The LIML Estimator Has Finite Moments! T. W. Anderson. Department of Economics and Department of Statistics. Stanford University, Stanford, CA 94305

Size: px
Start display at page:

Download "The LIML Estimator Has Finite Moments! T. W. Anderson. Department of Economics and Department of Statistics. Stanford University, Stanford, CA 94305"

Transcription

1 The LIML Estimator Has Finite Moments! T. W. Anderson Department of Economics and Department of Statistics Stanford University, Stanford, CA 9435 March 25, 2 Abstract The Limited Information Maximum Likelihood estimator of the vector of coefficients of a structural equation in a simultaneous equation model is the vector that defines the linear combination maximizing the effect variance relative to the error variance. If this eigenvector solution is normalized by setting a designated coefficient equal to, the second-order moment of the estimator may be unbounded. However, the second-order moment is finite if the normalization is setting the sample error variance of the linear combination equal to. Key words: Limited Information Maximum Likelihood, bounded moments, normalization. Thanks go to Naoto Kunitomo for very helpful suggestions.

2 Introduction. The Limited Information Maximum Likelihood (LIML) estimator (Anderson and Rubin, 949) was introduced as the solution of an eigenvalue problem, that is, a solution for b in a homogeneous equation (G d H)b =, () where d is the smallest root of G dh =, (2) and G and H are p p positive semi-definite and positive definite matrices, respectively. A solution b to () can be multiplied by a nonzero number to obtain another solution. The conventional normalization of b has been to require b Φb =, (3) where Φ is a given p p constant positive semi-definite matrix. When Φ =, (4) the normalization is equivalent to setting b =, where b is the first component of b. There is a general perception among econometricians that the LIML estimator does not have finite moments. For example, Fuller (977) wrote the limited information estimator does not possess moments. Mariano and Sawa (972) have found the exact distribution of b 2 when b = (, b 2 ) and showed that Eb 2 2 < is not necessarily true. The purpose of this present paper is to show that the natural normalization of b Hb = (5) T 2

3 yields an estimator with finite moments (if T p + q + 2). While the conventional normalization has some advantages in interpretation, the natural normalization has the advantage of invariance with respect to linear transformations, for example, changes of the units of measurement. Anderson and Rubin considered both normalizations. 2 The model, normalizations, and invariances. Let Y be a T p matrix of observed endogenous or dependent variables, Z a T q matrix of exogenous or independent variables, and V a T p matrix of unobserved random disturbances satisfying Y = ZΠ + V, (6) the reduced form. The rows of V = v. v T (7) are assumed to be independently normally distributed with mean Ev t = and covariance Ev t v t = Ω (assumed to be positive definite). A structural equation may be defined by Yβ = u, (8) where u = Vβ and Πβ =. (9) If rank(π) = p, (9) determines β uniquely except for a multiplicative constant. The natural normalization of the parameter vector β is β Ωβ =. () 3

4 The conventional normalization is β Φβ =, () where Φ is a given p p constant positive semi-definite matrix. It is conventional to take Φ as (4), which is equivalent to setting β =, where β is the first component of β. (Sometimes it is convenient to write β = (, β 2 ).) An important advantage of the natural normalization is that the model is invariant with respect to linear transformations of the dependent variable. If Y = YC, Ω = C ΩC, Π = ΠC, β = C β, V = VC, (2) where C is nonsingular, then Π β =, β Ω β =, (3) corresponding to (9) and (). Regardless of normalization, the model is invariant with respect to linear transformations of the exogenous variables. If Z + = ZD, Π + = D Π, (4) where D is nonsingular, then Π + β = (5) corresponding to (9). The model (6), (9), and () is invariant with respect to nonsingular linear transformations of Y and Z. 4

5 3 Estimation. Theorem. The LIML estimator of β normalized by () is invariant with respect to transformations (2) and (4). A sufficient set of statistics is P = A Z Y, H = Y Y P AP, (6) where A = Z Z. Under the transformations (2) and (4) A transforms to D AD, P transforms to D PC, and H transforms to C HC. Anderson and Rubin derived the maximum likelihood estimates of Π, Ω, and β under the conditions (9) and (). Let b satisfy () where G = P AP, H = Y Y P AP, (7) and b Hb =. (8) T Then the maximum likelihood estimator of β satisfying (9) and () is ˆβ = b ˆΩb b = + d b, (9) where ˆΩ = T H + d ( ( ) T )bb T H H. (2) Note that (8) and (2) imply b ˆΩb = + d (2) and ˆβ ˆΩˆβ =. (22) 5

6 Theorem 2. The LIML estimator ˆβ normalized by () satisfies E ˆβ ˆβ < (23) if T p + q + 2. Proof. By virtue of (8), (9), and (2) Note that E ˆβ ˆβ b b b b = E = E + d ( + d )b T Hb b b E b E T Hb min c min c T c Hc c c. (24) c Hc c c = l, (25) where l is the smallest characteristic root of H, which has a Wishart distribution with T q degrees of freedom and EH = (T q)ω. By the invariance (2) E (/l ) < if and only if E (/m ) <, where m is the smallest characteristic root of H = C HC for Ω = I p. The density of m m 2... m p (the roots of H mi p = ) is where n = T q and f (m,..., m p ; n, p) p = C m 2 (n p ) i e 2 i= P p i= m i i<j (m j m i ), p n, (26) C = π 2 p2 2 2 pn Γ p (n)γ p (p) (27) [Anderson (23), Theorem 3.3.2]. Then E m = m p... m 2 m f (m,..., m p ; n, p)dm... dm p dm p 6

7 C... ( ) = C 2 n p 2 (p2 ) Γ Γ 2 m 2 (n p 3) m 2 (n p+) 2...m 2 (n+p 3) p e 2 P p i= m i dm... dm p ( n p )... Γ ( n + p 2 ). (28) Thus E (/m ) < if n p + 2, that is, if T q p + 2. Q.E.D. Mariano and Sawa (972) pointed out that the LIML estimator for p = 2 with the conventional normalization does not necessarily have finite moments. Their analysis is based on a doubly-infinite series for the density of ˆβ 2 when the conventional normalization is used and ˆβ 2 is a scalar. Theorem 2 shows that the lack of finite moments under conventional normalization is a feature of the normalization, not of the LIML estimator itself. 4 Generalizations. In a more general model the structural equation is Y β = Z γ + u, (29) where Y = (Y,Y 2 ), Z = (Z,Z 2 ), V = (V,V 2 ), u = Vβ = V β, Π = Π Π 2 Π 2 Π 22, β = β. (3) Then Πβ = is Π β Π 2 β = γ. (3) 7

8 Define A = A A 2 A 2 A 22 = Z Z Z Z 2 Z 2 Z Z 2 Z 2, (32) A 22 Z 2 = A 22 A 2 A A 2, (33) = Z 2 Z A A 2, P 2 = A 22 Z 2 Y, (34) H = H H 2 H 2 H 22, Ω = Ω Ω 2 Ω 2 Ω 22. (35) Then G and H in () and (2) are replaced by P 2A 22 P 2 and H = Y Y P A P P 2 A 22 P 2. (36) H (p p ) has the Wishart distribution with T q degrees of freedom and EH = (T q)ω. The condition β Ωβ = is β Ω β =. (37) Then E ˆβ ˆβ = E ˆβ ˆβ < if T q p + 2. It might be pointed out that a LIML estimator can be calculated with one normalization and converted to another. For example, the natural normalization may yield ˆβ = (ˆβ, ˆβ 2 ( as the estimator; then, ˆβ ) 2/ˆβ is an estimator with a conventional normalization; if ˆβ is very small, one can expect that ˆβ 2/ˆβ or ˆβ 2/ˆβ will have a large variance. The argument in (24) and (25) holds whether or not H has a Wishart distribution. Thus E ˆβ ˆβ E T m (38) 8 )

9 if T q p when ˆβ has the natural normalization. Suppose H has a density g (m,..., m p ), where m <... < m p are the characteristic roots of H. Then the density of m,..., m p is [Anderson (23), Theorem 3.3.]. Then E m π 2 p2 Γ p ( 2 p) π 2 p2 g (m,..., m p ) Γ p ( 2 p) Π i>j (m i m j ) (39)... m m 2...m p p g (m,..., m p ) dm... dm p. (4) Fuller (977) suggested a modification of the LIML estimator with the conventional normalization to avoid the features of unbounded moments. Roughly speaking, the modification is a compromise between the two-stage least squares and the LIML estimator, replacing d in () by a quantity smaller than d and using the last p coordinates of (). With the natural normalization there is no need for the Fuller modification. 5 Known covariance matrix. When Ω is known, the estimator is based on G dω =, (G d Ω)b = (4) and is known as the LIMLK estimator. The natural normalization is b Ωb =. Let Ω = Γ Γ, where Γ Γ = I and = diag (δ,..., δ p ). Then = b Γ Γb b Γ Γbmin(δ,..., δ p ) = b bmin(δ,..., δ p ). (42) 9

10 Hence Eb b min(δ,..., δ p ) <. (43) When Ω = Ω = I in (2), the transformation matrix C is orthogonal C C = I. Anderson, Stein, and Zaman (985) have proved an admissibility theorem that demonstrates an advantage of the natural normalization. Let Ω = I 2, β = (cos φ, sinφ), α = ( sin φ, cosφ), and Π = ηα. Consider estimation of φ with the loss function sin 2 (ˆφ φ ) = (ˆα α )2 = (ˆβ β ) 2, (44) where ˆα is an estimator of α and ˆφ is the corresponding estimator of φ. Then the solution of G di 2 =, (G d I 2 )b, (45) and b b = is the best invariant estimator for specified value of η η (Theorem of Anderson, Stein, and Zaman). Note that the risk, E sin 2 (ˆφ φ ), of an invariant procedure depends only on η η. It follows (Corollary of Anderson, Stein and Zaman) that the LIMLK estimator with normalization b b = and loss function (44) is admissible. Roughly speaking, for every η η this LIMLK estimator minimizes E sin 2 (ˆφ φ ). An intuitive understanding of the possible difficulty with the conventional normalization is to consider the case of G = 2 and Ω = I 2. Then in the natural normalization β = cos φ sinφ, ˆβ = cos ˆφ sin ˆφ, (46)

11 while in the conventional normalization β = sinφ cos φ = tan φ, ˆβ = tan ˆφ. (47) If φ is close to π/2, tan φ will be large. (tan φ as φ π/2.) Similarly ˆφ will be close to π/2, tan ˆφ will be large, and ˆφ φ can be expected to have a large variance.

12 References Anderson, T.W. (23), An Introduction to Multivariate Statistical Analysis, Third Edition, John Wiley and Sons, Inc. Anderson, T.W., and Herman Rubin (949), Estimation of the parameters of a single equation in a complete system of stochastic equations, Annals of Mathematical Statistics, 2, Anderson, T.W., Charles Stein, and Asad Zaman (985), Best invariant estimation of a direction parameter, Annals of Statistics, 3, Mariano, Roberto S., and Takamitsu Sawa (972), The exact finite-sample distribution of the limited-information maximum likelihood estimator in the case of two included endogenous variables, Journal of the American Statistical Association, 67, Fuller, Wayne A. (977), Some properties of a modification of the limited information estimator, Econometrica 65,

Admissible Significance Tests in Simultaneous Equation Models

Admissible Significance Tests in Simultaneous Equation Models Admissible Significance Tests in Simultaneous Equation Models T. W. Anderson Stanford University December 7, 203 Abstract Consider testing the null hypothesis that a single structural equation has specified

More information

Approximate Distributions of the Likelihood Ratio Statistic in a Structural Equation with Many Instruments

Approximate Distributions of the Likelihood Ratio Statistic in a Structural Equation with Many Instruments CIRJE-F-466 Approximate Distributions of the Likelihood Ratio Statistic in a Structural Equation with Many Instruments Yukitoshi Matsushita CIRJE, Faculty of Economics, University of Tokyo February 2007

More information

Department of Econometrics and Business Statistics

Department of Econometrics and Business Statistics ISSN 440-77X Australia Department of Econometrics and Business Statistics http://wwwbusecomonasheduau/depts/ebs/pubs/wpapers/ The Asymptotic Distribution of the LIML Estimator in a artially Identified

More information

CIRJE-F-577 On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments

CIRJE-F-577 On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments CIRJE-F-577 On Finite Sample Properties of Alternative Estimators of Coefficients in a Structural Equation with Many Instruments T. W. Anderson Stanford University Naoto Kunitomo University of Tokyo Yukitoshi

More information

Alternative Estimation Methods of Simultaneous Equations and Microeconometric Models

Alternative Estimation Methods of Simultaneous Equations and Microeconometric Models CIRJE-F-32 A New Light from Old Wisdoms: Alternative Estimation Methods of Simultaneous Equations and Microeconometric Models T. W. Anderson Stanford University Naoto Kunitomo Yukitoshi Matsushita University

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

Reduced rank regression in cointegrated models

Reduced rank regression in cointegrated models Journal of Econometrics 06 (2002) 203 26 www.elsevier.com/locate/econbase Reduced rank regression in cointegrated models.w. Anderson Department of Statistics, Stanford University, Stanford, CA 94305-4065,

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

A CONDITIONAL LIKELIHOOD RATIO TEST FOR STRUCTURAL MODELS. By Marcelo J. Moreira 1

A CONDITIONAL LIKELIHOOD RATIO TEST FOR STRUCTURAL MODELS. By Marcelo J. Moreira 1 Econometrica, Vol. 71, No. 4 (July, 2003), 1027 1048 A CONDITIONAL LIKELIHOOD RATIO TEST FOR STRUCTURAL MODELS By Marcelo J. Moreira 1 This paper develops a general method for constructing exactly similar

More information

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility American Economic Review: Papers & Proceedings 2016, 106(5): 400 404 http://dx.doi.org/10.1257/aer.p20161082 Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility By Gary Chamberlain*

More information

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION APPENDIX B EIGENVALUES AND SINGULAR VALUE DECOMPOSITION B.1 LINEAR EQUATIONS AND INVERSES Problems of linear estimation can be written in terms of a linear matrix equation whose solution provides the required

More information

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω)

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω) Online Appendix Proof of Lemma A.. he proof uses similar arguments as in Dunsmuir 979), but allowing for weak identification and selecting a subset of frequencies using W ω). It consists of two steps.

More information

Location Properties of Point Estimators in Linear Instrumental Variables and Related Models

Location Properties of Point Estimators in Linear Instrumental Variables and Related Models Location Properties of Point Estimators in Linear Instrumental Variables and Related Models Keisuke Hirano Department of Economics University of Arizona hirano@u.arizona.edu Jack R. Porter Department of

More information

Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity

Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity John C. Chao, Department of Economics, University of Maryland, chao@econ.umd.edu. Jerry A. Hausman, Department of Economics,

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

Chapter 1. Matrix Algebra

Chapter 1. Matrix Algebra ST4233, Linear Models, Semester 1 2008-2009 Chapter 1. Matrix Algebra 1 Matrix and vector notation Definition 1.1 A matrix is a rectangular or square array of numbers of variables. We use uppercase boldface

More information

Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments

Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments CHAPTER 6 Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments James H. Stock and Motohiro Yogo ABSTRACT This paper extends Staiger and Stock s (1997) weak instrument asymptotic

More information

Total Least Squares Approach in Regression Methods

Total Least Squares Approach in Regression Methods WDS'08 Proceedings of Contributed Papers, Part I, 88 93, 2008. ISBN 978-80-7378-065-4 MATFYZPRESS Total Least Squares Approach in Regression Methods M. Pešta Charles University, Faculty of Mathematics

More information

Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone Missing Data

Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone Missing Data Journal of Multivariate Analysis 78, 6282 (2001) doi:10.1006jmva.2000.1939, available online at http:www.idealibrary.com on Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone

More information

Marcia Gumpertz and Sastry G. Pantula Department of Statistics North Carolina State University Raleigh, NC

Marcia Gumpertz and Sastry G. Pantula Department of Statistics North Carolina State University Raleigh, NC A Simple Approach to Inference in Random Coefficient Models March 8, 1988 Marcia Gumpertz and Sastry G. Pantula Department of Statistics North Carolina State University Raleigh, NC 27695-8203 Key Words

More information

Robustness of Simultaneous Estimation Methods to Varying Degrees of Correlation Between Pairs of Random Deviates

Robustness of Simultaneous Estimation Methods to Varying Degrees of Correlation Between Pairs of Random Deviates Global Journal of Mathematical Sciences: Theory and Practical. Volume, Number 3 (00), pp. 5--3 International Research Publication House http://www.irphouse.com Robustness of Simultaneous Estimation Methods

More information

Hypothesis testing in multilevel models with block circular covariance structures

Hypothesis testing in multilevel models with block circular covariance structures 1/ 25 Hypothesis testing in multilevel models with block circular covariance structures Yuli Liang 1, Dietrich von Rosen 2,3 and Tatjana von Rosen 1 1 Department of Statistics, Stockholm University 2 Department

More information

Next is material on matrix rank. Please see the handout

Next is material on matrix rank. Please see the handout B90.330 / C.005 NOTES for Wednesday 0.APR.7 Suppose that the model is β + ε, but ε does not have the desired variance matrix. Say that ε is normal, but Var(ε) σ W. The form of W is W w 0 0 0 0 0 0 w 0

More information

Our point of departure, as in Chapter 2, will once more be the outcome equation:

Our point of departure, as in Chapter 2, will once more be the outcome equation: Chapter 4 Instrumental variables I 4.1 Selection on unobservables Our point of departure, as in Chapter 2, will once more be the outcome equation: Y Dβ + Xα + U, 4.1 where treatment intensity will once

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

The properties of L p -GMM estimators

The properties of L p -GMM estimators The properties of L p -GMM estimators Robert de Jong and Chirok Han Michigan State University February 2000 Abstract This paper considers Generalized Method of Moment-type estimators for which a criterion

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Analysis of variance, multivariate (MANOVA)

Analysis of variance, multivariate (MANOVA) Analysis of variance, multivariate (MANOVA) Abstract: A designed experiment is set up in which the system studied is under the control of an investigator. The individuals, the treatments, the variables

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

MAXIMUM LIKELIHOOD IN GENERALIZED FIXED SCORE FACTOR ANALYSIS 1. INTRODUCTION

MAXIMUM LIKELIHOOD IN GENERALIZED FIXED SCORE FACTOR ANALYSIS 1. INTRODUCTION MAXIMUM LIKELIHOOD IN GENERALIZED FIXED SCORE FACTOR ANALYSIS JAN DE LEEUW ABSTRACT. We study the weighted least squares fixed rank approximation problem in which the weight matrices depend on unknown

More information

Recall the convention that, for us, all vectors are column vectors.

Recall the convention that, for us, all vectors are column vectors. Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

More information

Sliced Inverse Regression

Sliced Inverse Regression Sliced Inverse Regression Ge Zhao gzz13@psu.edu Department of Statistics The Pennsylvania State University Outline Background of Sliced Inverse Regression (SIR) Dimension Reduction Definition of SIR Inversed

More information

A Note on Identification Test Procedures. by Phoebus Dhrymes, Columbia University. October 1991, Revised November 1992

A Note on Identification Test Procedures. by Phoebus Dhrymes, Columbia University. October 1991, Revised November 1992 A Note on Identification Test Procedures by Phoebus Dhrymes, Columbia University October 1991, Revised November 1992 Discussion Paper Series No. 638 9213-4?? A Note on Identification Test Procedures* Phoebus

More information

Delta Theorem in the Age of High Dimensions

Delta Theorem in the Age of High Dimensions Delta Theorem in the Age of High Dimensions Mehmet Caner Department of Economics Ohio State University December 15, 2016 Abstract We provide a new version of delta theorem, that takes into account of high

More information

Massachusetts Institute of Technology Department of Economics Time Series Lecture 6: Additional Results for VAR s

Massachusetts Institute of Technology Department of Economics Time Series Lecture 6: Additional Results for VAR s Massachusetts Institute of Technology Department of Economics Time Series 14.384 Guido Kuersteiner Lecture 6: Additional Results for VAR s 6.1. Confidence Intervals for Impulse Response Functions There

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Principal Component Analysis (PCA) Our starting point consists of T observations from N variables, which will be arranged in an T N matrix R,

Principal Component Analysis (PCA) Our starting point consists of T observations from N variables, which will be arranged in an T N matrix R, Principal Component Analysis (PCA) PCA is a widely used statistical tool for dimension reduction. The objective of PCA is to find common factors, the so called principal components, in form of linear combinations

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

Haruhiko Ogasawara. This article gives the first half of an expository supplement to Ogasawara (2015).

Haruhiko Ogasawara. This article gives the first half of an expository supplement to Ogasawara (2015). Economic Review (Otaru University of Commerce, Vol.66, No. & 3, 9-58. December, 5. Expository supplement I to the paper Asymptotic expansions for the estimators of Lagrange multipliers and associated parameters

More information

This appendix provides a very basic introduction to linear algebra concepts.

This appendix provides a very basic introduction to linear algebra concepts. APPENDIX Basic Linear Algebra Concepts This appendix provides a very basic introduction to linear algebra concepts. Some of these concepts are intentionally presented here in a somewhat simplified (not

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

(Y jz) t (XjZ) 0 t = S yx S yz S 1. S yx:z = T 1. etc. 2. Next solve the eigenvalue problem. js xx:z S xy:z S 1

(Y jz) t (XjZ) 0 t = S yx S yz S 1. S yx:z = T 1. etc. 2. Next solve the eigenvalue problem. js xx:z S xy:z S 1 Abstract Reduced Rank Regression The reduced rank regression model is a multivariate regression model with a coe cient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure,

More information

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix 1 Matrix Algebra Reading [SB] 81-85, pp 153-180 11 Matrix Operations 1 Addition a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn + b 11 b 12 b 1n b 21 b 22 b 2n b m1 b m2 b mn a 11 + b 11 a 12 + b 12 a 1n

More information

ECON 4160, Lecture 11 and 12

ECON 4160, Lecture 11 and 12 ECON 4160, 2016. Lecture 11 and 12 Co-integration Ragnar Nymoen Department of Economics 9 November 2017 1 / 43 Introduction I So far we have considered: Stationary VAR ( no unit roots ) Standard inference

More information

Lecture 11 Weak IV. Econ 715

Lecture 11 Weak IV. Econ 715 Lecture 11 Weak IV Instrument exogeneity and instrument relevance are two crucial requirements in empirical analysis using GMM. It now appears that in many applications of GMM and IV regressions, instruments

More information

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling

Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Monte Carlo Methods Appl, Vol 6, No 3 (2000), pp 205 210 c VSP 2000 Factorization of Seperable and Patterned Covariance Matrices for Gibbs Sampling Daniel B Rowe H & SS, 228-77 California Institute of

More information

Classical Mechanics. Luis Anchordoqui

Classical Mechanics. Luis Anchordoqui 1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body

More information

Nonstationary Panels

Nonstationary Panels Nonstationary Panels Based on chapters 12.4, 12.5, and 12.6 of Baltagi, B. (2005): Econometric Analysis of Panel Data, 3rd edition. Chichester, John Wiley & Sons. June 3, 2009 Agenda 1 Spurious Regressions

More information

Elliptically Contoured Distributions

Elliptically Contoured Distributions Elliptically Contoured Distributions Recall: if X N p µ, Σ), then { 1 f X x) = exp 1 } det πσ x µ) Σ 1 x µ) So f X x) depends on x only through x µ) Σ 1 x µ), and is therefore constant on the ellipsoidal

More information

Estimation of the Global Minimum Variance Portfolio in High Dimensions

Estimation of the Global Minimum Variance Portfolio in High Dimensions Estimation of the Global Minimum Variance Portfolio in High Dimensions Taras Bodnar, Nestor Parolya and Wolfgang Schmid 07.FEBRUARY 2014 1 / 25 Outline Introduction Random Matrix Theory: Preliminary Results

More information

Likelihood Ratio Criterion for Testing Sphericity from a Multivariate Normal Sample with 2-step Monotone Missing Data Pattern

Likelihood Ratio Criterion for Testing Sphericity from a Multivariate Normal Sample with 2-step Monotone Missing Data Pattern The Korean Communications in Statistics Vol. 12 No. 2, 2005 pp. 473-481 Likelihood Ratio Criterion for Testing Sphericity from a Multivariate Normal Sample with 2-step Monotone Missing Data Pattern Byungjin

More information

Likelihood Ratio based Joint Test for the Exogeneity and. the Relevance of Instrumental Variables

Likelihood Ratio based Joint Test for the Exogeneity and. the Relevance of Instrumental Variables Likelihood Ratio based Joint Test for the Exogeneity and the Relevance of Instrumental Variables Dukpa Kim Yoonseok Lee March 12, 2009 Abstract This paper develops a joint test for the exogeneity and the

More information

High-dimensional asymptotic expansions for the distributions of canonical correlations

High-dimensional asymptotic expansions for the distributions of canonical correlations Journal of Multivariate Analysis 100 2009) 231 242 Contents lists available at ScienceDirect Journal of Multivariate Analysis journal homepage: www.elsevier.com/locate/jmva High-dimensional asymptotic

More information

On Selecting Tests for Equality of Two Normal Mean Vectors

On Selecting Tests for Equality of Two Normal Mean Vectors MULTIVARIATE BEHAVIORAL RESEARCH, 41(4), 533 548 Copyright 006, Lawrence Erlbaum Associates, Inc. On Selecting Tests for Equality of Two Normal Mean Vectors K. Krishnamoorthy and Yanping Xia Department

More information

Likelihood Ratio Based Test for the Exogeneity and the Relevance of Instrumental Variables

Likelihood Ratio Based Test for the Exogeneity and the Relevance of Instrumental Variables Likelihood Ratio Based est for the Exogeneity and the Relevance of Instrumental Variables Dukpa Kim y Yoonseok Lee z September [under revision] Abstract his paper develops a test for the exogeneity and

More information

LECTURES IN ECONOMETRIC THEORY. John S. Chipman. University of Minnesota

LECTURES IN ECONOMETRIC THEORY. John S. Chipman. University of Minnesota LCTURS IN CONOMTRIC THORY John S. Chipman University of Minnesota Chapter 5. Minimax estimation 5.. Stein s theorem and the regression model. It was pointed out in Chapter 2, section 2.2, that if no a

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

Canonical Correlation Analysis of Longitudinal Data

Canonical Correlation Analysis of Longitudinal Data Biometrics Section JSM 2008 Canonical Correlation Analysis of Longitudinal Data Jayesh Srivastava Dayanand N Naik Abstract Studying the relationship between two sets of variables is an important multivariate

More information

Implementing Conditional Tests with Correct Size in the Simultaneous Equations Model

Implementing Conditional Tests with Correct Size in the Simultaneous Equations Model The Stata Journal (2001) 1, Number 1, pp. 1 15 Implementing Conditional Tests with Correct Size in the Simultaneous Equations Model Marcelo J. Moreira Department of Economics Harvard University Brian P.

More information

MS-E2112 Multivariate Statistical Analysis (5cr) Lecture 6: Bivariate Correspondence Analysis - part II

MS-E2112 Multivariate Statistical Analysis (5cr) Lecture 6: Bivariate Correspondence Analysis - part II MS-E2112 Multivariate Statistical Analysis (5cr) Lecture 6: Bivariate Correspondence Analysis - part II the Contents the the the Independence The independence between variables x and y can be tested using.

More information

Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances

Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances METRON - International Journal of Statistics 2008, vol. LXVI, n. 3, pp. 285-298 SHALABH HELGE TOUTENBURG CHRISTIAN HEUMANN Mean squared error matrix comparison of least aquares and Stein-rule estimators

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

The BLP Method of Demand Curve Estimation in Industrial Organization

The BLP Method of Demand Curve Estimation in Industrial Organization The BLP Method of Demand Curve Estimation in Industrial Organization 9 March 2006 Eric Rasmusen 1 IDEAS USED 1. Instrumental variables. We use instruments to correct for the endogeneity of prices, the

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

QED. Queen s Economics Department Working Paper No Moments of IV and JIVE Estimators

QED. Queen s Economics Department Working Paper No Moments of IV and JIVE Estimators QED Queen s Economics Department Working Paper No. 1085 Moments of IV and JIVE Estimators Russell Davidson McGill University James MacKinnon Queen s University Department of Economics Queen s University

More information

Flexible Estimation of Treatment Effect Parameters

Flexible Estimation of Treatment Effect Parameters Flexible Estimation of Treatment Effect Parameters Thomas MaCurdy a and Xiaohong Chen b and Han Hong c Introduction Many empirical studies of program evaluations are complicated by the presence of both

More information

On the Correlations of Trend-Cycle Errors

On the Correlations of Trend-Cycle Errors On the Correlations of Trend-Cycle Errors Tatsuma Wada Wayne State University This version: December 19, 11 Abstract This note provides explanations for an unexpected result, namely, the estimated parameter

More information

Markov Chains, Stochastic Processes, and Matrix Decompositions

Markov Chains, Stochastic Processes, and Matrix Decompositions Markov Chains, Stochastic Processes, and Matrix Decompositions 5 May 2014 Outline 1 Markov Chains Outline 1 Markov Chains 2 Introduction Perron-Frobenius Matrix Decompositions and Markov Chains Spectral

More information

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models Bare minimum on matrix algebra Psychology 588: Covariance structure and factor models Matrix multiplication 2 Consider three notations for linear combinations y11 y1 m x11 x 1p b11 b 1m y y x x b b n1

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Journal of Multivariate Analysis. Use of prior information in the consistent estimation of regression coefficients in measurement error models

Journal of Multivariate Analysis. Use of prior information in the consistent estimation of regression coefficients in measurement error models Journal of Multivariate Analysis 00 (2009) 498 520 Contents lists available at ScienceDirect Journal of Multivariate Analysis journal homepage: www.elsevier.com/locate/jmva Use of prior information in

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

ECONOMETRIC THEORY. MODULE XVII Lecture - 43 Simultaneous Equations Models

ECONOMETRIC THEORY. MODULE XVII Lecture - 43 Simultaneous Equations Models ECONOMETRIC THEORY MODULE XVII Lecture - 43 Simultaneous Equations Models Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Estimation of parameters To estimate

More information

A Robust Test for Weak Instruments in Stata

A Robust Test for Weak Instruments in Stata A Robust Test for Weak Instruments in Stata José Luis Montiel Olea, Carolin Pflueger, and Su Wang 1 First draft: July 2013 This draft: November 2013 Abstract We introduce and describe a Stata routine ivrobust

More information

Structural Equation Modeling An Econometrician s Introduction

Structural Equation Modeling An Econometrician s Introduction S Structural Equation Modeling An Econometrician s Introduction PD Dr. Stefan Klößner Winter Term 2016/17 U N I V E R S I T A S A R A V I E N I S S Overview NOT: easy to digest introduction for practitioners

More information

ABOUT PRINCIPAL COMPONENTS UNDER SINGULARITY

ABOUT PRINCIPAL COMPONENTS UNDER SINGULARITY ABOUT PRINCIPAL COMPONENTS UNDER SINGULARITY José A. Díaz-García and Raúl Alberto Pérez-Agamez Comunicación Técnica No I-05-11/08-09-005 (PE/CIMAT) About principal components under singularity José A.

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Tutorial on Principal Component Analysis

Tutorial on Principal Component Analysis Tutorial on Principal Component Analysis Copyright c 1997, 2003 Javier R. Movellan. This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms

More information

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Unsupervised Learning: Dimensionality Reduction

Unsupervised Learning: Dimensionality Reduction Unsupervised Learning: Dimensionality Reduction CMPSCI 689 Fall 2015 Sridhar Mahadevan Lecture 3 Outline In this lecture, we set about to solve the problem posed in the previous lecture Given a dataset,

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson More Linear Algebra Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Laurenz Wiskott Institute for Theoretical Biology Humboldt-University Berlin Invalidenstraße 43 D-10115 Berlin, Germany 11 March 2004 1 Intuition Problem Statement Experimental

More information

Estimation of large dimensional sparse covariance matrices

Estimation of large dimensional sparse covariance matrices Estimation of large dimensional sparse covariance matrices Department of Statistics UC, Berkeley May 5, 2009 Sample covariance matrix and its eigenvalues Data: n p matrix X n (independent identically distributed)

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 2D SYSTEMS & PRELIMINARIES Hamid R. Rabiee Fall 2015 Outline 2 Two Dimensional Fourier & Z-transform Toeplitz & Circulant Matrices Orthogonal & Unitary Matrices Block Matrices

More information

Y t = ΦD t + Π 1 Y t Π p Y t p + ε t, D t = deterministic terms

Y t = ΦD t + Π 1 Y t Π p Y t p + ε t, D t = deterministic terms VAR Models and Cointegration The Granger representation theorem links cointegration to error correction models. In a series of important papers and in a marvelous textbook, Soren Johansen firmly roots

More information

Cointegration Lecture I: Introduction

Cointegration Lecture I: Introduction 1 Cointegration Lecture I: Introduction Julia Giese Nuffield College julia.giese@economics.ox.ac.uk Hilary Term 2008 2 Outline Introduction Estimation of unrestricted VAR Non-stationarity Deterministic

More information

Increasing the Power of Specification Tests. November 18, 2018

Increasing the Power of Specification Tests. November 18, 2018 Increasing the Power of Specification Tests T W J A. H U A MIT November 18, 2018 A. This paper shows how to increase the power of Hausman s (1978) specification test as well as the difference test in a

More information

Random Vectors, Random Matrices, and Matrix Expected Value

Random Vectors, Random Matrices, and Matrix Expected Value Random Vectors, Random Matrices, and Matrix Expected Value James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 16 Random Vectors,

More information

FINITE-SAMPLE OPTIMALITY OF TESTS IN A STRUCTURAL EQUATION

FINITE-SAMPLE OPTIMALITY OF TESTS IN A STRUCTURAL EQUATION FINITE-SAMPLE OPTIMALITY OF TESTS IN A STRUCTURAL EQUATION Randolph G. K. Tan, Nanyang Technological University, Singapore Paper to be presented at the Eighth orld Congress of the Econometric Society,

More information

Distance Between Ellipses in 2D

Distance Between Ellipses in 2D Distance Between Ellipses in 2D David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

The purpose of this section is to derive the asymptotic distribution of the Pearson chi-square statistic. k (n j np j ) 2. np j.

The purpose of this section is to derive the asymptotic distribution of the Pearson chi-square statistic. k (n j np j ) 2. np j. Chapter 9 Pearson s chi-square test 9. Null hypothesis asymptotics Let X, X 2, be independent from a multinomial(, p) distribution, where p is a k-vector with nonnegative entries that sum to one. That

More information

Diagonalization by a unitary similarity transformation

Diagonalization by a unitary similarity transformation Physics 116A Winter 2011 Diagonalization by a unitary similarity transformation In these notes, we will always assume that the vector space V is a complex n-dimensional space 1 Introduction A semi-simple

More information

Lesson 17: Vector AutoRegressive Models

Lesson 17: Vector AutoRegressive Models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Vector AutoRegressive models The extension of ARMA models into a multivariate framework

More information

Classical Measurement Error with Several Regressors

Classical Measurement Error with Several Regressors Classical Measurement Error with Several Regressors Andrew B. Abel Wharton School of the University of Pennsylvania National Bureau of Economic Research February 4, 208 Abstract In OLS regressions with

More information

Cointegrating Regressions with Messy Regressors: J. Isaac Miller

Cointegrating Regressions with Messy Regressors: J. Isaac Miller NASMES 2008 June 21, 2008 Carnegie Mellon U. Cointegrating Regressions with Messy Regressors: Missingness, Mixed Frequency, and Measurement Error J. Isaac Miller University of Missouri 1 Messy Data Example

More information

GMM Estimation and Testing

GMM Estimation and Testing GMM Estimation and Testing Whitney Newey July 2007 Idea: Estimate parameters by setting sample moments to be close to population counterpart. Definitions: β : p 1 parameter vector, with true value β 0.

More information