Syntax: form ::= A: lin j E: lin ::= 3 lin j lin ^ lin j :lin j bool lin lin is a temporal formula dened over a global sequence. bool is true in g if

Size: px
Start display at page:

Download "Syntax: form ::= A: lin j E: lin ::= 3 lin j lin ^ lin j :lin j bool lin lin is a temporal formula dened over a global sequence. bool is true in g if"

Transcription

1 Introduction 1 Goals of the lecture: Weak Conjunctive Predicates Logic for global predicates Weak conjunctive algorithm References: Garg and Waldecker 94

2 Syntax: form ::= A: lin j E: lin ::= 3 lin j lin ^ lin j :lin j bool lin lin is a temporal formula dened over a global sequence. bool is true in g if it is true in the last state of g. Introduction 2 Logic for Global Predicates Three syntactic categories in the logic - bool, lin and form. bool ::= a predicate over a global state bool: boolean expression dened on a single global state of system. the Example: if the global state has (x = 3; y = 6), then the bool (x y) is true. lin: there exists a prex of g such that lin is true for the prex. 3 2 and _: duals of 3 and ^. A form is dened for a run and it is simply a lin qualied universal (A :) or existential (E :) quantier. with

3 j= lin 1,! lin 2 i 9i < j : g i j= lin 1 ^ g j j= lin 2 g j=a:lin i 8g : g 2 linear(r) : g j= lin r Introduction 3 Semantics g j= bool i g m j= bool, g m = last state in g g j= :lin i :g j= lin g j= 3lin i 9i : g i j= lin r j=e:lin i 9g : g 2 linear(r) : g j= lin strong predicate: formulas starting with A weak predicate: formulas starting with E.

4 Introduction 4 Weak Conjunctive Predicates weak conjunctive predicate (WCP) is true for a given run if A only if there exists a global sequence consistent with that and run in which all conjuncts are true in some global state. useful for bad or undesirable predicates Example: the classical mutual exclusion problem. detect errors that may be hidden in some run due to race conditions.

5 Introduction 5 Importance of Weak Conjunctive Predicates Sucient for detection of any boolean expression of local predicates. Example x; y and z are in three dierent processes. Then, E:3even(x) ^ ((y < 0) _ (z > 6)) E:3(even(x) ^ (y < 0))_ E:3(even(x) ^ (z > 6)) the global predicate is satised by only a nite number of global states. possible Example, E : 3(x = y), x and y are in dierent processes. (x = y) is not a local predicate Assume that x and y can only take values f0; 1g. A : 2bool can be easily detected, why?

6 LP i : a local predicate in the process P i 1 E: 3(LP 1 ^ LP 2 ^ : : : LP k ) is true for a run r Theorem for all 1 i m 9s i 2 r[i] such that LP i is true in state i s 2 s 1 Introduction 6 Conditions for Weak Conjunctive Predicates LP i (s): the predicate LP i is true in the state s. s 2 r[i]: s occurs in the sequence r[i]. assume k n because LP i ^ LP j is just another local can predicate if LP i and LP j belong to the same process. s i, and s i and s j are incomparable for i 6= j. d t t d - t d d - - d s k t d - A consistent cut

7 Introduction 7 of Weak Conjunctive Predicates: Centralized Detection Algorithm One process serves as a checker. Other processes : non-checker processes. Each non-checker maintains its local lcmvector (last causal message process vector). For P j, lcmvector[i] (i 6= j) is the message id of the most message from P i (to anybody) which has a causal recent relationship to P j. lcmvector[j] for the process P j is the next message id that j will use. P e e e u u u e u -. U Local Snapshot

8 :lcmvector[i]:=max(lcmvector[i], msg lcmvector[i]); 8i Upon (local pred = true)^ rstag do 2 Introduction 8 Algorithm: Non-checker processes var array [1..n] of integer; lcmvector: 8i : i 6= id :lcmvector[i] = 0; init = 1; lcmvector[id] boolean init true; rstag: pred: Boolean Expression; local For sending do 2 (prog, lcmvector, : : : ); send ; rstag:=true; lcmvector[id]++ Upon receive (prog, msg lcmvector, : : : ) do 2 := false; rstag (dbg, lcmvector) to the checker process; send

9 s 0 i s 0 j s i s j P i P j Introduction 9 Optimization to send the lcmvector once after each message is sent Sucient of the number of messages received. irrespective local(s) denote that the local predicate is true in state s. first(s): the local predicate is true for the rst time since most recently sent message. the wcp(s 1 ; s 2 ; :::; s m ): if s 1 ; s 2 ; :::s m are the states in dierent making the wcp true. processes 2 9s 1 ; :::; s m : wcp(s 1 ; s 2 ; :::s m ), Theorem 0 1 ; ::; s0 m : wcp(s0 1 ; s0 2 ; :::; s0 m ) ^ 8i : 1 i m : first(s0 i

10 Introduction 10 Complexity Space complexity: the array lcmvector and is O(n). message complexity is O(m s ) where m s is the number of messages sent. program In addition, program messages have to include time vectors. Time complexity detection of local predicates maintain time vectors (O(n)=message).

11 Introduction 11 Checker Process Incoming debug messages from processes are enqueued in appropriate queue. the assume that the checker process gets its message from any process in FIFO. 1 If the lcmvector at the head of one queue is less than the Lemma at the head of any other queue, then the smaller lcmvector lcmvector be eliminated from further consideration in checking to see if the may is satised. WCP Non-checker Process 1 Non-checker Process 2 Non-checker Process N queue 1 Checker queue N Checker Process

12 k, elem); insert(q (head(q k ) = elem) then begin if Introduction 12 Formal Description var 1 : : : q m : queue of lcmvector; q newchanged: set of f1,2,...,mg changed, Upon recv(elem) from P k do 2 := f k g; changed (changed 6= ) begin while := fg; newchanged i in changed, and j in f1,2,...,m gdo for (:empty(q i ) ^ :empty(q j )) then if begin

13 Introduction 13 Formal Description [Contd.] head(q i ) < head(q j ) then if [ fig; newchanged:=newchanged head(q j ) < head(q i ) then if [ fjg; newchanged:=newchanged /* if */ end; := newchanged; changed i in changed do deletehead(q i ); for while */ end;/* 8i : :empty(q i ) then found:=true; if /* if */ end; the set of indices for which the head of the queues changed: been updated. have 3 The above algorithm requires at most O(m 2 p) Theorem comparisons.

14 4 Any algorithm which determines whether there Theorem a set of incomparable vectors of size m in m chains of exists Case 2: p > 1 Introduction 14 Lower Bounds size at most p, makes at least pm(m? 1)=2 comparisons. Proof: 1: p = 1 Case

Detection of Strong Unstable Predicates in Distributed. Programs 1, Abstract

Detection of Strong Unstable Predicates in Distributed. Programs 1, Abstract Detection of Strong Unstable Predicates in Distributed Programs 1, Vijay K. Garg Brian Waldecker Electrical and Computer Engineering Dept Austin Systems Center University of Texas at Austin Schlumberger

More information

Monitoring Functions on Global States of Distributed Programs. The University of Texas at Austin, Austin, Texas June 10, 1994.

Monitoring Functions on Global States of Distributed Programs. The University of Texas at Austin, Austin, Texas June 10, 1994. Monitoring Functions on Global States of Distributed Programs Alexander I. Tomlinson alext@pine.ece.utexas.edu Vijay K. Garg garg@ece.utexas.edu Department of Electrical and Computer Engineering The University

More information

Lecture 4 Event Systems

Lecture 4 Event Systems Lecture 4 Event Systems This lecture is based on work done with Mark Bickford. Marktoberdorf Summer School, 2003 Formal Methods One of the major research challenges faced by computer science is providing

More information

Transformation Rules for Locally Stratied Constraint Logic Programs

Transformation Rules for Locally Stratied Constraint Logic Programs Transformation Rules for Locally Stratied Constraint Logic Programs Fabio Fioravanti 1, Alberto Pettorossi 2, Maurizio Proietti 3 (1) Dipartimento di Informatica, Universit dell'aquila, L'Aquila, Italy

More information

Formal Methods for Monitoring Distributed Computations

Formal Methods for Monitoring Distributed Computations Formal Methods for Monitoring Distributed Computations Vijay K. Garg Parallel and Distributed Systems Lab, Department of Electrical and Computer Engineering, The University of Texas at Austin, FRIDA 15

More information

PREDICATE LOGIC. Schaum's outline chapter 4 Rosen chapter 1. September 11, ioc.pdf

PREDICATE LOGIC. Schaum's outline chapter 4 Rosen chapter 1. September 11, ioc.pdf PREDICATE LOGIC Schaum's outline chapter 4 Rosen chapter 1 September 11, 2018 margarita.spitsakova@ttu.ee ICY0001: Lecture 2 September 11, 2018 1 / 25 Contents 1 Predicates and quantiers 2 Logical equivalences

More information

1 Introduction During the execution of a distributed computation, processes exchange information via messages. The message exchange establishes causal

1 Introduction During the execution of a distributed computation, processes exchange information via messages. The message exchange establishes causal Quasi-Synchronous heckpointing: Models, haracterization, and lassication D. Manivannan Mukesh Singhal Department of omputer and Information Science The Ohio State University olumbus, OH 43210 (email: fmanivann,singhalg@cis.ohio-state.edu)

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

1 Introduction During the execution of a distributed computation, processes exchange information via messages. The message exchange establishes causal

1 Introduction During the execution of a distributed computation, processes exchange information via messages. The message exchange establishes causal TR No. OSU-ISR-5/96-TR33, Dept. of omputer and Information Science, The Ohio State University. Quasi-Synchronous heckpointing: Models, haracterization, and lassication D. Manivannan Mukesh Singhal Department

More information

Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms. CS 249 Project Fall 2005 Wing Wong

Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms. CS 249 Project Fall 2005 Wing Wong Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms CS 249 Project Fall 2005 Wing Wong Outline Introduction Asynchronous distributed systems, distributed computations,

More information

impossible for a process to determine the order in which events on dierent processors actually occurred. Therefore, no process can determine the seque

impossible for a process to determine the order in which events on dierent processors actually occurred. Therefore, no process can determine the seque Detecting Global Predicates in Distributed Systems with Clocks Scott D. Stoller y January 13, 1999 Abstract This paper proposes a framework for detecting global state predicates in systems of processes

More information

Discrete Mathematics and Logic II. Predicate Calculus

Discrete Mathematics and Logic II. Predicate Calculus Discrete Mathematics and Logic II. Predicate Calculus SFWR ENG 2FA3 Ryszard Janicki Winter 2014 Acknowledgments: Material based on A Logical Approach to Discrete Math by David Gries and Fred B. Schneider

More information

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour

Distributed Algorithms (CAS 769) Dr. Borzoo Bonakdarpour Distributed Algorithms (CAS 769) Week 1: Introduction, Logical clocks, Snapshots Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Distributed Algorithms

More information

1 Introduction Synchronous languages are rapidly gaining popularity as a high-level programming paradigm for a variety of safety-critical and real-tim

1 Introduction Synchronous languages are rapidly gaining popularity as a high-level programming paradigm for a variety of safety-critical and real-tim Fair Synchronous Transition Systems and their Liveness Proofs Amir Pnueli Dept. of Applied Math. and CS The Weizmann Institute of Science Rehovot, ISRAEL Natarajan Shankar Eli Singerman Computer Science

More information

Agreement. Today. l Coordination and agreement in group communication. l Consensus

Agreement. Today. l Coordination and agreement in group communication. l Consensus Agreement Today l Coordination and agreement in group communication l Consensus Events and process states " A distributed system a collection P of N singlethreaded processes w/o shared memory Each process

More information

TFL is the joint telecommunications research laboratory sponsored by Telecom Denmark ltd. and the regional telecommunications enterprises in Denmark.

TFL is the joint telecommunications research laboratory sponsored by Telecom Denmark ltd. and the regional telecommunications enterprises in Denmark. An Operational Semantic Model for Basic SDL Jens Chr. Godskesen Figure in tdefault.eps to be placed here TFL is the joint telecommunications research laboratory sponsored by Telecom Denmark ltd. and the

More information

Finite information logic

Finite information logic Finite information logic Rohit Parikh and Jouko Väänänen April 5, 2002 Work in progress. Please do not circulate! Partial information logic is a generalization of both rst order logic and Hintikka-Sandu

More information

Propositional and Predicate Logic

Propositional and Predicate Logic Propositional and Predicate Logic CS 536-05: Science of Programming This is for Section 5 Only: See Prof. Ren for Sections 1 4 A. Why Reviewing/overviewing logic is necessary because we ll be using it

More information

method. In model checking [CES86, LP85, VW86], we check that a system meets a desired requirement by checking that a mathematical model of the system

method. In model checking [CES86, LP85, VW86], we check that a system meets a desired requirement by checking that a mathematical model of the system From Linear Time to Branching Time Orna Kupferman y Hebrew University Moshe Y. Vardi z Rice University September 12, 2002 Abstract Model checking is a method for the verication of systems with respect

More information

Propositional and Predicate Logic

Propositional and Predicate Logic 8/24: pp. 2, 3, 5, solved Propositional and Predicate Logic CS 536: Science of Programming, Spring 2018 A. Why Reviewing/overviewing logic is necessary because we ll be using it in the course. We ll be

More information

Lecture Notes: Mathematical/Discrete Structures

Lecture Notes: Mathematical/Discrete Structures Lecture Notes: Mathematical/Discrete Structures Rashid Bin Muhammad, PhD. This booklet includes lecture notes, homework problems, and exam problems from discrete structures course I taught in Fall 2006

More information

Electronic Notes in Theoretical Computer Science 18 (1998) URL: 8 pages Towards characterizing bisim

Electronic Notes in Theoretical Computer Science 18 (1998) URL:   8 pages Towards characterizing bisim Electronic Notes in Theoretical Computer Science 18 (1998) URL: http://www.elsevier.nl/locate/entcs/volume18.html 8 pages Towards characterizing bisimilarity of value-passing processes with context-free

More information

Finite information logic

Finite information logic Finite information logic Rohit Parikh and Jouko Väänänen January 1, 2003 Abstract: we introduce a generalization of Independence Friendly (IF) logic in which Eloise is restricted to a nite amount of information

More information

Extending temporal logic with!-automata Thesis for the M.Sc. Degree by Nir Piterman Under the Supervision of Prof. Amir Pnueli Department of Computer

Extending temporal logic with!-automata Thesis for the M.Sc. Degree by Nir Piterman Under the Supervision of Prof. Amir Pnueli Department of Computer Extending temporal logic with!-automata Thesis for the M.Sc. Degree by Nir Piterman Under the Supervision of Prof. Amir Pnueli Department of Computer Science The Weizmann Institute of Science Prof. Moshe

More information

Chapter 6: Computation Tree Logic

Chapter 6: Computation Tree Logic Chapter 6: Computation Tree Logic Prof. Ali Movaghar Verification of Reactive Systems Outline We introduce Computation Tree Logic (CTL), a branching temporal logic for specifying system properties. A comparison

More information

In a second part, we concentrate on interval models similar to the traditional ITL models presented in [, 5]. By making various assumptions about time

In a second part, we concentrate on interval models similar to the traditional ITL models presented in [, 5]. By making various assumptions about time Complete Proof Systems for First Order Interval Temporal Logic Bruno Dutertre Department of Computer Science Royal Holloway, University of London Egham, Surrey TW0 0EX, United Kingdom Abstract Dierent

More information

3.1 Universal quantification and implication again. Claim 1: If an employee is male, then he makes less than 55,000.

3.1 Universal quantification and implication again. Claim 1: If an employee is male, then he makes less than 55,000. Chapter 3 Logical Connectives 3.1 Universal quantification and implication again So far we have considered an implication to be universal quantication in disguise: Claim 1: If an employee is male, then

More information

Logic Part II: Intuitionistic Logic and Natural Deduction

Logic Part II: Intuitionistic Logic and Natural Deduction Yesterday Remember yesterday? classical logic: reasoning about truth of formulas propositional logic: atomic sentences, composed by connectives validity and satisability can be decided by truth tables

More information

Functional Database Query Languages as. Typed Lambda Calculi of Fixed Order. Gerd G. Hillebrand and Paris C. Kanellakis

Functional Database Query Languages as. Typed Lambda Calculi of Fixed Order. Gerd G. Hillebrand and Paris C. Kanellakis Functional Database Query Languages as Typed Lambda Calculi of Fixed Order Gerd G. Hillebrand and Paris C. Kanellakis Department of Computer Science Brown University Providence, Rhode Island 02912 CS-94-26

More information

Cooper and Marzullo proposed a solution for asynchronous distributed systems [6]. Their solution involves two modalities, which wedenoteby Poss! hb (\

Cooper and Marzullo proposed a solution for asynchronous distributed systems [6]. Their solution involves two modalities, which wedenoteby Poss! hb (\ Detecting Global Predicates in Distributed Systems with Clocks Scott D. Stoller Computer Science Dept., Indiana University, Bloomington, IN 47405 USA February 7, 2000 Abstract This paper proposes a framework

More information

Subclasses of Quantied Boolean Formulas. Andreas Flogel. University of Duisburg Duisburg 1. Marek Karpinski. University of Bonn.

Subclasses of Quantied Boolean Formulas. Andreas Flogel. University of Duisburg Duisburg 1. Marek Karpinski. University of Bonn. Subclasses of Quantied Boolean Formulas Andreas Flogel Department of Computer Science University of Duisburg 4100 Duisburg 1 Mare Karpinsi Department of Computer Science University of Bonn 5300 Bonn 1

More information

Logic Part I: Classical Logic and Its Semantics

Logic Part I: Classical Logic and Its Semantics Logic Part I: Classical Logic and Its Semantics Max Schäfer Formosan Summer School on Logic, Language, and Computation 2007 July 2, 2007 1 / 51 Principles of Classical Logic classical logic seeks to model

More information

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale (FM First Semester 2007/2008) p. 1/39 FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it http://www.inf.unibz.it/

More information

Verication of the Alternating-Bit-Protocol using Automated Theorem Provers in ILF - a case study Thomas Baar y Institute of Mathematics Humboldt Unive

Verication of the Alternating-Bit-Protocol using Automated Theorem Provers in ILF - a case study Thomas Baar y Institute of Mathematics Humboldt Unive Verication of the Alternating-Bit-Protocol using Automated Theorem Provers in ILF - a case study Thomas Baar y Institute of Mathematics Humboldt University Germany Ingo Dahn z Institute of Mathematics

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Reinhold Heckmann. FB 14 { Informatik. D-6600 Saarbrucken. Bundesrepublik Deutschland. September 10, Abstract

Reinhold Heckmann. FB 14 { Informatik. D-6600 Saarbrucken. Bundesrepublik Deutschland. September 10, Abstract Power Domain Constructions Reinhold Heckmann FB 14 { Informatik Universitat des Saarlandes D-6600 Saarbrucken Bundesrepublik Deutschland email: heckmann@cs.uni-sb.de September 10, 1998 Abstract The variety

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Using the Prover I: Lee Pike. June 3, NASA Langley Formal Methods Group Using the Prover I:

Using the Prover I: Lee Pike. June 3, NASA Langley Formal Methods Group Using the Prover I: Basic Basic NASA Langley Formal Methods Group lee.s.pike@nasa.gov June 3, 2005 Basic Sequents Basic Sequent semantics: The conjunction of the antecedents above the turnstile implies the disjunction of

More information

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization

Distributed Systems Principles and Paradigms. Chapter 06: Synchronization Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 06: Synchronization Version: November 16, 2009 2 / 39 Contents Chapter

More information

I R I S A P U B L I C A T I O N I N T E R N E N o VIRTUAL PRECEDENCE IN ASYNCHRONOUS SYSTEMS: CONCEPT AND APPLICATIONS

I R I S A P U B L I C A T I O N I N T E R N E N o VIRTUAL PRECEDENCE IN ASYNCHRONOUS SYSTEMS: CONCEPT AND APPLICATIONS I R I P U B L I C A T I O N I N T E R N E 079 N o S INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES A VIRTUAL PRECEDENCE IN ASYNCHRONOUS SYSTEMS: CONCEPT AND APPLICATIONS JEAN-MICHEL HÉLARY,

More information

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic

SMV the Symbolic Model Verifier. Example: the alternating bit protocol. LTL Linear Time temporal Logic Model Checking (I) SMV the Symbolic Model Verifier Example: the alternating bit protocol LTL Linear Time temporal Logic CTL Fixed Points Correctness Slide 1 SMV - Symbolic Model Verifier SMV - Symbolic

More information

Pushdown timed automata:a binary reachability characterization and safety verication

Pushdown timed automata:a binary reachability characterization and safety verication Theoretical Computer Science 302 (2003) 93 121 www.elsevier.com/locate/tcs Pushdown timed automata:a binary reachability characterization and safety verication Zhe Dang School of Electrical Engineering

More information

Programs, Semantics and Eective Atomicity

Programs, Semantics and Eective Atomicity Programs, Semantics and Eective Atomicity Shankar April 3, 2014 Outline programs Program Service Programs State transition semantics of systems Assertions and their evaluation Splitting and stitching of

More information

Behavioural theories and the proof of. LIENS, C.N.R.S. U.R.A & Ecole Normale Superieure, 45 Rue d'ulm, F{75230 Paris Cedex 05, France

Behavioural theories and the proof of. LIENS, C.N.R.S. U.R.A & Ecole Normale Superieure, 45 Rue d'ulm, F{75230 Paris Cedex 05, France Behavioural theories and the proof of behavioural properties Michel Bidoit a and Rolf Hennicker b b a LIENS, C.N.R.S. U.R.A. 1327 & Ecole Normale Superieure, 45 Rue d'ulm, F{75230 Paris Cedex 05, France

More information

Parallel & Distributed Systems group

Parallel & Distributed Systems group Happened Before is the Wrong Model for Potential Causality Ashis Tarafdar and Vijay K. Garg TR-PDS-1998-006 July 1998 PRAESIDIUM THE UNIVERSITY OF TEXAS DISCIPLINA CIVITATIS AT AUSTIN Parallel & Distributed

More information

Model Checking Discounted Temporal Properties

Model Checking Discounted Temporal Properties Model Checking Discounted Temporal Properties Luca de Alfaro a Marco Faella a Thomas A. Henzinger b,c Rupak Majumdar d Mariëlle Stoelinga e a CE, University of California, Santa Cruz, USA b EECS, University

More information

cse541 LOGIC FOR COMPUTER SCIENCE

cse541 LOGIC FOR COMPUTER SCIENCE cse541 LOGIC FOR COMPUTER SCIENCE Professor Anita Wasilewska Spring 2015 LECTURE 2 Chapter 2 Introduction to Classical Propositional Logic PART 1: Classical Propositional Model Assumptions PART 2: Syntax

More information

Formal Methods for Java

Formal Methods for Java Formal Methods for Java Lecture 12: Soundness of Sequent Calculus Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg June 12, 2017 Jochen Hoenicke (Software Engineering) Formal Methods

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 6 (version April 7, 28) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.2. Tel: (2)

More information

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR Last time Expert Systems and Ontologies oday Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof theory Natural

More information

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) Chapter 9 Linear Temporal Logic (LTL) This chapter introduces the Linear Temporal Logic (LTL) to reason about state properties of Labelled Transition Systems defined in the previous chapter. We will first

More information

On the Complexity of the Reflected Logic of Proofs

On the Complexity of the Reflected Logic of Proofs On the Complexity of the Reflected Logic of Proofs Nikolai V. Krupski Department of Math. Logic and the Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899,

More information

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach

EDA045F: Program Analysis LECTURE 10: TYPES 1. Christoph Reichenbach EDA045F: Program Analysis LECTURE 10: TYPES 1 Christoph Reichenbach In the last lecture... Performance Counters Challenges in Dynamic Performance Analysis Taint Analysis Binary Instrumentation 2 / 44 Types

More information

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale (FM First Semester 2007/2008) p. 1/37 FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it

More information

Undecidability of ground reducibility. for word rewriting systems with variables. Gregory KUCHEROV andmichael RUSINOWITCH

Undecidability of ground reducibility. for word rewriting systems with variables. Gregory KUCHEROV andmichael RUSINOWITCH Undecidability of ground reducibility for word rewriting systems with variables Gregory KUCHEROV andmichael RUSINOWITCH Key words: Theory of Computation Formal Languages Term Rewriting Systems Pattern

More information

The rest of the paper is organized as follows: in Section 2 we prove undecidability of the existential-universal ( 2 ) part of the theory of an AC ide

The rest of the paper is organized as follows: in Section 2 we prove undecidability of the existential-universal ( 2 ) part of the theory of an AC ide Undecidability of the 9 8 part of the theory of ground term algebra modulo an AC symbol Jerzy Marcinkowski jma@tcs.uni.wroc.pl Institute of Computer Science University of Wroc law, ul. Przesmyckiego 20

More information

Diagram-based Formalisms for the Verication of. Reactive Systems. Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and Tomas E.

Diagram-based Formalisms for the Verication of. Reactive Systems. Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and Tomas E. In CADE-1 Workshop on Visual Reasoning, New Brunswick, NJ, July 1996. Diagram-based Formalisms for the Verication of Reactive Systems Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and Tomas

More information

of acceptance conditions (nite, looping and repeating) for the automata. It turns out,

of acceptance conditions (nite, looping and repeating) for the automata. It turns out, Reasoning about Innite Computations Moshe Y. Vardi y IBM Almaden Research Center Pierre Wolper z Universite de Liege Abstract We investigate extensions of temporal logic by connectives dened by nite automata

More information

Theoretical Foundations of the UML

Theoretical Foundations of the UML Theoretical Foundations of the UML Lecture 17+18: A Logic for MSCs Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group moves.rwth-aachen.de/teaching/ws-1718/fuml/ 5.

More information

FORMALIZATION AND VERIFICATION OF PROPERTY SPECIFICATION PATTERNS. Dmitriy Bryndin

FORMALIZATION AND VERIFICATION OF PROPERTY SPECIFICATION PATTERNS. Dmitriy Bryndin FORMALIZATION AND VERIFICATION OF PROPERTY SPECIFICATION PATTERNS by Dmitriy Bryndin A THESIS Submitted to Michigan State University in partial fulllment of the requirements for the degree of MASTER OF

More information

Another Glance at the Alpern-Schneider. Characterization of Safety andliveness in. Concurrent Executions. Abstract

Another Glance at the Alpern-Schneider. Characterization of Safety andliveness in. Concurrent Executions. Abstract Another Glance at the Alpern-Schneider Characterization of Safety andliveness in Concurrent Executions H.Peter Gumm Abstract In order to derive a result such as the Alpern-Schneider theorem characterizing

More information

HyTech: A Model Checker for Hybrid Systems y. Thomas A. Henzinger Pei-Hsin Ho Howard Wong-Toi

HyTech: A Model Checker for Hybrid Systems y. Thomas A. Henzinger Pei-Hsin Ho Howard Wong-Toi HyTech: A Model Checker for Hybrid Systems y Thomas A. Henzinger Pei-Hsin Ho Howard Wong-Toi EECS Department Strategic CAD Labs Cadence Berkeley Labs Univ. of California, Berkeley Intel Corp., Hillsboro,

More information

Alfred Alice Bernard Bernice Carl Donald Denise Edward Elise Fred Felice Gerald Harold Figure 1: Alfred and Alice's family of performance of a bottom-

Alfred Alice Bernard Bernice Carl Donald Denise Edward Elise Fred Felice Gerald Harold Figure 1: Alfred and Alice's family of performance of a bottom- A CLOSED FORM EVALUATION FOR DATALOG QUERIES WITH INTEGER (GAP)-ORDER CONSTRAINTS Peter Z. Revesz y Abstract: We provide a generalization of Datalog based on generalizing databases by adding integer order

More information

Asynchronous cellular automata for pomsets. 2, place Jussieu. F Paris Cedex 05. Abstract

Asynchronous cellular automata for pomsets. 2, place Jussieu. F Paris Cedex 05. Abstract Asynchronous cellular automata for pomsets without auto-concurrency Manfred Droste Institut fur Algebra Technische Universitat Dresden D-01062 Dresden droste@math.tu-dresden.de Paul Gastin LITP, IBP Universite

More information

Routing Algorithms. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Routing Algorithms. CS60002: Distributed Systems. Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Routing Algorithms CS60002: Distributed Systems Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Main Features Table Computation The routing tables must be computed

More information

Programming Languages and Types

Programming Languages and Types Programming Languages and Types Klaus Ostermann based on slides by Benjamin C. Pierce Subtyping Motivation With our usual typing rule for applications the term is not well typed. ` t 1 : T 11!T 12 ` t

More information

modal logic can easily be used but the drawback that the translation does not generalise to arbitrary functors. Therefore, the second approach is to u

modal logic can easily be used but the drawback that the translation does not generalise to arbitrary functors. Therefore, the second approach is to u URL: http://www.elsevier.nl/locate/entcs/volume11.html 15 pages Specifying Coalgebras with Modal Logic Alexander Kurz Institut fur Informatik, Ludwig-Maximilians-Universitat Munchen, Oettingenstr. 67,

More information

Compositionality in SLD-derivations and their abstractions Marco Comini, Giorgio Levi and Maria Chiara Meo Dipartimento di Informatica, Universita di

Compositionality in SLD-derivations and their abstractions Marco Comini, Giorgio Levi and Maria Chiara Meo Dipartimento di Informatica, Universita di Compositionality in SLD-derivations and their abstractions Marco Comini Giorgio Levi and Maria Chiara Meo Dipartimento di Informatica Universita di Pisa Corso Italia 40 56125 Pisa Italy fcomini levi meog@di.unipi.it

More information

One Quantier Will Do in Existential Monadic. Second-Order Logic over Pictures. Oliver Matz. Institut fur Informatik und Praktische Mathematik

One Quantier Will Do in Existential Monadic. Second-Order Logic over Pictures. Oliver Matz. Institut fur Informatik und Praktische Mathematik One Quantier Will Do in Existential Monadic Second-Order Logic over Pictures Oliver Matz Institut fur Informatik und Praktische Mathematik Christian-Albrechts-Universitat Kiel, 24098 Kiel, Germany e-mail:

More information

Adding a temporal dimension to a logic. Abstract. We introduce a methodology whereby an arbitrary logic system L can be enriched

Adding a temporal dimension to a logic. Abstract. We introduce a methodology whereby an arbitrary logic system L can be enriched Adding a temporal dimension to a logic system MARCELO FINGER and DOV M. GABBAY Imperial College, Department of Computing January 11, 1993 Abstract. We introduce a methodology whereby an arbitrary logic

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato June 23, 2015 This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a more direct connection

More information

The Underlying Semantics of Transition Systems

The Underlying Semantics of Transition Systems The Underlying Semantics of Transition Systems J. M. Crawford D. M. Goldschlag Technical Report 17 December 1987 Computational Logic Inc. 1717 W. 6th St. Suite 290 Austin, Texas 78703 (512) 322-9951 1

More information

Extending Statecharts with Temporal Logic. A. Sowmya and S. Ramesh

Extending Statecharts with Temporal Logic. A. Sowmya and S. Ramesh SCS&E Report 9401 Extending Statecharts with Temporal Logic A. Sowmya and S. Ramesh SCHOOL OF COMPUTER SCIENCE AND ENGINEERING THE UNIVERSITY OF NEW SOUTH WALES Abstract Statecharts is a behavioural specication

More information

Chapter 4. Progress. Jayadev Misra 1. Department of Computer Sciences. The University of Texas at Austin. Austin, Texas (512)

Chapter 4. Progress. Jayadev Misra 1. Department of Computer Sciences. The University of Texas at Austin. Austin, Texas (512) Chapter 4 Progress Jayadev Misra 1 Department of Computer Sciences The University of Texas at Austin Austin, Texas 78712 (512) 471-9547 misra@cs.utexas.edu April 5, 1994 1 This material is based in part

More information

Reasoning Under Uncertainty: Introduction to Probability

Reasoning Under Uncertainty: Introduction to Probability Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Uncertainty 1 Textbook 6.1 Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Uncertainty 1, Slide 1 Lecture Overview 1

More information

Reasoning Under Uncertainty: Introduction to Probability

Reasoning Under Uncertainty: Introduction to Probability Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23 March 12, 2007 Textbook 9 Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23, Slide 1 Lecture Overview

More information

1) Totality of agents is (partially) ordered, with the intended meaning that t 1 v t 2 intuitively means that \Perception of the agent A t2 is sharper

1) Totality of agents is (partially) ordered, with the intended meaning that t 1 v t 2 intuitively means that \Perception of the agent A t2 is sharper On reaching consensus by groups of intelligent agents Helena Rasiowa and Wiktor Marek y Abstract We study the problem of reaching the consensus by a group of fully communicating, intelligent agents. Firstly,

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems 5. Linear hybrid automata I Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October

More information

Modeling and Analysis of Hybrid Systems Linear hybrid automata I Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017

More information

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination

CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination CO350 Linear Programming Chapter 8: Degeneracy and Finite Termination 22th June 2005 Chapter 8: Finite Termination Recap On Monday, we established In the absence of degeneracy, the simplex method will

More information

Temporal Logic of Actions

Temporal Logic of Actions Advanced Topics in Distributed Computing Dominik Grewe Saarland University March 20, 2008 Outline Basic Concepts Transition Systems Temporal Operators Fairness Introduction Definitions Example TLC - A

More information

Efficient Dependency Tracking for Relevant Events in Shared-Memory Systems

Efficient Dependency Tracking for Relevant Events in Shared-Memory Systems Efficient Dependency Tracking for Relevant Events in Shared-Memory Systems Anurag Agarwal Dept of Computer Sciences The University of Texas at Austin Austin, TX 78712-233, USA anurag@cs.utexas.edu Vijay

More information

Integer Circuit Evaluation is PSPACE-complete. Ke Yang. Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave.

Integer Circuit Evaluation is PSPACE-complete. Ke Yang. Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave. Integer Circuit Evaluation is PSPACE-complete Ke Yang Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA E-mail: yangke@cmu.edu Key Words: PSPACE, Integer

More information

Predicates and Predicate Transformers for. Systems 1. Ratnesh Kumar. Department of Electrical Engineering. University of Kentucky

Predicates and Predicate Transformers for. Systems 1. Ratnesh Kumar. Department of Electrical Engineering. University of Kentucky Predicates and Predicate Transformers for Supervisory Control of Discrete Event Dynamical Systems 1 Ratnesh Kumar Department of Electrical Engineering University of Kentucy Lexington, KY 40506-0046 Vijay

More information

On Controllability and Normality of Discrete Event. Dynamical Systems. Ratnesh Kumar Vijay Garg Steven I. Marcus

On Controllability and Normality of Discrete Event. Dynamical Systems. Ratnesh Kumar Vijay Garg Steven I. Marcus On Controllability and Normality of Discrete Event Dynamical Systems Ratnesh Kumar Vijay Garg Steven I. Marcus Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,

More information

Computer Science Laboratory, SRI International. Hybrid Systems. Ashish Tiwari SRI International

Computer Science Laboratory, SRI International. Hybrid Systems. Ashish Tiwari SRI International Computer Science Laboratory, SRI International Hybrid Systems Ashish Tiwari SRI International Hybrid Dynamical Systems A hybrid dynamical system consists of hybrid-space: X N n R m That is, some variables

More information

Feature Constraint Logics. for Unication Grammars. Gert Smolka. German Research Center for Articial Intelligence and. Universitat des Saarlandes

Feature Constraint Logics. for Unication Grammars. Gert Smolka. German Research Center for Articial Intelligence and. Universitat des Saarlandes Feature Constraint Logics for Unication Grammars Gert Smolka German Research Center for Articial Intelligence and Universitat des Saarlandes Stuhlsatzenhausweg 3, D-66123 Saarbrucken, Germany smolka@dfki.uni-sb.de

More information

Software Verification

Software Verification Software Verification Grégoire Sutre LaBRI, University of Bordeaux, CNRS, France Summer School on Verification Technology, Systems & Applications September 2008 Grégoire Sutre Software Verification VTSA

More information

Efficient Dependency Tracking for Relevant Events in Concurrent Systems

Efficient Dependency Tracking for Relevant Events in Concurrent Systems Distributed Computing manuscript No. (will be inserted by the editor) Anurag Agarwal Vijay K. Garg Efficient Dependency Tracking for Relevant Events in Concurrent Systems Received: date / Accepted: date

More information

( V ametavariable) P P true. even in E)

( V ametavariable) P P true. even in E) Propositional Calculus E Inference rules (3.1) Leibniz: (3.2) Transitivity: (3.3) Equanimity: P = Q E[V := P ]=E[V := Q] P = Q Q = R P = R P P Q Q ( V ametavariable) Derived inference rules (3.11) Redundant

More information

Updating Disjunctive Databases via Model. Trees. John Grant. Computer and Information Sciences, Towson State University.

Updating Disjunctive Databases via Model. Trees. John Grant. Computer and Information Sciences, Towson State University. Updating Disjunctive Databases via Model Trees John Grant Computer and Information Sciences, Towson State University Jaros law Gryz Computer Science Department, University of Maryland, College Park Jack

More information

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation

Logical Time. 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation Logical Time Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction 2. Clock and Events 3. Logical (Lamport) Clocks 4. Vector Clocks 5. Efficient Implementation 2013 ACM Turing Award:

More information

Interpolation theorems, lower bounds for proof. systems, and independence results for bounded. arithmetic. Jan Krajcek

Interpolation theorems, lower bounds for proof. systems, and independence results for bounded. arithmetic. Jan Krajcek Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic Jan Krajcek Mathematical Institute of the Academy of Sciences Zitna 25, Praha 1, 115 67, Czech Republic

More information

Abstract. The paper considers the problem of implementing \Virtually. system. Virtually Synchronous Communication was rst introduced

Abstract. The paper considers the problem of implementing \Virtually. system. Virtually Synchronous Communication was rst introduced Primary Partition \Virtually-Synchronous Communication" harder than Consensus? Andre Schiper and Alain Sandoz Departement d'informatique Ecole Polytechnique Federale de Lausanne CH-1015 Lausanne (Switzerland)

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

Abstract Interpretation and Static Analysis

Abstract Interpretation and Static Analysis / 1 Abstract Interpretation and Static Analysis David Schmidt Kansas State University www.cis.ksu.edu/~schmidt Welcome! / 2 / 3 Four parts 1. Introduction to static analysis what it is and how to apply

More information

Verifying Java-KE Programs

Verifying Java-KE Programs Verifying Java-KE Programs A Small Case Study Arnd Poetzsch-Heffter July 22, 2014 Abstract This report investigates the specification and verification of a simple list class. The example was designed such

More information

On the Synergy of Probabilistic Causality Computation and Causality Checking

On the Synergy of Probabilistic Causality Computation and Causality Checking Technical Report soft-13-01, Chair for Software Engineering, University of Konstanz, Copyright by the Authors 2013 On the Synergy of Probabilistic Causality Computation and Causality Checking Florian Leitner-Fischer

More information

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Lesson 6: Linear independence, matrix column space and null space New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Two linear systems:

More information