7.1. Simple Eigenfunction Problems. The main idea of this chapter is to solve the heat equation. main ideas to solve that equation.

Size: px
Start display at page:

Download "7.1. Simple Eigenfunction Problems. The main idea of this chapter is to solve the heat equation. main ideas to solve that equation."

Transcription

1 G. NAGY ODE November 20, Simple Eigenfunction Problems Section Objective(s): Two-Point Boundary Value Problems. Comparing IVP vs BVP. Eigenfunction Problems. Remark: The main idea of this chapter is to solve the heat equation. This is a partial We need two di erential equation. main ideas to solve that equation. (1) Boundary value problems and eigenfunction problems. (2) Fourier series expansions. In this section we study the first idea: boundary value problems and eigenfunctions.

2 2 G. NAGY ODE november 20, Two-Point Boundary Value Problems. Definition 1. A two-point boundary value problem (BVP) is the following: Find solutions to the di erential equation satisfying the boundary conditions (BC) y 00 + a 1 (x) y 0 + a 0 (x) y = b(x) b 1 y(x 1 )+b 2 y 0 (x 1 )=y 1, b1 y(x 2 )+ b 2 y 0 (x 2 )=y 2, where b 1, b 2, b 1, b 2, y 1, y 2, x 1, x 2 are given and x 1 6= x 2. Remarks: (a) The two boundary conditions are held at di erent points, x 1 6= x 2. (b) Both y and y 0 may appear in the boundary condition. Example 1: We now show four examples of boundary value problems that di er only on the boundary conditions: Solve the di erent equation y 00 + a 1 y 0 + a 0 y = b(x) with the boundary conditions at x 1 = 0 and x 2 = 1 given below. (1a) y(0) = y1, b1 = 1, b 2 = 0, Boundary Condition: which is the case y(1) = y 2, b1 = 1, b2 = 0. (1b) (1c) (1d) Boundary Condition: Boundary Condition: Boundary Condition: y(0) = y1, y 0 (1) = y 2, y 0 (0) = y 1, y(1) = y 2, y 0 (0) = y 1, y 0 (1) = y 2, which is the case which is the case which is the case b1 = 1, b 2 = 0, b1 = 0, b2 = 1. b1 = 0, b 2 = 1, b1 = 1, b2 = 0. b1 = 0, b 2 = 1, b1 = 0, b2 = 1. C

3 G. NAGY ODE November 20, Comparing IVP vs BVP. Definition 2. (IVP) Find a solution of y 00 + a 1 y 0 + a 0 y = 0 satisfying the initial condition (IC) y(t 0 )=y 0, y 0 (t 0 )=y 1. Remarks: The variable t represents time. The variable y represents position. The IC are position and velocity at the initial time. Definition 3. (BVP) Find a solution y of y 00 + a 1 y 0 + a 0 y = 0 satisfying the boundary condition (BC) y(x 0 )=y 0, y(x 1 )=y 1. Remarks: The variable x represents position. The variable y may represent temperature. The BC are temperature at two di erent positions. Theorem 1. The equation y 00 + a 1 y 0 + a 0 y =0withICy(t 0 )=y 0 and y 0 (t 0 )=y 1 has a unique solution y for each choice of the IC. Theorem 2. (BVP) The equation y 00 +a 1 y 0 +a 0 y =0withBCy(0) = y 0 and y(l) =y 1, with L 6= 0 and with r ± roots of p(r) =r 2 + a 1 r + a 0 satisfy the following: (A) If r + 6= r -, reals, then the BVP above has a unique solution. (B) If r ± are complex, then the solution of the BVP above belongs to only one of the following three possibilities: (i) There exists a unique solution. (ii) There exists infinitely many solutions. (iii) There exists no solution.

4 4 G. NAGY ODE november 20, 2018 Proof of Theorem 2: The general solution is y(x) =c + e t+x + c - e r-x. The BC are 9 y 0 = y(0) = c + + c - >= y 1 = y(l) =c + e c+l + c - e c-l >; ) e r+l e r-l c = 4 y c y 1 3 This system for c +, c - has a unique solution i 0 6= 1 1 e r+l e r-l ) e r-l e r+l 6=0. Part (A): If r + 6= r -, reals, then e r-l 6= e r+l, hence there is a unique solution c +, c -,which fixes a unique solution y of the BVP. Part (B): If r ± = ± i,then e r+ - L = e ( ±i )L = e L (cos( L) ± i sin( L)), therefore e r-l e r+l = e L cos( L) i sin( L) cos( L) i sin( L) = 2ie L sin( L) =0, L = n. So for L 6= n the BVP has a unique solution, case (Bi). For L = n the BVP has either no solution or infinitely many solutions, cases (Bii) and (Biii).

5 G. NAGY ODE November 20, Example 2: Find all solutions to the BVPs y 00 + y =0withtheBCs: ( ( ( y(0) = 1, y(0) = 1, y(0) = 1, (a) (b) (c) y( ) =0. y( /2) = 1. y( ) = 1. Solution: We first find the roots of the characteristic polynomial r = 0, that is, r ± = ±i. So the general solution of the di erential equation is y(x) =c 1 cos(x)+c 2 sin(x). BC (a): 1=y(0) = c 1 ) c 1 =1. 0=y( ) = c 1 ) c 1 =0. Therefore, there is no solution. BC (b): 1=y(0) = c 1 ) c 1 =1. 1=y( /2) = c 2 ) c 2 =1. So there is a unique solution y(x) = cos(x)+sin(x). BC (c): 1=y(0) = c 1 ) c 1 =1. 1=y( ) = c 1 ) c 2 =1. Therefore, c 2 is arbitrary, so we have infinitely many solutions y(x) = cos(x)+c 2 sin(x), c 2 2 R. C

6 6 G. NAGY ODE november 20, Eigenfunction Problems. Remark: Let us recall the eigenvector problem of a square matrix: Given a square matrix A, findanumber and a nonzero vector v solution of Av = v. Definition 4. An eigenfunction problem is the following: Given a linear operator L(y) =a 2 y 00 + a 1 y 0 + a 0 y,findanumber and a nonzero function y solution of L(y) = y, and homogeneous boundary conditions at x 1 6= x 2, b 1 y(x 1 )+b 2 y 0 (x 1 )=0, b1 y(x 2 )+ b 2 y 0 (x 2 )=0, Remarks: Notice that y =0 is always a solution of the BVP above. Eigenfunctions are the nonzero solutions The eigenfunction problem is a BVP with infinitely many of the BVP above. solutions. So, we look for such that the operator L(y) y has characteristic polynomial with complex roots. So, is such that L(y) y has oscillatory solutions. We focus on the linear operator L(y) = y 00. Example 3: Find all numbers and nonzero functions y solutions of the BVP y 00 = y, with y(0) = 0, y(l) =0, L > 0. Solution: The equation is y 0 + y = 0. We have three cases: (a) <0, (b) = 0, and (c) >0. Case (a): = µ 2 < 0, so the equation is y 00 µ 2 y = 0. The characteristic equation is r 2 µ 2 =0 ) r +- = ±µ.

7 G. NAGY ODE November 20, The general solution is y = c + e µx + c - e µx.thebcimply 0=y(0) = c + + c -, 0=y(L) =c + e µl + c - e µl. So from the first equation we get c + = c -,so 0= c - e µl + c - e µl ) c - (e µl e µl )=0 ) c - =0, c + =0. So we get only the solution y = 0. Case (b): = 0, so the di erential equation is y 00 =0 ) y = c 0 + c 1 x. The BC imply So we get the only solution is y = 0. 0=y(0) = c 0, 0=y(L) =c 1 L ) c 1 =0. Case (c): = µ 2 > 0, so the equation is y 00 + µ 2 y = 0. The characteristic equation is r 2 + µ 2 =0 ) r +- = ±µi. The general solution is y = c + cos(µx)+c - sin(µx). The BC imply 0=y(0) = c +, 0=y(L) =c + cos(µl)+c - sin(µl) =c - sin(µl), therefore, we get c - sin(µl) =0, c - 6=0 ) sin(µl) =0 ) µ n L = n. So we get µ n = n /L, hence the eigenvalue eigenfunction pairs are n = n L 2, n x yn (x) =c n sin. L C

8 8 G. NAGY ODE november 20, 2018 Example 4: Find the numbers and the nonzero functions y solutions of the BVP y 00 = y, y(0) = 0, y 0 (L) =0, L > 0. Solution: The equation is y 00 + y = 0. We have three cases: (a) <0, (b) = 0, and (c) >0. Case (a): Let = µ 2,withµ>0, so the equation is y 00 µ 2 y = 0. The characteristic equation is r 2 µ 2 =0 ) r +- = ±µ, The general solution is y(x) =c 1 e µx + c 2 e µx.thebcimply 9 0=y(0) = c 1 + c 2, >= 0=y 0 (L) = µc 1 e µl + µc 2 e µl >; ) The matrix above is invertible, because c = µe µl µe µl 0 c = µ e µl + e µl 6=0. µe µl µe µl Therefore, the linear system above for c 1, c 2 has a unique solution given by c 1 = c 2 = 0. Hence, we get the only solution y = 0. This means there are no eigenfunctions with negative eigenvalues. Case (b): Let = 0, so the di erential equation is y 00 =0 ) y(x) =c 1 + c 2 x, c 1,c 2 2 R. The boundary conditions imply the following conditions on c 1 and c 2, 0=y(0) = c 1, 0=y 0 (L) =c 2. So the only solution is y = 0. This means there are no eigenfunctions with eigenvalue = 0. Case (c): Let = µ 2,withµ>0, so the equation is y 00 + µ 2 y = 0. The characteristic equation is r 2 + µ 2 =0 ) r +- = ±µi.

9 G. NAGY ODE November 20, The general solution is y(x) =c 1 cos(µx)+c 2 sin(µx). The BC imply 9 0=y(0) = c 1, >= 0=y 0 (L) = µc 1 sin(µl)+µc 2 cos(µl) >; ) c 2 cos(µl) =0. Since we are interested in non-zero solutions y, we look for solutions with c 2 6= 0. This implies that µ cannot be arbitrary but must satisfy the equation cos(µl) =0, µ n L =(2n 1) 2, n > 1. We therefore conclude that the eigenvalues and eigenfunctions are given by n = (2n 1)2 2 (2n 1) x 4L 2, y n (x) =c n sin, n > 1. 2L Since we only need one eigenfunction for each eigenvalue, we choose c n = 1, and we get n = (2n 1)2 2 (2n 1) x 4L 2, y n (x) =sin, n > 1. 2L C

Boundary Value Problems (Sect. 10.1). Two-point Boundary Value Problem.

Boundary Value Problems (Sect. 10.1). Two-point Boundary Value Problem. Boundary Value Problems (Sect. 10.1). Two-point BVP. from physics. Comparison: IVP vs BVP. Existence, uniqueness of solutions to BVP. Particular case of BVP: Eigenvalue-eigenfunction problem. Two-point

More information

7.1. Simple Eigenfunction Problems. the. The main idea of this chapter is to solve the heat equation. main ideas to solve that equation.

7.1. Simple Eigenfunction Problems. the. The main idea of this chapter is to solve the heat equation. main ideas to solve that equation. G. NAGY DE November 20, 2018 1 7.1. Simple Eigenfunction Problems Section bjective(s): Two-Point Boundary Value Problems. Comparing IVP vs BVP. Eigenfunction Problems. Remark: The main idea of this chapter

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is. Review for Final Exam. Monday /09, :45-:45pm in CC-403. Exam is cumulative, -4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Shawn D. Ryan Spring 2012 Last Time: We finished Chapter 9: Nonlinear Differential Equations and Stability. Now

More information

The One-Dimensional Heat Equation

The One-Dimensional Heat Equation The One-Dimensional Heat Equation R. C. Trinity University Partial Differential Equations February 24, 2015 Introduction The heat equation Goal: Model heat (thermal energy) flow in a one-dimensional object

More information

Section 12.6: Non-homogeneous Problems

Section 12.6: Non-homogeneous Problems Section 12.6: Non-homogeneous Problems 1 Introduction Up to this point all the problems we have considered are we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form.

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form. Lecture IX Abstract When solving PDEs it is often necessary to represent the solution in terms of a series of orthogonal functions. One way to obtain an orthogonal family of functions is by solving a particular

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

systems of linear di erential If the homogeneous linear di erential system is diagonalizable,

systems of linear di erential If the homogeneous linear di erential system is diagonalizable, G. NAGY ODE October, 8.. Homogeneous Linear Differential Systems Section Objective(s): Linear Di erential Systems. Diagonalizable Systems. Real Distinct Eigenvalues. Complex Eigenvalues. Repeated Eigenvalues.

More information

6.3. Nonlinear Systems of Equations

6.3. Nonlinear Systems of Equations G. NAGY ODE November,.. Nonlinear Systems of Equations Section Objective(s): Part One: Two-Dimensional Nonlinear Systems. ritical Points and Linearization. The Hartman-Grobman Theorem. Part Two: ompeting

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

1 Wave Equation on Finite Interval

1 Wave Equation on Finite Interval 1 Wave Equation on Finite Interval 1.1 Wave Equation Dirichlet Boundary Conditions u tt (x, t) = c u xx (x, t), < x < l, t > (1.1) u(, t) =, u(l, t) = u(x, ) = f(x) u t (x, ) = g(x) First we present the

More information

Essential Ordinary Differential Equations

Essential Ordinary Differential Equations MODULE 1: MATHEMATICAL PRELIMINARIES 10 Lecture 2 Essential Ordinary Differential Equations In this lecture, we recall some methods of solving first-order IVP in ODE (separable and linear) and homogeneous

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 6 Saarland University 17. November 2014 c Daria Apushkinskaya (UdS) PDE and BVP lecture 6 17. November 2014 1 / 40 Purpose of Lesson To show

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

More information

CHAPTER 1. Theory of Second Order. Linear ODE s

CHAPTER 1. Theory of Second Order. Linear ODE s A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 2 A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

Section 1.4: Second-Order and Higher-Order Equations. Consider a second-order, linear, homogeneous equation with constant coefficients

Section 1.4: Second-Order and Higher-Order Equations. Consider a second-order, linear, homogeneous equation with constant coefficients Section 1.4: Second-Order and Higher-Order Equations Consider a second-order, linear, homogeneous equation with constant coefficients x t+2 + ax t+1 + bx t = 0. (1) To solve this difference equation, we

More information

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x).

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x). Problem set 4: Solutions Math 27B, Winter216 1. The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u, u 1 : u t = u xx < x < 1, t > u(, t) = u, u(1, t) =

More information

Assignment # 7, Math 370, Fall 2018 SOLUTIONS: y = e x. y = e 3x + 4xe 3x. y = e x cosx.

Assignment # 7, Math 370, Fall 2018 SOLUTIONS: y = e x. y = e 3x + 4xe 3x. y = e x cosx. Assignment # 7, Math 370, Fall 2018 SOLUTIONS: Problem 1: Solve the equations (a) y 8y + 7y = 0, (i) y(0) = 1, y (0) = 1. Characteristic equation: α 2 8α+7 = 0, = 64 28 = 36 so α 1,2 = (8 ±6)/2 and α 1

More information

Linear Differential Equations. Problems

Linear Differential Equations. Problems Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Ch 10.1: Two Point Boundary Value Problems

Ch 10.1: Two Point Boundary Value Problems Ch 10.1: Two Point Boundary Value Problems In many important physical problems there are two or more independent variables, so the corresponding mathematical models involve partial differential equations.

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 4884 NOVEMBER 9, 7 Summary This is an introduction to ordinary differential equations We

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

Chapter 13: General Solutions to Homogeneous Linear Differential Equations

Chapter 13: General Solutions to Homogeneous Linear Differential Equations Worked Solutions 1 Chapter 13: General Solutions to Homogeneous Linear Differential Equations 13.2 a. Verifying that {y 1, y 2 } is a fundamental solution set: We have y 1 (x) = cos(2x) y 1 (x) = 2 sin(2x)

More information

Linear differential equations with constant coefficients Method of undetermined coefficients

Linear differential equations with constant coefficients Method of undetermined coefficients Linear differential equations with constant coefficients Method of undetermined coefficients e u+vi = e u (cos vx + i sin vx), u, v R, i 2 = -1 Quasi-polynomial: Q α+βi,k (x) = e αx [cos βx ( f 0 + f 1

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

McGill University Math 325A: Differential Equations LECTURE 12: SOLUTIONS FOR EQUATIONS WITH CONSTANTS COEFFICIENTS (II)

McGill University Math 325A: Differential Equations LECTURE 12: SOLUTIONS FOR EQUATIONS WITH CONSTANTS COEFFICIENTS (II) McGill University Math 325A: Differential Equations LECTURE 12: SOLUTIONS FOR EQUATIONS WITH CONSTANTS COEFFICIENTS (II) HIGHER ORDER DIFFERENTIAL EQUATIONS (IV) 1 Introduction (Text: pp. 338-367, Chap.

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

Waves on 2 and 3 dimensional domains

Waves on 2 and 3 dimensional domains Chapter 14 Waves on 2 and 3 dimensional domains We now turn to the studying the initial boundary value problem for the wave equation in two and three dimensions. In this chapter we focus on the situation

More information

In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation.

In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation. Eigen Function Expansion and Applications. In this worksheet we will use the eigenfunction expansion to solve nonhomogeneous equation. a/ The theory. b/ Example: Solving the Euler equation in two ways.

More information

Test #2 Math 2250 Summer 2003

Test #2 Math 2250 Summer 2003 Test #2 Math 225 Summer 23 Name: Score: There are six problems on the front and back of the pages. Each subpart is worth 5 points. Show all of your work where appropriate for full credit. ) Show the following

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations

Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations Linear Variable coefficient equations (Sect. 2.1) Review: Linear constant coefficient equations. The Initial Value Problem. Linear variable coefficients equations. The Bernoulli equation: A nonlinear equation.

More information

Midterm Solution

Midterm Solution 18303 Midterm Solution Problem 1: SLP with mixed boundary conditions Consider the following regular) Sturm-Liouville eigenvalue problem consisting in finding scalars λ and functions v : [0, b] R b > 0),

More information

Math 220 Final Exam Sample Problems December 12, Topics for Math Fall 2002

Math 220 Final Exam Sample Problems December 12, Topics for Math Fall 2002 Math 220 Final Exam Sample Problems December 12, 2002 Topics for Math 220 - Fall 2002 Chapter 1. Solutions and Initial Values Approximation via the Euler method Chapter 2. First Order: Linear First Order:

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

Homework 3 Solutions Math 309, Fall 2015

Homework 3 Solutions Math 309, Fall 2015 Homework 3 Solutions Math 39, Fall 25 782 One easily checks that the only eigenvalue of the coefficient matrix is λ To find the associated eigenvector, we have 4 2 v v 8 4 (up to scalar multiplication)

More information

Definition: An n x n matrix, "A", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X 1 A X

Definition: An n x n matrix, A, is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that X 1 A X DIGONLIZTION Definition: n n x n matrix, "", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X X D. Theorem: n n x n matrix, "", is diagonalizable

More information

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm APPM 2360 Exam 2 Solutions Wednesday, March 9, 206, 7:00pm 8:30pm ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) recitation section (4) your instructor s name, and (5)

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Mathematics of Imaging: Lecture 3

Mathematics of Imaging: Lecture 3 Mathematics of Imaging: Lecture 3 Linear Operators in Infinite Dimensions Consider the linear operator on the space of continuous functions defined on IR. J (f)(x) = x 0 f(s) ds Every function in the range

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

Ma 227 Review for Systems of DEs

Ma 227 Review for Systems of DEs Ma 7 Review for Systems of DEs Matrices Basic Properties Addition and subtraction: Let A a ij mn and B b ij mn.then A B a ij b ij mn 3 A 6 B 6 4 7 6 A B 6 4 3 7 6 6 7 3 Scaler Multiplication: Let k be

More information

Ma 221. The material below was covered during the lecture given last Wed. (1/29/14). Homogeneous Linear Equations with Constant Coefficients

Ma 221. The material below was covered during the lecture given last Wed. (1/29/14). Homogeneous Linear Equations with Constant Coefficients Ma 1 The material below was covered during the lecture given last Wed. (1/9/1). Homogeneous Linear Equations with Constant Coefficients We shall now discuss the problem of solving the homogeneous equation

More information

Lecture 31. Basic Theory of First Order Linear Systems

Lecture 31. Basic Theory of First Order Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 31. Basic Theory of First Order Linear Systems April 4, 2012 Konstantin Zuev (USC) Math 245, Lecture 31 April 4, 2012 1 / 10 Agenda Existence

More information

Chapter 4: Higher-Order Differential Equations Part 1

Chapter 4: Higher-Order Differential Equations Part 1 Chapter 4: Higher-Order Differential Equations Part 1 王奕翔 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 8, 2013 Higher-Order Differential Equations Most of this

More information

This is a closed everything exam, except for a 3x5 card with notes. Please put away all books, calculators and other portable electronic devices.

This is a closed everything exam, except for a 3x5 card with notes. Please put away all books, calculators and other portable electronic devices. Math 54 final, Spring 00, John Lott This is a closed everything exam, except for a x5 card with notes. Please put away all books, calculators and other portable electronic devices. You need to justify

More information

Math 308 Practice Final Exam Page and vector y =

Math 308 Practice Final Exam Page and vector y = Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

Ma 221 Eigenvalues and Fourier Series

Ma 221 Eigenvalues and Fourier Series Ma Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example Find the eigenvalues and eigenfunctions for y y 47 y y y5 Solution: The characteristic equation is r r 47 so r 44 447 6 Thus

More information

Linear Variable coefficient equations (Sect. 1.2) Review: Linear constant coefficient equations

Linear Variable coefficient equations (Sect. 1.2) Review: Linear constant coefficient equations Linear Variable coefficient equations (Sect. 1.2) Review: Linear constant coefficient equations. The Initial Value Problem. Linear variable coefficients equations. The Bernoulli equation: A nonlinear equation.

More information

Department of Mathematics IIT Guwahati

Department of Mathematics IIT Guwahati Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation Eigenanalysis What s Eigenanalysis? Fourier s Eigenanalysis Model is a Replacement Process Powers and Fourier s Model Differential Equations and Fourier s Model Fourier s Model Illustrated What is Eigenanalysis?

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley

MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley MATH 6 MATH 6: Elementary Differential Equations MATH 6 FALL 5 FINAL EXAM FALL 5 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called)

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 October 9, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

Ma 221 Final Exam 18 May 2015

Ma 221 Final Exam 18 May 2015 Ma 221 Final Exam 18 May 2015 Print Name: Lecture Section: Lecturer This exam consists of 7 problems. You are to solve all of these problems. The point value of each problem is indicated. The total number

More information

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal . Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal 3 9 matrix D such that A = P DP, for A =. 3 4 3 (a) P = 4, D =. 3 (b) P = 4, D =. (c) P = 4 8 4, D =. 3 (d) P

More information

(1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min.

(1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min. CHAPTER 1 Introduction 1. Bacground Models of physical situations from Calculus (1) Rate of change: A swimming pool is emptying at a constant rate of 90 gal/min. With V = volume in gallons and t = time

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Chapter 4: Higher Order Linear Equations

Chapter 4: Higher Order Linear Equations Chapter 4: Higher Order Linear Equations MATH 351 California State University, Northridge April 7, 2014 MATH 351 (Differential Equations) Ch 4 April 7, 2014 1 / 11 Sec. 4.1: General Theory of nth Order

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

Section 5.5. Complex Eigenvalues

Section 5.5. Complex Eigenvalues Section 5.5 Complex Eigenvalues Motivation: Describe rotations Among transformations, rotations are very simple to describe geometrically. Where are the eigenvectors? A no nonzero vector x is collinear

More information

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in

18.06 Problem Set 10 - Solutions Due Thursday, 29 November 2007 at 4 pm in 86 Problem Set - Solutions Due Thursday, 29 November 27 at 4 pm in 2-6 Problem : (5=5+5+5) Take any matrix A of the form A = B H CB, where B has full column rank and C is Hermitian and positive-definite

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

Lecture 1 INF-MAT3350/ : Some Tridiagonal Matrix Problems

Lecture 1 INF-MAT3350/ : Some Tridiagonal Matrix Problems Lecture 1 INF-MAT3350/4350 2007: Some Tridiagonal Matrix Problems Tom Lyche University of Oslo Norway Lecture 1 INF-MAT3350/4350 2007: Some Tridiagonal Matrix Problems p.1/33 Plan for the day 1. Notation

More information

Physics 6303 Lecture 15 October 10, Reminder of general solution in 3-dimensional cylindrical coordinates. sinh. sin

Physics 6303 Lecture 15 October 10, Reminder of general solution in 3-dimensional cylindrical coordinates. sinh. sin Physics 6303 Lecture 15 October 10, 2018 LAST TIME: Spherical harmonics and Bessel functions Reminder of general solution in 3-dimensional cylindrical coordinates,, sin sinh cos cosh, sin sin cos cos,

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

Modeling and Simulation with ODE for MSE

Modeling and Simulation with ODE for MSE Zentrum Mathematik Technische Universität München Prof. Dr. Massimo Fornasier WS 6/7 Dr. Markus Hansen Sheet 7 Modeling and Simulation with ODE for MSE The exercises can be handed in until Wed, 4..6,.

More information

The Corrected Trial Solution in the Method of Undetermined Coefficients

The Corrected Trial Solution in the Method of Undetermined Coefficients Definition of Related Atoms The Basic Trial Solution Method Symbols Superposition Annihilator Polynomial for f(x) Annihilator Equation for f(x) The Corrected Trial Solution in the Method of Undetermined

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Theorem The BVP for the one-space dimensional heat equation, infinitely. where k > 0, L > 0 are constants, has infinitely. #, c n R.

Theorem The BVP for the one-space dimensional heat equation, infinitely. where k > 0, L > 0 are constants, has infinitely. #, c n R. 9 7... The IBVP: Neumann Conditions. Theorem 7... The BVP for the one-space dimensional heat equation, U KIU act o o Welt t u = k 2 xu, BC: x u(t, ) =, x u(t, ) =, here k >, > are constants, has infinitely

More information

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU LU Factorization A m n matri A admits an LU factorization if it can be written in the form of Where, A = LU L : is a m m lower triangular matri with s on the diagonal. The matri L is invertible and is

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. JANUARY 3, 25 Summary. This is an introduction to ordinary differential equations.

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

ODEs Cathal Ormond 1

ODEs Cathal Ormond 1 ODEs Cathal Ormond 2 1. Separable ODEs Contents 2. First Order ODEs 3. Linear ODEs 4. 5. 6. Chapter 1 Separable ODEs 1.1 Definition: An ODE An Ordinary Differential Equation (an ODE) is an equation whose

More information

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL

More information

Math 353, Fall 2017 Study guide for the final

Math 353, Fall 2017 Study guide for the final Math 353, Fall 2017 Study guide for the final December 12, 2017 Last updated 12/4/17. If something is unclear or incorrect, please let me know so I can update the documents. Updates 12/4: De-emphasized

More information

CHAPTER 5. Higher Order Linear ODE'S

CHAPTER 5. Higher Order Linear ODE'S A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 2 A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY

More information

Linear Independence and the Wronskian

Linear Independence and the Wronskian Linear Independence and the Wronskian MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Operator Notation Let functions p(t) and q(t) be continuous functions

More information

Lecture 19: Heat conduction with distributed sources/sinks

Lecture 19: Heat conduction with distributed sources/sinks Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 ecture 19: Heat conduction

More information