Campbell Maintainer Frederick Campbell

More information

Short Course Robust Optimization and Machine Learning. Lecture 4: Optimization in Unsupervised Learning

Short Course Robust Optimization and Machine Learning. Lecture 4: Optimization in Unsupervised Learning Short Course Robust Optimization and Machine Machine Lecture 4: Optimization in Unsupervised Laurent El Ghaoui EECS and IEOR Departments UC Berkeley Spring seminar TRANSP-OR, Zinal, Jan. 16-19, 2012 s

More information

6. Regularized linear regression

6. Regularized linear regression Foundations of Machine Learning École Centrale Paris Fall 2015 6. Regularized linear regression Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr

More information

Lecture 23: November 21

Lecture 23: November 21 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Ryan Tibshirani Lecture 23: November 21 Scribes: Yifan Sun, Ananya Kumar, Xin Lu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Supplement to Sparse Non-Negative Generalized PCA with Applications to Metabolomics

Supplement to Sparse Non-Negative Generalized PCA with Applications to Metabolomics Supplement to Sparse Non-Negative Generalized PCA with Applications to Metabolomics Genevera I. Allen Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research

More information

A SURVEY OF SOME SPARSE METHODS FOR HIGH DIMENSIONAL DATA

A SURVEY OF SOME SPARSE METHODS FOR HIGH DIMENSIONAL DATA A SURVEY OF SOME SPARSE METHODS FOR HIGH DIMENSIONAL DATA Gilbert Saporta CEDRIC, Conservatoire National des Arts et Métiers, Paris gilbert.saporta@cnam.fr With inputs from Anne Bernard, Ph.D student Industrial

More information

Sparsity Regularization

Sparsity Regularization Sparsity Regularization Bangti Jin Course Inverse Problems & Imaging 1 / 41 Outline 1 Motivation: sparsity? 2 Mathematical preliminaries 3 l 1 solvers 2 / 41 problem setup finite-dimensional formulation

More information

Lecture Notes 10: Matrix Factorization

Lecture Notes 10: Matrix Factorization Optimization-based data analysis Fall 207 Lecture Notes 0: Matrix Factorization Low-rank models. Rank- model Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To

More information

UC Berkeley UC Berkeley Electronic Theses and Dissertations

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Sparse Principal Component Analysis: Algorithms and Applications Permalink https://escholarship.org/uc/item/34g5207t Author Zhang, Youwei

More information

A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES. Fenghui Wang

A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES. Fenghui Wang A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES Fenghui Wang Department of Mathematics, Luoyang Normal University, Luoyang 470, P.R. China E-mail: wfenghui@63.com ABSTRACT.

More information

Randomized Block Coordinate Non-Monotone Gradient Method for a Class of Nonlinear Programming

Randomized Block Coordinate Non-Monotone Gradient Method for a Class of Nonlinear Programming Randomized Block Coordinate Non-Monotone Gradient Method for a Class of Nonlinear Programming Zhaosong Lu Lin Xiao June 25, 2013 Abstract In this paper we propose a randomized block coordinate non-monotone

More information

Efficient Methods for Overlapping Group Lasso

Efficient Methods for Overlapping Group Lasso Efficient Methods for Overlapping Group Lasso Lei Yuan Arizona State University Tempe, AZ, 85287 Lei.Yuan@asu.edu Jun Liu Arizona State University Tempe, AZ, 85287 j.liu@asu.edu Jieping Ye Arizona State

More information

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

25 : Graphical induced structured input/output models

25 : Graphical induced structured input/output models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 25 : Graphical induced structured input/output models Lecturer: Eric P. Xing Scribes: Raied Aljadaany, Shi Zong, Chenchen Zhu Disclaimer: A large

More information

Sparse Principal Component Analysis: Algorithms and Applications

Sparse Principal Component Analysis: Algorithms and Applications Sparse Principal Component Analysis: Algorithms and Applications Youwei Zhang Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-187 http://www.eecs.berkeley.edu/pubs/techrpts/2013/eecs-2013-187.html

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION

I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION I P IANO : I NERTIAL P ROXIMAL A LGORITHM FOR N ON -C ONVEX O PTIMIZATION Peter Ochs University of Freiburg Germany 17.01.2017 joint work with: Thomas Brox and Thomas Pock c 2017 Peter Ochs ipiano c 1

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Generalized Conditional Gradient and Its Applications

Generalized Conditional Gradient and Its Applications Generalized Conditional Gradient and Its Applications Yaoliang Yu University of Alberta UBC Kelowna, 04/18/13 Y-L. Yu (UofA) GCG and Its Apps. UBC Kelowna, 04/18/13 1 / 25 1 Introduction 2 Generalized

More information

Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data

Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data Effective Linear Discriant Analysis for High Dimensional, Low Sample Size Data Zhihua Qiao, Lan Zhou and Jianhua Z. Huang Abstract In the so-called high dimensional, low sample size (HDLSS) settings, LDA

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008 Regularized Estimation of High Dimensional Covariance Matrices Peter Bickel Cambridge January, 2008 With Thanks to E. Levina (Joint collaboration, slides) I. M. Johnstone (Slides) Choongsoon Bae (Slides)

More information

Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints

Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints Nicolas Boumal Université catholique de Louvain (Belgium) IDeAS seminar, May 13 th, 2014, Princeton The Riemannian

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information