A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection

Size: px
Start display at page:

Download "A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection"

Transcription

1 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 1/3 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection Wolfgang Bein 1, José R. Correa 2, Xin Han 3 1 School of Computer Science, University of Nevada, Las Vegas, NV 89154, USA 2 School of Business, Univesidad Adolfo Ibáñez, Santiago, Chile 3 School of Informatics, Kyoto University, Kyoto , Japan

2 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 2/3 Outline 1. Definitions and Contributions 2. Bin Packing with Rejection vs Knapsack Problem 3. Key ideas in our algorithm for BPR (Bin Packing with rejection) problem 4. Open questions

3 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 3/3 Outline 1. Definitions and Contributions 2. Bin Packing with Rejection vs Knapsack Problem 3. Key ideas in our algorithm for BPR (Bin Packing with rejection) problem 4. An open question

4 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 4/3 One dimensional bin packing problem Input: a collection of one dimensional items with size at most 1 Output: minimize the number of bins required. Note that: This problem is NP-hard.

5 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 5/3 Bin packing with rejection $ $ $ the number of bins plus the total cost Input: a collection of items with a size and a rejected cost Output: minimize the number of bins used plus the total cost of all the rejected items.

6 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 6/3 Studies on NP-hard problems It is likely that there do not exist polynomial-time algorithms for NP-hard problems. Approximation algorithm study. Exact algorithm study.

7 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 7/3 Approximation ratioes Let P be an optimization (minimization) problem. The approximation ratio of algorithm A is defined as: R A = max{ A(I) I Opt(I) } i.e., A(I) R A Opt(I). The asymptotic approximation ratio RA defined as: of algorithm A is A(I) R A Opt(I) + C, where I ranges over the set of all problems instances and C is a constant.

8 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 8/3 PTAS and APTAS For a given constant ǫ, if R A = (1 + ǫ) then A is PTAS, i.e., A(I) (1 + ǫ) Opt(I). if R A = (1 + ǫ) then A is APTAS, i.e., A(I) (1 + ǫ) Opt(I) + C. PTAS = polynomial time approximation scheme. APTAS = asymptotic PTAS.

9 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 9/3 Previous research on BPR First studied by He and Dósa [2005]. APTAS was given by Epstein [2006].

10 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 10/3 Contributions on BPR BPR is equivalent to KP (Knapsack problem). We provided a different APTAS which turns out to be more efficient than that of Epstein. Furthermore we extended the scheme to variable-sized bin packing with rejection.

11 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 11/3 Notations Lp Lr L = L p L r, OPT(L) = Cost(L p ) + Cost(L r ) = OPT p (L) + OPT r (L).

12 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 12/3 Outline 1. Definitions and Contributions 2. Bin Packing with Rejection vs Knapsack Problem 3. Key ideas in our algorithm for BPR (Bin Packing with rejection) problem 4. Open questions

13 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 13/3 Knapsack problem Knapsack $ $ $ $ Input: a knapsack with a capacity B > 0 and a set of items associated with profits and weights, Output: find a subset of the items whose total size is bounded by B and total profit is maximized. Note that: this problem is NP-hard too. If the number of knapsack is m then it is MKP (Multiple Knapsack Problem).

14 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 14/3 BPR MKP L = L p L r, p(l) is the total rejection cost in list L. Assume cost(l p ) = i, OPT(L) = cost(l p ) + cost(l r ) = i + p(l r ) = i + p(l) p(l p ) We know OPT p can be guessed exactly in O(n) time from [0.. n]. So, the BPR problem is equivalent to the multiple knapsack problem.

15 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 15/3 Outline 1. Definitions and Contributions 2. Bin Packing with Rejection vs Knapsack Problem 3. Key ideas in our algorithm for BPR (Bin Packing with rejection) problem 4. Open questions

16 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 16/3 The basic ideas for our APTAS Divide L into two parts L p and L r. OPT r (L) p(l r) (1 + ǫ)opt r (L) + 1. L p OPT p (L) bins.

17 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 17/3 Main steps Guess the rejection cost and packing cost respectively. Guess the rejected list. Pack the packing list by bin packing algorithms. Notations: cost p, cost r are for the guessing packing and rejection costs, respectively.

18 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 18/3 Guess packing cost cost p Guess cost p from set {0, 1, 2,...,n}. So, cost p can be guessed in time O(n) such that cost p = cost(l p ).

19 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 19/3 How to guess rejection cost cost r? Keep two issues in mind 0 cost(l r ) n Our target is cost(l r ) cost r (1 + ǫ)cost(l r ) + 1, not cost r = cost(l r ).

20 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 20/3 Guess cost r Guess cost r from set K = {(1 + ǫ), (1 + ǫ) 2,...} Since cost(l r ) n, the size of set K is bounded by O( ln n ln(1+ǫ) ).

21 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 21/3 Guess cost p and cost r So, cost p and cost r can be guessed in O(n lnn) such that cost p = OPT p, OPT r cost r (1 + ǫ)opt r + 1.

22 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 22/3 Main steps Guess the rejected cost and packing cost respectively. According to the costs, guess the rejected list. Pack the packing list by bin packing algorithms.

23 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 23/3 Guessing the rejected list (1) Place every item with r > 1 list L p. All items with r < 1/n the rejected list L r L r L p 1/n 1

24 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 24/3 Guessing the rejected list (2) Consider the remaining items with r in [1/n, 1]. Rounding down the rejection costs. Guessing rejected items. Testing the packed list.

25 Rounding down If (1 + ǫ)i n r < (1 + ǫ)i+1 n then r (1 + ǫ)i n. r r X 1/n a b 1 Then get h = O(ǫ 1 ln n) kinds of rejection costs and L r is divided into h kinds of sublists. L1 L2 L3 Li Lh... And all items in L i have r = (1+ǫ)i n. A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 25/3

26 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 26/3 Guessing the rejected items from L i Guess L i s contribution p(u i ). Divide L i into two parts. Li... Rejected sublist Packing List

27 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 27/3 Guessing the rejected items from L i Guess L i s contribution p(u i ) = {k i ǫcost r h k i = 0,...,h/ǫ} on cost r. Pick the largest p(u i )/a i items from L i and put them into L r, where a i = (1+ǫ)i n is one item s cost in L i. L1 L2 L3 Li Lh...

28 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 28/3 Technical results (Skipped) The number of all the candidates for p(u i ) can be bounded by O(n ǫ 2 ). For the rejected list L r, we have cost r p(l r) (1 + O(ǫ))cost r.

29 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 29/3 Testing the packed list L p L L r. Then try to use APTAS to pack the items in L p into (1 + ǫ)cost p + O(ǫ 2 ) bins. If Yes then return L p and L r. Else try another tuple (p(u 1 ),...,p(u h )).

30 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 30/3 Outline of our algorithm Guess the packing cost cost p and the rejection cost cost r such that cost p = OPT p and OPT r cost r (1 + ǫ)opt r + 1. Guess a rejected list L r such that cost r p(l r) (1 + O(ǫ))cost r, and the remaining items L L r can be packed cost p bins. Call APTAS to pack L L r and reject all items in L r.

31 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 31/3 Theorems Our algorithm is an APTAS with time complexity O(n ǫ 2 ). There is an APTAS for variable-sized bin packing with rejection.

32 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 32/3 Outline 1. Definitions and Contributions 2. Bin Packing with Rejection vs Knapsack Problem 3. Key ideas in our algorithm for BPR (Bin Packing with rejection) problem 4. Open questions

33 A Fast Asymptotic Approximation Scheme for Bin Packing with Rejection p. 33/3 An open question Does BPR admit an AFPTAS or not?

Bin packing and scheduling

Bin packing and scheduling Sanders/van Stee: Approximations- und Online-Algorithmen 1 Bin packing and scheduling Overview Bin packing: problem definition Simple 2-approximation (Next Fit) Better than 3/2 is not possible Asymptotic

More information

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Knapsack Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Goal: find a subset of items of maximum profit such that the item subset fits in the bag Knapsack X: item set

More information

Asymptotic Polynomial-Time Approximation (APTAS) and Randomized Approximation Algorithms

Asymptotic Polynomial-Time Approximation (APTAS) and Randomized Approximation Algorithms Approximation Algorithms Asymptotic Polynomial-Time Approximation (APTAS) and Randomized Approximation Algorithms Jens Egeblad November 29th, 2006 Agenda First lesson (Asymptotic Approximation): Bin-Packing

More information

Approximation Algorithms for Orthogonal Packing Problems for Hypercubes

Approximation Algorithms for Orthogonal Packing Problems for Hypercubes Approximation Algorithms for Orthogonal Packing Problems for Hypercubes Rolf Harren 1 Max-Planck-Institut für Informatik, Campus E 1 4, 66123 Saarbrücken, Germany Abstract Orthogonal packing problems are

More information

1 The Knapsack Problem

1 The Knapsack Problem Comp 260: Advanced Algorithms Prof. Lenore Cowen Tufts University, Spring 2018 Scribe: Tom Magerlein 1 Lecture 4: The Knapsack Problem 1 The Knapsack Problem Suppose we are trying to burgle someone s house.

More information

8 Knapsack Problem 8.1 (Knapsack)

8 Knapsack Problem 8.1 (Knapsack) 8 Knapsack In Chapter 1 we mentioned that some NP-hard optimization problems allow approximability to any required degree. In this chapter, we will formalize this notion and will show that the knapsack

More information

arxiv:cs/ v2 [cs.ds] 23 Aug 2006

arxiv:cs/ v2 [cs.ds] 23 Aug 2006 Strip Packing vs. Bin Packing arxiv:cs/0607046v2 [cs.ds] 23 Aug 2006 Xin Han 1 Kazuo Iwama 1 Deshi Ye 2 Guochuan Zhang 3 1 School of Informatics, Kyoto University, Kyoto 606-8501, Japan {hanxin, iwama}@kuis.kyoto-u.ac.jp

More information

BIN PACKING IN MULTIPLE DIMENSIONS: INAPPROXIMABILITY RESULTS AND APPROXIMATION SCHEMES

BIN PACKING IN MULTIPLE DIMENSIONS: INAPPROXIMABILITY RESULTS AND APPROXIMATION SCHEMES BIN PACKING IN MULTIPLE DIMENSIONS: INAPPROXIMABILITY RESULTS AND APPROXIMATION SCHEMES NIKHIL BANSAL 1, JOSÉ R. CORREA2, CLAIRE KENYON 3, AND MAXIM SVIRIDENKO 1 1 IBM T.J. Watson Research Center, Yorktown

More information

APPROXIMATION ALGORITHMS FOR PACKING AND SCHEDULING PROBLEMS

APPROXIMATION ALGORITHMS FOR PACKING AND SCHEDULING PROBLEMS APPROXIMATION ALGORITHMS FOR PACKING AND SCHEDULING PROBLEMS Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) der Technischen Fakultät der Christian-Albrechts-Universität

More information

Online Removable Square Packing

Online Removable Square Packing Online Removable Square Packing Xin Han 1 Kazuo Iwama 1 Guochuan Zhang 2 1 School of Informatics, Kyoto University, Kyoto 606-8501, Japan, {hanxin, iwama}@kuis.kyoto-u.ac.jp, 2 Department of Mathematics,

More information

This means that we can assume each list ) is

This means that we can assume each list ) is This means that we can assume each list ) is of the form ),, ( )with < and Since the sizes of the items are integers, there are at most +1pairs in each list Furthermore, if we let = be the maximum possible

More information

Lecture 11 October 7, 2013

Lecture 11 October 7, 2013 CS 4: Advanced Algorithms Fall 03 Prof. Jelani Nelson Lecture October 7, 03 Scribe: David Ding Overview In the last lecture we talked about set cover: Sets S,..., S m {,..., n}. S has cost c S. Goal: Cover

More information

CSE 421 Dynamic Programming

CSE 421 Dynamic Programming CSE Dynamic Programming Yin Tat Lee Weighted Interval Scheduling Interval Scheduling Job j starts at s(j) and finishes at f j and has weight w j Two jobs compatible if they don t overlap. Goal: find maximum

More information

A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem

A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science February 2006 A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Dynamic Programming: Interval Scheduling and Knapsack

Dynamic Programming: Interval Scheduling and Knapsack Dynamic Programming: Interval Scheduling and Knapsack . Weighted Interval Scheduling Weighted Interval Scheduling Weighted interval scheduling problem. Job j starts at s j, finishes at f j, and has weight

More information

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming

Maximum sum contiguous subsequence Longest common subsequence Matrix chain multiplication All pair shortest path Kna. Dynamic Programming Dynamic Programming Arijit Bishnu arijit@isical.ac.in Indian Statistical Institute, India. August 31, 2015 Outline 1 Maximum sum contiguous subsequence 2 Longest common subsequence 3 Matrix chain multiplication

More information

Approximation Algorithms for 3D Orthogonal Knapsack

Approximation Algorithms for 3D Orthogonal Knapsack Month 200X, Vol.21, No.X, pp.xx XX J. Comput. Sci. & Technol. Approximation Algorithms for 3D Orthogonal Knapsack Florian Diedrich 1, Rolf Harren 2, Klaus Jansen 1, Ralf Thöle 1, and Henning Thomas 3 1

More information

APTAS for Bin Packing

APTAS for Bin Packing APTAS for Bin Packing Bin Packing has an asymptotic PTAS (APTAS) [de la Vega and Leuker, 1980] For every fixed ε > 0 algorithm outputs a solution of size (1+ε)OPT + 1 in time polynomial in n APTAS for

More information

Polynomial kernels for constant-factor approximable problems

Polynomial kernels for constant-factor approximable problems 1 Polynomial kernels for constant-factor approximable problems Stefan Kratsch November 11, 2010 2 What do these problems have in common? Cluster Edge Deletion, Cluster Edge Editing, Edge Dominating Set,

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms What do you do when a problem is NP-complete? or, when the polynomial time solution is impractically slow? assume input is random, do expected performance. Eg, Hamiltonian path

More information

Lecture 18: More NP-Complete Problems

Lecture 18: More NP-Complete Problems 6.045 Lecture 18: More NP-Complete Problems 1 The Clique Problem a d f c b e g Given a graph G and positive k, does G contain a complete subgraph on k nodes? CLIQUE = { (G,k) G is an undirected graph with

More information

Approximation Algorithms for 3D Orthogonal Knapsack

Approximation Algorithms for 3D Orthogonal Knapsack Approximation Algorithms for 3D Orthogonal Knapsack Florian Diedrich Rolf Harren Klaus Jansen Ralf Thöle Henning Thomas We study non-overlapping axis-parallel packings of 3D boxes with profits into a dedicated

More information

0-1 Knapsack Problem

0-1 Knapsack Problem KP-0 0-1 Knapsack Problem Define object o i with profit p i > 0 and weight w i > 0, for 1 i n. Given n objects and a knapsack capacity C > 0, the problem is to select a subset of objects with largest total

More information

Discrepancy Theory in Approximation Algorithms

Discrepancy Theory in Approximation Algorithms Discrepancy Theory in Approximation Algorithms Rajat Sen, Soumya Basu May 8, 2015 1 Introduction In this report we would like to motivate the use of discrepancy theory in algorithms. Discrepancy theory

More information

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University Algorithms NP -Complete Problems Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr The Class P Definition 13.2 Polynomially bounded An algorithm is said to be polynomially bounded if its worst-case

More information

Fundamentals of optimization problems

Fundamentals of optimization problems Fundamentals of optimization problems Dmitriy Serdyuk Ferienakademie in Sarntal 2012 FAU Erlangen-Nürnberg, TU München, Uni Stuttgart September 2012 Overview 1 Introduction Optimization problems PO and

More information

CSE 421 Weighted Interval Scheduling, Knapsack, RNA Secondary Structure

CSE 421 Weighted Interval Scheduling, Knapsack, RNA Secondary Structure CSE Weighted Interval Scheduling, Knapsack, RNA Secondary Structure Shayan Oveis haran Weighted Interval Scheduling Interval Scheduling Job j starts at s(j) and finishes at f j and has weight w j Two jobs

More information

Packing Resizable Items with Application to Video Delivery over Wireless Networks

Packing Resizable Items with Application to Video Delivery over Wireless Networks Packing Resizable Items with Application to Video Delivery over Wireless Networks Sivan Albagli-Kim Leah Epstein Hadas Shachnai Tami Tamir Abstract Motivated by fundamental optimization problems in video

More information

Week 5: Quicksort, Lower bound, Greedy

Week 5: Quicksort, Lower bound, Greedy Week 5: Quicksort, Lower bound, Greedy Agenda: Quicksort: Average case Lower bound for sorting Greedy method 1 Week 5: Quicksort Recall Quicksort: The ideas: Pick one key Compare to others: partition into

More information

arxiv: v1 [math.oc] 3 Jan 2019

arxiv: v1 [math.oc] 3 Jan 2019 The Product Knapsack Problem: Approximation and Complexity arxiv:1901.00695v1 [math.oc] 3 Jan 2019 Ulrich Pferschy a, Joachim Schauer a, Clemens Thielen b a Department of Statistics and Operations Research,

More information

Approximation Algorithms and Hardness of Approximation. IPM, Jan Mohammad R. Salavatipour Department of Computing Science University of Alberta

Approximation Algorithms and Hardness of Approximation. IPM, Jan Mohammad R. Salavatipour Department of Computing Science University of Alberta Approximation Algorithms and Hardness of Approximation IPM, Jan 2006 Mohammad R. Salavatipour Department of Computing Science University of Alberta 1 Introduction For NP-hard optimization problems, we

More information

Aside: Golden Ratio. Golden Ratio: A universal law. Golden ratio φ = lim n = 1+ b n = a n 1. a n+1 = a n + b n, a n+b n a n

Aside: Golden Ratio. Golden Ratio: A universal law. Golden ratio φ = lim n = 1+ b n = a n 1. a n+1 = a n + b n, a n+b n a n Aside: Golden Ratio Golden Ratio: A universal law. Golden ratio φ = lim n a n+b n a n = 1+ 5 2 a n+1 = a n + b n, b n = a n 1 Ruta (UIUC) CS473 1 Spring 2018 1 / 41 CS 473: Algorithms, Spring 2018 Dynamic

More information

The Knapsack Problem. 28. April /44

The Knapsack Problem. 28. April /44 The Knapsack Problem 20 10 15 20 W n items with weight w i N and profit p i N Choose a subset x of items Capacity constraint i x w i W wlog assume i w i > W, i : w i < W Maximize profit i x p i 28. April

More information

A NOTE ON THE PRECEDENCE-CONSTRAINED CLASS SEQUENCING PROBLEM

A NOTE ON THE PRECEDENCE-CONSTRAINED CLASS SEQUENCING PROBLEM A NOTE ON THE PRECEDENCE-CONSTRAINED CLASS SEQUENCING PROBLEM JOSÉ R. CORREA, SAMUEL FIORINI, AND NICOLÁS E. STIER-MOSES School of Business, Universidad Adolfo Ibáñez, Santiago, Chile; correa@uai.cl Department

More information

Santa Claus Schedules Jobs on Unrelated Machines

Santa Claus Schedules Jobs on Unrelated Machines Santa Claus Schedules Jobs on Unrelated Machines Ola Svensson (osven@kth.se) Royal Institute of Technology - KTH Stockholm, Sweden March 22, 2011 arxiv:1011.1168v2 [cs.ds] 21 Mar 2011 Abstract One of the

More information

Lecture 4: An FPTAS for Knapsack, and K-Center

Lecture 4: An FPTAS for Knapsack, and K-Center Comp 260: Advanced Algorithms Tufts University, Spring 2016 Prof. Lenore Cowen Scribe: Eric Bailey Lecture 4: An FPTAS for Knapsack, and K-Center 1 Introduction Definition 1.0.1. The Knapsack problem (restated)

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

ILP Formulations for the Lazy Bureaucrat Problem

ILP Formulations for the Lazy Bureaucrat Problem the the PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France, CNRS, LAMSADE UMR 7243 Department of Statistics and Operations Research, University of Vienna, Vienna, Austria EURO 2015, 12-15 July,

More information

Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Packing, MAX-SAT

Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Packing, MAX-SAT ,7 CMPUT 675: Approximation Algorithms Fall 2011 Lecture 6,7 (Sept 27 and 29, 2011 ): Bin Pacing, MAX-SAT Lecturer: Mohammad R. Salavatipour Scribe: Weitian Tong 6.1 Bin Pacing Problem Recall the bin pacing

More information

The Entropy Rounding Method in Approximation Algorithms

The Entropy Rounding Method in Approximation Algorithms The Entropy Rounding Method in Approximation Algorithms Thomas Rothvoß Department of Mathematics, M.I.T. SODA 2012 A general LP rounding problem Problem: Given: A R n m, fractional solution x [0,1] m Find:

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information

Dynamic Programming( Weighted Interval Scheduling)

Dynamic Programming( Weighted Interval Scheduling) Dynamic Programming( Weighted Interval Scheduling) 17 November, 2016 Dynamic Programming 1 Dynamic programming algorithms are used for optimization (for example, finding the shortest path between two points,

More information

Approximation algorithms and mechanism design for minimax approval voting

Approximation algorithms and mechanism design for minimax approval voting Approximation algorithms and mechanism design for minimax approval voting Ioannis Caragiannis Dimitris Kalaitzis University of Patras Vangelis Markakis Athens University of Economics and Business Outline

More information

Lecture 5: Computational Complexity

Lecture 5: Computational Complexity Lecture 5: Computational Complexity (3 units) Outline Computational complexity Decision problem, Classes N P and P. Polynomial reduction and Class N PC P = N P or P = N P? 1 / 22 The Goal of Computational

More information

P,NP, NP-Hard and NP-Complete

P,NP, NP-Hard and NP-Complete P,NP, NP-Hard and NP-Complete We can categorize the problem space into two parts Solvable Problems Unsolvable problems 7/11/2011 1 Halting Problem Given a description of a program and a finite input, decide

More information

TRIPARTITE MATCHING, KNAPSACK, Pseudopolinomial Algorithms, Strong NP-completeness

TRIPARTITE MATCHING, KNAPSACK, Pseudopolinomial Algorithms, Strong NP-completeness TRIPARTITE MATCHING, KNAPSACK, Pseudopolinomial Algorithms, Strong NP-completeness November 10 2014, Algorithms and Complexity 2. NP problems TRIPARTITE MATCHING: Let B, G, H sets with B = G = H = n N

More information

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions CS 598RM: Algorithmic Game Theory, Spring 2017 1. Answer the following. Practice Exam Solutions Agents 1 and 2 are bargaining over how to split a dollar. Each agent simultaneously demands share he would

More information

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P Easy Problems vs. Hard Problems CSE 421 Introduction to Algorithms Winter 2000 NP-Completeness (Chapter 11) Easy - problems whose worst case running time is bounded by some polynomial in the size of the

More information

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover duality 1 Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover Guy Kortsarz duality 2 The set cover problem with uniform costs Input: A universe U and a collection of subsets

More information

The knapsack Problem

The knapsack Problem There is a set of n items. The knapsack Problem Item i has value v i Z + and weight w i Z +. We are given K Z + and W Z +. knapsack asks if there exists a subset S {1, 2,..., n} such that i S w i W and

More information

4. How to prove a problem is NPC

4. How to prove a problem is NPC The reducibility relation T is transitive, i.e, A T B and B T C imply A T C Therefore, to prove that a problem A is NPC: (1) show that A NP (2) choose some known NPC problem B define a polynomial transformation

More information

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number:

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number: Name: Entry number: There are 5 questions for a total of 75 points. 1. (5 points) You are given n items and a sack that can hold at most W units of weight. The weight of the i th item is denoted by w(i)

More information

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35.

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35. NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

Lecture : Lovász Theta Body. Introduction to hierarchies.

Lecture : Lovász Theta Body. Introduction to hierarchies. Strong Relaations for Discrete Optimization Problems 20-27/05/6 Lecture : Lovász Theta Body. Introduction to hierarchies. Lecturer: Yuri Faenza Scribes: Yuri Faenza Recall: stable sets and perfect graphs

More information

Closest String and Closest Substring Problems

Closest String and Closest Substring Problems January 8, 2010 Problem Formulation Problem Statement I Closest String Given a set S = {s 1, s 2,, s n } of strings each length m, find a center string s of length m minimizing d such that for every string

More information

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u)

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u) CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) Final Review Session 03/20/17 1. Let G = (V, E) be an unweighted, undirected graph. Let λ 1 be the maximum eigenvalue

More information

arxiv:cs/ v1 [cs.ds] 20 Dec 2006

arxiv:cs/ v1 [cs.ds] 20 Dec 2006 Improved results for a memory allocation problem Leah Epstein Rob van Stee August 6, 018 Abstract arxiv:cs/061100v1 [cs.ds] 0 Dec 006 We consider a memory allocation problem that can be modeled as a version

More information

Now just show p k+1 small vs opt. Some machine gets k=m jobs of size at least p k+1 Can also think of it as a family of (1 + )-approximation algorithm

Now just show p k+1 small vs opt. Some machine gets k=m jobs of size at least p k+1 Can also think of it as a family of (1 + )-approximation algorithm Review: relative approx. alg by comparison to lower bounds. TS with triangle inequality: A nongreedy algorithm, relating to a clever lower bound nd minimum spanning tree claim costs less than TS tour Double

More information

Optimal Online Algorithms for Multidimensional Packing Problems

Optimal Online Algorithms for Multidimensional Packing Problems Optimal Online Algorithms for Multidimensional Packing Problems Leah Epstein Rob van Stee Abstract We solve an open problem in the literature by providing an online algorithm for multidimensional bin packing

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

Outline / Reading. Greedy Method as a fundamental algorithm design technique

Outline / Reading. Greedy Method as a fundamental algorithm design technique Greedy Method Outline / Reading Greedy Method as a fundamental algorithm design technique Application to problems of: Making change Fractional Knapsack Problem (Ch. 5.1.1) Task Scheduling (Ch. 5.1.2) Minimum

More information

Lecture 13 March 7, 2017

Lecture 13 March 7, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 13 March 7, 2017 Scribe: Hongyao Ma Today PTAS/FPTAS/FPRAS examples PTAS: knapsack FPTAS: knapsack FPRAS: DNF counting Approximation

More information

CS 6783 (Applied Algorithms) Lecture 3

CS 6783 (Applied Algorithms) Lecture 3 CS 6783 (Applied Algorithms) Lecture 3 Antonina Kolokolova January 14, 2013 1 Representative problems: brief overview of the course In this lecture we will look at several problems which, although look

More information

Vector Bin Packing with Multiple-Choice

Vector Bin Packing with Multiple-Choice Vector Bin Packing with Multiple-Choice Boaz Patt-Shamir Dror Rawitz boaz@eng.tau.ac.il rawitz@eng.tau.ac.il School of Electrical Engineering Tel Aviv University Tel Aviv 69978 Israel June 17, 2010 Abstract

More information

The Knapsack Problem. n items with weight w i N and profit p i N. Choose a subset x of items

The Knapsack Problem. n items with weight w i N and profit p i N. Choose a subset x of items Sanders/van Stee: Approximations- und Online-Algorithmen 1 The Knapsack Problem 10 15 W n items with weight w i N and profit p i N Choose a subset x of items Capacity constraint i x w i W wlog assume i

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

Optimization of Submodular Functions Tutorial - lecture I

Optimization of Submodular Functions Tutorial - lecture I Optimization of Submodular Functions Tutorial - lecture I Jan Vondrák 1 1 IBM Almaden Research Center San Jose, CA Jan Vondrák (IBM Almaden) Submodular Optimization Tutorial 1 / 1 Lecture I: outline 1

More information

Colored Bin Packing: Online Algorithms and Lower Bounds

Colored Bin Packing: Online Algorithms and Lower Bounds Noname manuscript No. (will be inserted by the editor) Colored Bin Packing: Online Algorithms and Lower Bounds Martin Böhm György Dósa Leah Epstein Jiří Sgall Pavel Veselý Received: date / Accepted: date

More information

Knapsack and Scheduling Problems. The Greedy Method

Knapsack and Scheduling Problems. The Greedy Method The Greedy Method: Knapsack and Scheduling Problems The Greedy Method 1 Outline and Reading Task Scheduling Fractional Knapsack Problem The Greedy Method 2 Elements of Greedy Strategy An greedy algorithm

More information

Dynamic Programming. Cormen et. al. IV 15

Dynamic Programming. Cormen et. al. IV 15 Dynamic Programming Cormen et. al. IV 5 Dynamic Programming Applications Areas. Bioinformatics. Control theory. Operations research. Some famous dynamic programming algorithms. Unix diff for comparing

More information

Approximation Algorithms for Re-optimization

Approximation Algorithms for Re-optimization Approximation Algorithms for Re-optimization DRAFT PLEASE DO NOT CITE Dean Alderucci Table of Contents 1.Introduction... 2 2.Overview of the Current State of Re-Optimization Research... 3 2.1.General Results

More information

Greedy vs Dynamic Programming Approach

Greedy vs Dynamic Programming Approach Greedy vs Dynamic Programming Approach Outline Compare the methods Knapsack problem Greedy algorithms for 0/1 knapsack An approximation algorithm for 0/1 knapsack Optimal greedy algorithm for knapsack

More information

Analysis of Algorithms. Unit 5 - Intractable Problems

Analysis of Algorithms. Unit 5 - Intractable Problems Analysis of Algorithms Unit 5 - Intractable Problems 1 Intractable Problems Tractable Problems vs. Intractable Problems Polynomial Problems NP Problems NP Complete and NP Hard Problems 2 In this unit we

More information

A Robust APTAS for the Classical Bin Packing Problem

A Robust APTAS for the Classical Bin Packing Problem A Robust APTAS for the Classical Bin Packing Problem Leah Epstein 1 and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il 2 Department of Statistics,

More information

Mat 3770 Bin Packing or

Mat 3770 Bin Packing or Basic Algithm Spring 2014 Used when a problem can be partitioned into non independent sub problems Basic Algithm Solve each sub problem once; solution is saved f use in other sub problems Combine solutions

More information

Intractable Problems Part Two

Intractable Problems Part Two Intractable Problems Part Two Announcements Problem Set Five graded; will be returned at the end of lecture. Extra office hours today after lecture from 4PM 6PM in Clark S250. Reminder: Final project goes

More information

Introduction to discrete probability. The rules Sample space (finite except for one example)

Introduction to discrete probability. The rules Sample space (finite except for one example) Algorithms lecture notes 1 Introduction to discrete probability The rules Sample space (finite except for one example) say Ω. P (Ω) = 1, P ( ) = 0. If the items in the sample space are {x 1,..., x n }

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2

Spring 2018 IE 102. Operations Research and Mathematical Programming Part 2 Spring 2018 IE 102 Operations Research and Mathematical Programming Part 2 Graphical Solution of 2-variable LP Problems Consider an example max x 1 + 3 x 2 s.t. x 1 + x 2 6 (1) - x 1 + 2x 2 8 (2) x 1,

More information

Submodular Secretary Problem and Extensions

Submodular Secretary Problem and Extensions Submodular Secretary Problem and Extensions MohammadHossein Bateni MohammadTaghi Hajiaghayi Morteza Zadimoghaddam Abstract Online auction is the essence of many modern markets, particularly networked markets,

More information

Almost transparent short proofs for NP R

Almost transparent short proofs for NP R Brandenburgische Technische Universität, Cottbus, Germany From Dynamics to Complexity: A conference celebrating the work of Mike Shub Toronto, May 10, 2012 Supported by DFG under GZ:ME 1424/7-1 Outline

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

6. DYNAMIC PROGRAMMING I

6. DYNAMIC PROGRAMMING I 6. DYNAMIC PROGRAMMING I weighted interval scheduling segmented least squares knapsack problem RNA secondary structure Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013

More information

Notes for Recitation 14

Notes for Recitation 14 6.04/18.06J Mathematics for Computer Science October 4, 006 Tom Leighton and Marten van Dijk Notes for Recitation 14 1 The Akra-Bazzi Theorem Theorem 1 (Akra-Bazzi, strong form). Suppose that: is defined

More information

COSC 341: Lecture 25 Coping with NP-hardness (2)

COSC 341: Lecture 25 Coping with NP-hardness (2) 1 Introduction Figure 1: Famous cartoon by Garey and Johnson, 1979 We have seen the definition of a constant factor approximation algorithm. The following is something even better. 2 Approximation Schemes

More information

Topic: Intro, Vertex Cover, TSP, Steiner Tree Date: 1/23/2007

Topic: Intro, Vertex Cover, TSP, Steiner Tree Date: 1/23/2007 CS880: Approximations Algorithms Scribe: Michael Kowalczyk Lecturer: Shuchi Chawla Topic: Intro, Vertex Cover, TSP, Steiner Tree Date: 1/23/2007 Today we discuss the background and motivation behind studying

More information

Approximation Algorithms for Rectangle Packing Problems

Approximation Algorithms for Rectangle Packing Problems Approximation Algorithms for Rectangle Packing Problems arxiv:1711.07851v1 [cs.ds] 21 Nov 2017 Doctoral Dissertation submitted to the Faculty of Informatics of the Università della Svizzera Italiana in

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming

Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming Daniel Bienstock, Jay Sethuraman, Chun Ye Department of Industrial Engineering and Operations Research Columbia

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

The Greedy Method. Design and analysis of algorithms Cs The Greedy Method

The Greedy Method. Design and analysis of algorithms Cs The Greedy Method Design and analysis of algorithms Cs 3400 The Greedy Method 1 Outline and Reading The Greedy Method Technique Fractional Knapsack Problem Task Scheduling 2 The Greedy Method Technique The greedy method

More information

Solutions to Exercises

Solutions to Exercises 1/13 Solutions to Exercises The exercises referred to as WS 1.1(a), and so forth, are from the course book: Williamson and Shmoys, The Design of Approximation Algorithms, Cambridge University Press, 2011,

More information

Lecture 20: LP Relaxation and Approximation Algorithms. 1 Introduction. 2 Vertex Cover problem. CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8

Lecture 20: LP Relaxation and Approximation Algorithms. 1 Introduction. 2 Vertex Cover problem. CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8 CSCI-B609: A Theorist s Toolkit, Fall 2016 Nov 8 Lecture 20: LP Relaxation and Approximation Algorithms Lecturer: Yuan Zhou Scribe: Syed Mahbub Hafiz 1 Introduction When variables of constraints of an

More information

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle Directed Hamiltonian Cycle Chapter 8 NP and Computational Intractability Claim. G has a Hamiltonian cycle iff G' does. Pf. Suppose G has a directed Hamiltonian cycle Γ. Then G' has an undirected Hamiltonian

More information

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices

Graph. Supply Vertices and Demand Vertices. Supply Vertices. Demand Vertices Partitioning Graphs of Supply and Demand Generalization of Knapsack Problem Takao Nishizeki Tohoku University Graph Supply Vertices and Demand Vertices Supply Vertices Demand Vertices Graph Each Supply

More information

Maximizing Submodular Set Functions Subject to Multiple Linear Constraints

Maximizing Submodular Set Functions Subject to Multiple Linear Constraints Maximizing Submodular Set Functions Subject to Multiple Linear Constraints Ariel Kulik Hadas Shachnai Tami Tamir Abstract The concept of submodularity plays a vital role in combinatorial optimization.

More information

Welfare Maximization with Friends-of-Friends Network Externalities

Welfare Maximization with Friends-of-Friends Network Externalities Welfare Maximization with Friends-of-Friends Network Externalities Extended version of a talk at STACS 2015, Munich Wolfgang Dvořák 1 joint work with: Sayan Bhattacharya 2, Monika Henzinger 1, Martin Starnberger

More information