A novel determination of the local dark matter density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

Size: px
Start display at page:

Download "A novel determination of the local dark matter density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg"

Transcription

1 A novel determination of the local dark matter density Riccardo Catena Institut für Theoretische Physik, Heidelberg R. Catena and P. Ullio, arxiv: [astro-ph.co]. Riccardo Catena (ITP) Firenze 28/04/ / 31

2 Overview/Motivations - Direct detection signals depend from dark halo properties. - Example : Spin-independent dark matter-nucleus scattering. - The expected event rate reads dr = σp ρ DM(R 0 ) de r 2µ 2 p,dm m DM Z f DM(v, t) v min v dv A 2 F 2 (E r) - It crucially depends on ρ DM (R 0 ) (this talk) and f DM ( v, t). Riccardo Catena (ITP) Firenze 28/04/ / 31

3 Outline 1 The underlying Galactic Model 2 The experimental constraints 3 The method:bayesian inference with Markov Chain Monte Carlo 4 Results and Conclusions Riccardo Catena (ITP) Firenze 28/04/ / 31

4 Outline 1 The underlying Galactic Model 2 The experimental constraints 3 The method:bayesian inference with Markov Chain Monte Carlo 4 Results and Conclusions Riccardo Catena (ITP) Firenze 28/04/ / 31

5 Outline 1 The underlying Galactic Model 2 The experimental constraints 3 The method:bayesian inference with Markov Chain Monte Carlo 4 Results and Conclusions Riccardo Catena (ITP) Firenze 28/04/ / 31

6 Outline 1 The underlying Galactic Model 2 The experimental constraints 3 The method:bayesian inference with Markov Chain Monte Carlo 4 Results and Conclusions Riccardo Catena (ITP) Firenze 28/04/ / 31

7 The underlying Galactic Model Dark Halo Thick Disk Gas + Fluctuations Bulge/Bar Thin Disk Figure: Schematic representation of the Galaxy Riccardo Catena (ITP) Firenze 28/04/ / 31

8 The underlying Galactic Model Dark Halo Thick Disk Gas + Fluctuations Bulge/Bar Thin Disk Figure: Schematic representation of the assumed Galactic model Riccardo Catena (ITP) Firenze 28/04/ / 31

9 The underlying Galactic Model rotation curve halo disc balge/bar HI H2 200 Velocity (km/s) Radius (Kpc) Figure: Rotation curve of the Galaxy Riccardo Catena (ITP) Firenze 28/04/ / 31

10 The underlying Galactic Model - The stellar disk: ρ d (R, z) = Σ ( ) d e R R z d sech 2 2z d z d with R < R dm H. T. Freudenreich, Astrophys. J. 492, 495 (1998) - The dust layer: The distribution of the Interstellar Medium is assumed axisymmetric as well. T. M. Dame, AIP Conference Proceedings 278 (1993) 267. Riccardo Catena (ITP) Firenze 28/04/ / 31

11 The underlying Galactic Model - The stellar bulge/bar: [ ( ) ] ρ bb (x, y, z) = ρ bb (0) exp s2 b + sa 1.85 exp( s a ) 2 where s 2 a = q2 a (x 2 + y 2 ) + z 2 z 2 b [ ( ) 2 ( ) ] 2 2 ( ) 4 x y z sb 2 = + +. x b y b z b H. Zhao, arxiv:astro-ph/ Riccardo Catena (ITP) Firenze 28/04/ / 31

12 The underlying Galactic Model - The Dark Matter halo: where f is the Dark Matter profile. - M vir, and c vir as halo parameters: ( R ρ h (R) = ρ f a h ), ρ = ρ (M vir, c vir ) a h = a h (M vir, c vir ) Riccardo Catena (ITP) Firenze 28/04/ / 31

13 The underlying Galactic Model - The Dark Matter profile: [ ] f E (x) = exp 2 α E (x α E 1) J.F. Navarro et al., MNRAS 349 (2004) A.W. Graham, D. Merritt, B. Moore, J. Diemand and B. Terzic, Astron. J. 132 (2006) f NFW (x) = 1 x(1+x) 2 J.F. Navarro, C.S. Frenk and S.D.M. White, Astrophys. J. 462, 563 (1996); Astrophys. J. 490, 493 (1997). f B (x) = 1 (1+x) (1+x 2 ). A. Burkert, Astrophys. J. 447 (1995) L25. Riccardo Catena (ITP) Firenze 28/04/ / 31

14 The underlying Galactic Model 1e Dark matter profiles Einasto NFW Burkert Profiles Kpc Riccardo Catena (ITP) Firenze 28/04/ / 31

15 Parameter space Galactic components Parameters Disk Disk Σ d R d Bulge/bar ρ bb (0) Halo Halo Halo α E M vir c vir All components R 0 All components β Riccardo Catena (ITP) Firenze 28/04/ / 31

16 The experimental constraints Constraints: - Oort s constants: A B = Θ 0 R 0 ; A + B = Θ(R 0) R - terminal velocities - total mean surface density within z < 1.1kpc - local disk surface mass density - total mass inside 50 kpc and 100 kpc - l.s.r. velocity, proper motion and parallaxes distance of high mass star forming regions in the outer Galaxy - radial velocity dispersion of tracers from the SDSS - stellar motions around the massive black hole in the GC - peculiar motion of SgrA Riccardo Catena (ITP) Firenze 28/04/ / 31

17 The experimental constraints Constraints: - Oort s constants: A B = Θ 0 R 0 ; A + B = Θ(R 0) R - terminal velocities - total mean surface density within z < 1.1kpc - local disk surface mass density - total mass inside 50 kpc and 100 kpc - l.s.r. velocity, proper motion and parallaxes distance of high mass star forming regions in the outer Galaxy - radial velocity dispersion of tracers from the SDSS - stellar motions around the massive black hole in the GC - peculiar motion of SgrA Riccardo Catena (ITP) Firenze 28/04/ / 31

18 The experimental constraints: Terminal velocities Orbitating Material Line of Sight GC Tangential Point Sun The terminal velocity is the l.o.s. velocity of the material at the tangential point Riccardo Catena (ITP) Firenze 28/04/ / 31

19 The experimental constraints: Terminal velocities - How to measure a terminal velocity? From the Doppler shift of a reference absorption line. - How to calculate a terminal velocity? v term = Θ(R) Θ(R 0 ) R R 0 - It is a strong constraint in the range 3 kpc R < R 0 Riccardo Catena (ITP) Firenze 28/04/ / 31

20 The experimental constraints: Radial velocity dispersions -The dataset: population of stars with distances up to 60kpc from the Galactic center. The distances are accurate to 10% and the radial velocity errors are less than 30 km s 1. -It is a strong constraint in the range 10 kpc R 60 kpc -To compare the data to the predictions: Jeans Equation σ 2 r (r) = 1 r 2β ρ (r) r d r r 2β 1 ρ ( r)θ 2 ( r) - where β is the anisotropy parameter: β 1 σ 2 t /σ2 r. Riccardo Catena (ITP) Firenze 28/04/ / 31

21 The method: Bayesian approach Parametric model of the Galaxy Frequentist approach = Maximum Likelihood Bayesian approach = Posterior probability density - This work Bayesian approach Riccardo Catena (ITP) Firenze 28/04/ / 31

22 The method: Bayesian approach - Target: posterior pdf (Bayes theorem): p(η d) = L(d η)π(η) p(d) ; d = data; η = parameters - Output: the mean and the variance with respect to p(η d) of functions f(η). - We will focus on f = η and f = ρ DM (R 0 ). Riccardo Catena (ITP) Firenze 28/04/ / 31

23 The method: Markov Chain Monte Carlo - Monte Carlo expectation values: f(η) = dη f(η)p(η d) 1 N 1 f(η (t) ), N where η (t) was sampled from p(η d). t=0 - Monte Carlo technics require a method to sample η (t) = Markov chains. - Markov chains : p(η (0) ) T(η (t), η (t+1) ) = η(t) distributed according to p(η d). Riccardo Catena (ITP) Firenze 28/04/ / 31

24 Convergence of the Markov chains R (Scale reduction factor). Convergence: R < 1.1 and roughly constant. 1-R as a function of the iteration number: disc central surface density bulge-bar central mass density disc radial scale Sun s Galactocentric distance halo virial mass concentration parameter anisotropy beta parameter Multivariate Scale Reduction Fatcor Iteration number Riccardo Catena (ITP) Firenze 28/04/ / 31

25 Figure: Marginal posterior pdf of the Galactic model parameters (NFW profile). Riccardo Catena (ITP) Firenze 28/04/ / 31

26 Figure: Marginal posterior pdf of the Galactic model parameters (Einasto profile). Riccardo Catena (ITP) Firenze 28/04/ / 31

27 Figure: Marginal posterior pdf of a set of derived quantities (Einasto profile). Riccardo Catena (ITP) Firenze 28/04/ / 31

28 R 0 [Kpc] R 0 [kpc] c vir M [ M ] vir Θ c vir M [ M ] vir Θ Figure: Two dimensional marginal posterior pdf in the planes spanned by combinations of the Galactic model parameters (NFW profile). Riccardo Catena (ITP) Firenze 28/04/ / 31

29 R 0 [kpc] R 0 [kpc] M vir [10 12 M Θ ] M vir [ M Θ ] c vir α E c vir 15 c vir 15 α E M vir [ M Θ ] α E R 0 [kpc] Figure: Two dimensional marginal posterior pdf in the planes spanned by combinations of the Galactic model parameters (Einasto profile). Riccardo Catena (ITP) Firenze 28/04/ / 31

30 Figure: Marginal posterior pdf for the local Dark Matter density. Top left panel: Einasto profile, applying different subsets of constraints. Top right panel: Einasto profile. Bottom left panel: NFW profile. Bottom right panel: Burkert profile. Riccardo Catena (ITP) Firenze 28/04/ / 31

31 Numerical values - Numerically we find: ρ DM (R 0 ) = (0.385 ± 0.027) GeV cm 3 (Einasto) ρ DM (R 0 ) = (0.389 ± 0.025) GeV cm 3 (NFW) ρ DM (R 0 ) = (0.409 ± 0.029) GeV cm 3 (Burkert) - No strong dependences from the assumed halo profile. Riccardo Catena (ITP) Firenze 28/04/ / 31

32 2000 β 3 4 Σ d [M Θ pc 2 ] ρ DM (R 0 ) [GeV cm 3 ] ρ bb (0) [M Θ pc 3 ] ρ (R ) [GeV cm 3 ] DM 0 R d [kpc] ρ (R ) [GeV cm 3 ] DM 0 R 0 [kpc] ρ (R ) [GeV cm 3 ] DM 0 M vir [10 12 M Θ ] ρ (R ) [GeV cm 3 ] DM 0 c vir ρ (R ) [GeV cm 3 ] DM α E ρ DM (R 0 ) [GeV cm 3 ] ρ DM (R 0 ) [GeV cm 3 ] Figure: Two dimensional marginal posterior pdf in the planes spanned by the local Dark Matter energy density and the Galactic model parameters for the Einasto case. Riccardo Catena (ITP) Firenze 28/04/ / 31

33 A B [km s 1 kpc 1 ] A+B [km s 1 kpc 1 ] v c (R 0 ) [km s 1 ] ρ DM (R 0 ) [GeV cm 3 ] ρ (R ) [GeV cm 3 ] DM ρ (R ) [GeV cm 3 ] DM Σ * [M Θ pc 2 ] Σ z <1.1 kpc [M Θ pc 2 ] M(<50 kpc) [10 11 M Θ ] ρ (R ) [GeV cm 3 ] DM ρ (R ) [GeV cm 3 ] DM ρ (R ) [GeV cm 3 ] DM 0 12 M(<100 kpc) [10 11 M Θ ] ρ (R ) [GeV cm 3 ] DM Figure: Two dimensional marginal posterior pdf in the planes spanned by the local Dark Matter energy density and the derived quantities for the Einasto case. Riccardo Catena (ITP) Firenze 28/04/ / 31

34 Comparison with other recent related works - Maximum Likelihood approach: M. Weber and W. de Boer, arxiv: [astro-ph.co]. * Only three free parameters (many fixed a priori) * For some choice of the fixed parameters (with reasonable M vir ): ρ DM (R 0 ) = (0.39 ± 0.05) GeV cm 3 - Poisson equation approach: P. Salucci, F. Nesti, G. Gentile and C. F. Martins, arxiv: [astro-ph.ga]. RΘ 2 K, R=R 0 * Strategy: ρ DM (R 0 ) = 1 4πGR 2 0 R ρ DM (R 0 ) = (0.43 ± 0.11 ± 0.10) GeV cm 3 - Fisher matrix forecasts: L. E. Strigari and R. Trotta, JCAP 0911 (2009) 019 [arxiv: [astro-ph.he]]. * Assumed a reference point in parameter space it tests the reconstruction capabilities of a future direct detection experiment accounting for astrophysical uncertainties. Riccardo Catena (ITP) Firenze 28/04/ / 31

35 Conclusions We proved that Bayesian probabilistic inference is a good method to constrain the local dark matter density. Assuming a Einasto Dark Matter profile, we find ρ DM (R 0 ) = (0.385 ± 0.027) GeV cm 3. Assuming an NFW Dark Matter profile, we find ρ DM (R 0 ) = (0.389 ± 0.025) GeV cm 3. Assuming an Burkert Dark Matter profile, we find ρ DM (R 0 ) = (0.409 ± 0.029) GeV cm 3. For a given dark matter profile, we can therefore estimate the local value of the Dark Matter density with an accuracy of roughly the 7%. This result alleviate the astrophysical uncertainties on the theoretical predictions for the direct detection dark matter signals. Riccardo Catena (ITP) Firenze 28/04/ / 31

The local dark matter halo density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

The local dark matter halo density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg The local dark matter halo density Riccardo Catena Institut für Theoretische Physik, Heidelberg 17.05.2010 R. Catena and P. Ullio, arxiv:0907.0018 [astro-ph.co]. To be published in JCAP Riccardo Catena

More information

Fabrizio Nesti. LNGS, July 5 th w/ C.F. Martins, G. Gentile, P. Salucci. Università dell Aquila, Italy. The Dark Matter density. F.

Fabrizio Nesti. LNGS, July 5 th w/ C.F. Martins, G. Gentile, P. Salucci. Università dell Aquila, Italy. The Dark Matter density. F. Global The Dark Matter Fabrizio Nesti Università dell Aquila, Italy LNGS, July 5 th 2012 w/ C.F. Martins, G. Gentile, P. Salucci Global Dark Matter? A number of indirect supporting evidences Modify Gravity

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Phenomenological studies in dark matter direct detection: from the impact of the escape speed estimates to tests of halo models

Phenomenological studies in dark matter direct detection: from the impact of the escape speed estimates to tests of halo models Phenomenological studies in dark matter direct detection: from the impact of the escape speed estimates to tests of halo models Stefano Magni Laboratoire Univers et Particules de Montpellier (Université

More information

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE IAU Symposium 330 Nice, 27. April 2017 Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE Wilma Trick (MPIA, Heidelberg) Hans-Walter Rix (MPIA) Jo Bovy (Uni Toronto) Open Questions

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Chengqun Yang Contents 1 Stellar Halo

More information

dynamical constraints on the dark matter distribution in the milky way

dynamical constraints on the dark matter distribution in the milky way dynamical constraints on the dark matter distribution in the milky way Miguel Pato (Physik-Department T30d, TU Munich) Oskar Klein Centre for Cosmoparticle Physics / Wenner-Gren Fabio Iocco in collaboration

More information

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè CAULDRON: dynamics meets gravitational lensing Matteo Barnabè KIPAC/SLAC, Stanford University Collaborators: Léon Koopmans (Kapteyn), Oliver Czoske (Vienna), Tommaso Treu (UCSB), Aaron Dutton (MPIA), Matt

More information

The Milky Way Part 3 Stellar kinematics. Physics of Galaxies 2011 part 8

The Milky Way Part 3 Stellar kinematics. Physics of Galaxies 2011 part 8 The Milky Way Part 3 Stellar kinematics Physics of Galaxies 2011 part 8 1 Stellar motions in the MW disk Let s continue with the rotation of the Galaxy, this time from the point of view of the stars First,

More information

Fabrizio Nesti. Ruđer Boškovic Institute, Zagreb Gran Sasso Science Institute, L Aquila. ULB, Bruxelles, March 7 th 2014

Fabrizio Nesti. Ruđer Boškovic Institute, Zagreb Gran Sasso Science Institute, L Aquila. ULB, Bruxelles, March 7 th 2014 The Dark Fabrizio Nesti Ruđer Boškovic Institute, Zagreb Gran Sasso Science Institute, L Aquila ULB, Bruxelles, March 7 th 2014 P. Salucci, F.N., C.F. Martins, G. Gentile, A&A 2010 F.N., P. Salucci, JCAP

More information

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T.

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T. Hypervelocity Stars A New Probe for Near-Field Cosmology Omar Contigiani Student Colloquium, 20/06/2017, Leiden Co-supervisor: Msc. T. Marchetti Supervisor: Dr. E.M. Rossi Cosmic Web Near-Field Cosmology

More information

The Milky Way Part 2 Stellar kinematics. Physics of Galaxies 2012 part 7

The Milky Way Part 2 Stellar kinematics. Physics of Galaxies 2012 part 7 The Milky Way Part 2 Stellar kinematics Physics of Galaxies 2012 part 7 1 Stellar motions in the MW disk Let s look at the rotation of the Galactic disk First, we need to introduce the concept of the Local

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 12 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 13. September 2017 1 / 77 Overview part 12 The Galaxy Historical Overview

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies Gerry Gilmore H47 email: gil@ast.cam.ac.uk Lectures: Monday 12:10-13:00 Wednesday 11:15-12:05 Friday 12:10-13:00 Books: Binney & Tremaine Galactic Dynamics Princeton

More information

Distinguishing Between Warm and Cold Dark Matter

Distinguishing Between Warm and Cold Dark Matter Distinguishing Between Warm and Cold Dark Matter Center for Cosmology Aspen Workshop Neutrinos in Physics & Astrophysics 2/2/2007 Collaborators: James Bullock, Manoj Kaplinghat astro-ph/0701581.. Motivations

More information

The origin of the steep vertical stellar distribution in the Galactic disc

The origin of the steep vertical stellar distribution in the Galactic disc The origin of the steep vertical stellar distribution in the Galactic disc Arunima Banerjee Department of Physics Indian Institute of Science Bangalore 560012 India Email: arunima_banerjee@physics.iisc.ernet.in

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution I S I The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution Yang Huang (LAMOST Fellow, yanghuang@pku.edu.cn) N G U N I V E R P E K T Y 1 8 9 8 Peking University

More information

Thom et al. (2008), ApJ

Thom et al. (2008), ApJ Star S674 along the same LOS as Complex C Star S441 along the same LOS as Complex C Thom et al. (2008), ApJ Distances to HVCs From spectroscopy of high Galactic latitude stars at small angular separations

More information

Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey

Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey 2 nd LAMOST KEPLER WORKSHOP LAMOST in the era of large spectroscopic surveys July 31-August 3, 2017, @ Brussels Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey Yang Huang

More information

Constraints on dark matter annihilation cross section with the Fornax cluster

Constraints on dark matter annihilation cross section with the Fornax cluster DM Workshop@UT Austin May 7, 2012 Constraints on dark matter annihilation cross section with the Fornax cluster Shin ichiro Ando University of Amsterdam Ando & Nagai, arxiv:1201.0753 [astro-ph.he] Galaxy

More information

The motions of stars in the Galaxy

The motions of stars in the Galaxy The motions of stars in the Galaxy The stars in the Galaxy define various components, that do not only differ in their spatial distribution but also in their kinematics. The dominant motion of stars (and

More information

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

A tool to test galaxy formation theories. Joe Wolf (UC Irvine) A tool to test galaxy formation theories Joe Wolf (UC Irvine) SF09 Cosmology Summer Workshop July 7 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Frank Avedo KIPAC: Louie Strigari Haverford:

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 2 Simon White Max Planck Institute for Astrophysics EPS statistics for the standard ΛCDM cosmology Millennium Simulation cosmology: Ωm = 0.25, ΩΛ

More information

Milky Way disc dynamics and kinematics from mock data

Milky Way disc dynamics and kinematics from mock data Milky Way disc dynamics and kinematics from mock data Laurent Chemin CNES Postdoctoral Fellow (Lab. Astro. of Bordeaux) DPAC CU6 member: Gaia RVS calibrations and commissioning CU9 member: validation of

More information

Lecture notes 17: The Milky Way ii: Kinematics and the galactic core

Lecture notes 17: The Milky Way ii: Kinematics and the galactic core Lecture notes 17: The Milky Way ii: Kinematics and the galactic core Disk rotation & the local standard of rest In the galactic disk the mean orbital speed of the stars is much greater than the stars random

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 4. Reading period Mar 8-9

More information

Systematic uncertainties from halo asphericity in dark matter searches

Systematic uncertainties from halo asphericity in dark matter searches Available online at www.sciencedirect.com Nuclear and Particle Physics Proceedings 267 269 (2015) 345 352 www.elsevier.com/locate/nppp Systematic uncertainties from halo asphericity in dark matter searches

More information

A tool to test galaxy formation arxiv: Joe Wolf (UC Irvine)

A tool to test galaxy formation arxiv: Joe Wolf (UC Irvine) A tool to test galaxy formation arxiv: 0908.2995 Joe Wolf (UC Irvine) Hunting for the Dark: The Hidden Side of Galaxy Formation Malta October 22 nd, 2009 Team Irvine: Greg Martinez James Bullock Manoj

More information

Bayesian Mass Estimates of the Milky Way: incorporating incomplete data

Bayesian Mass Estimates of the Milky Way: incorporating incomplete data Bayesian Mass Estimates of the Milky Way: incorporating incomplete data Gwendolyn Eadie, PhD Candidate Dr. William Harris (McMaster), Dr. Lawrence Widrow (Queen's) AstroStat Seminar - March 23, 2015 Measuring

More information

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine) Connecting observations to simulations arxiv: 0908.2995 Joe Wolf (UC Irvine) University of Maryland December 8 th, 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud Quinn Minor

More information

arxiv:astro-ph/ v1 28 Nov 2002

arxiv:astro-ph/ v1 28 Nov 2002 BULGE FORMATION IN VERY LATE-TYPE GALAXIES YANNING FU Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China arxiv:astro-ph/0116v1 8 Nov 00 JIEHAO HUANG Department of Astronomy, Nanjing

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL)

Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL) Joint Gravitational Lensing and Stellar Dynamics Analysis of Early-Type Galaxies Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL) Leiden, 04 August 2006 What is the mass structure

More information

DeepCore and Galactic Center Dark Matter

DeepCore and Galactic Center Dark Matter 2nd Low-Energy Neutrino Workshop (PSU July 1-2, 2010) DeepCore and Galactic Center Dark Matter Carsten Rott carott @ mps. ohio-state.nospamedu Center for Cosmology and AstroParticle Physics The Ohio State

More information

arxiv: v2 [astro-ph.ga] 23 Nov 2017

arxiv: v2 [astro-ph.ga] 23 Nov 2017 Publ. Astron. Obs. Belgrade No. 98 (2018), 1-4 Contributed paper arxiv:1711.06335v2 [astro-ph.ga] 23 Nov 2017 INVESTIGATING THE RADIAL ACCELERATION RELATION IN EARLY-TYPE GALAXIES USING THE JEANS ANALYSIS

More information

Astronomy 330 Lecture 7 24 Sep 2010

Astronomy 330 Lecture 7 24 Sep 2010 Astronomy 330 Lecture 7 24 Sep 2010 Outline Review Counts: A(m), Euclidean slope, Olbers paradox Stellar Luminosity Function: Φ(M,S) Structure of the Milky Way: disk, bulge, halo Milky Way kinematics Rotation

More information

How Massive is the Milky Way?

How Massive is the Milky Way? How Massive is the Milky Way? See also: Klypin et al. (2002) Simon s talk Matthias Steinmetz Astrophysical Institute Potsdam Overview Spectroscopic Surveys of the MW Geneva-Copenhagen, SDSS, RAVE Mass

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk Today in Astronomy 142:! The local standard of rest the Milky Way, continued! Rotation curves and the! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk distribution

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Direct detection calculations. Riccardo Catena. Chalmers University

Direct detection calculations. Riccardo Catena. Chalmers University Direct detection calculations Riccardo Catena Chalmers University September 11, 2017 Outline Basics of dark matter direct detection (DD) DD Astrophysics DD Particle Physics DD Nuclear Physics Summary Direct

More information

arxiv:astro-ph/ v1 3 Jun 2002

arxiv:astro-ph/ v1 3 Jun 2002 Gamma-Ray Constraints on Neutralino Dark Matter Clumps in the Galactic Halo Roberto Aloisio a,b,1 Pasquale Blasi c,b,2 Angela V. Olinto d,b,3 arxiv:astro-ph/0206036v1 3 Jun 2002 Abstract a INFN, Laboratori

More information

DM direct detection predictions from hydrodynamic simulations

DM direct detection predictions from hydrodynamic simulations DM direct detection predictions from hydrodynamic simulations Nassim Bozorgnia GRAPPA Institute University of Amsterdam Based on work done with F. Calore, M. Lovell, G. Bertone, and the EAGLE team arxiv:

More information

Dark matter. Anne Green University of Nottingham

Dark matter. Anne Green University of Nottingham Dark matter Anne Green University of Nottingham anne.green@nottingham.ac.uk 1. Observational evidence for DM and constraints on its properties Alternatives to dark matter (modified gravity) 2. The DM distribution

More information

Revisiting the escape speed impact on dark matter direct detection

Revisiting the escape speed impact on dark matter direct detection Revisiting the escape speed impact on dark matter direct detection Laboratoir Univers et Particules de Montpellier, UMR-5299, Montpellier, France E-mail: stefano.magni@univ-montp2.fr Julien Lavalle Laboratoir

More information

Dark matter and LHC: complementarities and limitations

Dark matter and LHC: complementarities and limitations Dark matter and LHC: complementarities and limitations,1,2, F. Mahmoudi 1,2,3, A. Arbey 1,2,3, M. Boudaud 4 1 Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574,

More information

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester The Milky Way The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas 20 March 2018 University of Rochester The Milky Way Today s lecture: The shape of the Galaxy Stellar populations and

More information

Our Galaxy. Chapter Twenty-Five. Guiding Questions

Our Galaxy. Chapter Twenty-Five. Guiding Questions Our Galaxy Chapter Twenty-Five Guiding Questions 1. What is our Galaxy? How do astronomers know where we are located within it? 2. What is the shape and size of our Galaxy? 3. How do we know that our Galaxy

More information

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology

The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology The Current Status of Too Big To Fail problem! based on Warm Dark Matter cosmology 172th Astronomical Seminar Dec.3 2013 Chiba Lab.M2 Yusuke Komuro Key Word s Too Big To Fail TBTF Cold Dark Matter CDM

More information

Distinguishing between WDM and CDM by studying the gap power spectrum of stellar streams

Distinguishing between WDM and CDM by studying the gap power spectrum of stellar streams Distinguishing between WDM and CDM by studying the gap power spectrum of stellar streams based on arxiv:1804.04384, JCAP 07(2018)061 Nilanjan Banik Leiden University/GRAPPA, University of Amsterdam In

More information

Gamma-rays from Earth-Size dark-matter halos

Gamma-rays from Earth-Size dark-matter halos Gamma-rays from Earth-Size dark-matter halos Tomoaki Ishiyama, Jun Makino, Toshikazu Ebisuzaki, and Veniamin Berezinsky Presentation by: JM Bottom line Microhalos (mass earth mass) do survive to the present

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

Milky Way S&G Ch 2. Milky Way in near 1 IR   H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/ Why study the MW? its "easy" to study: big, bright, close Allows detailed studies of stellar kinematics, stellar evolution. star formation, direct detection of dark matter?? Milky Way S&G Ch 2 Problems

More information

Estimates of the Enclosed Mass and its Distribution. for several Spiral Galaxies. Abstract

Estimates of the Enclosed Mass and its Distribution. for several Spiral Galaxies. Abstract Estimates of the Enclosed Mass and its Distribution for several Spiral Galaxies Geoffrey M. Williams email: gmwill@charter.net Abstract Recently, high quality rotation curves for several spiral galaxies

More information

Galaxy Rotation Curves of a Galactic Mass Distribution. By: Camiel Pieterse Supervised by: Prof. dr. Wim Beenakker Theoretical High Energy Physics

Galaxy Rotation Curves of a Galactic Mass Distribution. By: Camiel Pieterse Supervised by: Prof. dr. Wim Beenakker Theoretical High Energy Physics Galaxy Rotation Curves of a Galactic Mass Distribution By: Camiel Pieterse Supervised by: Prof. dr. Wim Beenakker Theoretical High Energy Physics 1 Contents 1 Introduction 3 2 Mass Distribution 5 2.1 The

More information

Dark Matter Detection Using Pulsar Timing

Dark Matter Detection Using Pulsar Timing Dark Matter Detection Using Pulsar Timing ABSTRACT An observation program for detecting and studying dark matter subhalos in our galaxy is propsed. The gravitational field of a massive object distorts

More information

arxiv:astro-ph/ v1 14 Sep 2005

arxiv:astro-ph/ v1 14 Sep 2005 For publication in Bayesian Inference and Maximum Entropy Methods, San Jose 25, K. H. Knuth, A. E. Abbas, R. D. Morris, J. P. Castle (eds.), AIP Conference Proceeding A Bayesian Analysis of Extrasolar

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

Origin and Evolution of Disk Galaxy Scaling Relations

Origin and Evolution of Disk Galaxy Scaling Relations Origin and Evolution of Disk Galaxy Scaling Relations Aaron A. Dutton (CITA National Fellow, University of Victoria) Collaborators: Frank C. van den Bosch (Utah), Avishai Dekel (HU Jerusalem), + DEEP2

More information

Bayesian Analysis of RR Lyrae Distances and Kinematics

Bayesian Analysis of RR Lyrae Distances and Kinematics Bayesian Analysis of RR Lyrae Distances and Kinematics William H. Jefferys, Thomas R. Jefferys and Thomas G. Barnes University of Texas at Austin, USA Thanks to: Jim Berger, Peter Müller, Charles Friedman

More information

Enhancement of Antimatter Signals from Dark Matter Annihilation

Enhancement of Antimatter Signals from Dark Matter Annihilation Enhancement of Antimatter Signals from Dark Matter Annihilation around Intermediate Mass Black Holes Pierre Brun Laboratoire d Annecy-le-vieux de Physique des Particules CNRS/IN2P3/Université de Savoie

More information

Scaling Relations of late-type galaxies

Scaling Relations of late-type galaxies Scaling Relations of late-type galaxies - an observational perspective - Lecture I Lecture II Trends along the Hubble sequence Galaxy rotation curves Lecture III Tully-Fisher relations Marc Verheijen Kapteyn

More information

Lecture 29. Our Galaxy: "Milky Way"

Lecture 29. Our Galaxy: Milky Way Lecture 29 The Milky Way Galaxy Disk, Bulge, Halo Rotation Curve Galactic Center Apr 3, 2006 Astro 100 Lecture 29 1 Our Galaxy: "Milky Way" Milky, diffuse band of light around sky known to ancients. Galileo

More information

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology Effective theory of dark matter direct detection Riccardo Catena Chalmers University of Technology March 16, 216 Outline Introduction Dark matter direct detection Effective theory of dark matter-nucleon

More information

Now derive both sides of above equation with respect to ψ: (known as Abel integral equation) the above equation is invertible thanks to the identity:

Now derive both sides of above equation with respect to ψ: (known as Abel integral equation) the above equation is invertible thanks to the identity: Change of variable in the integral: Now derive both sides of above equation with respect to ψ: (known as Abel integral equation) the above equation is invertible thanks to the identity: so that one gets

More information

Effects of SN Feedback on the Dark Matter Distribution

Effects of SN Feedback on the Dark Matter Distribution The Galaxy Disk in Cosmological Context c 2008 International Astronomical Union Proceedings IAU Symposium No. IAU Symposium No.254, 2008 A.C. Editor, B.D. Editor & C.E. Editor, eds. Effects of SN Feedback

More information

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine)

Connecting observations to simulations arxiv: Joe Wolf (UC Irvine) Connecting observations to simulations arxiv: 0908.2995 Joe Wolf (UC Irvine) September, 2009 Team Irvine: Greg Martinez James Bullock Manoj Kaplinghat Erik Tollerud Quinn Minor Team Irvine: Greg Martinez

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

arxiv: v1 [physics.gen-ph] 5 Jan 2015

arxiv: v1 [physics.gen-ph] 5 Jan 2015 Possible existence of wormholes in the central regions of halos arxiv:1501.00490v1 [physics.gen-ph] 5 Jan 2015 Farook Rahaman Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal,

More information

Gamma-ray background anisotropy from Galactic dark matter substructure

Gamma-ray background anisotropy from Galactic dark matter substructure Gamma-ray background anisotropy from Galactic dark matter substructure Shin ichiro Ando (TAPIR, Caltech) Ando, arxiv:0903.4685 [astro-ph.co] 1. Introduction Dark matter annihilation and substructure Dark

More information

halo merger histories

halo merger histories Physics 463, Spring 07 Lecture 5 The Growth and Structure of Dark Mater Halos z=7! z=3! z=1! expansion scalefactor z=0! ~milky way M>3e12M! /h c vir ~13 ~virgo cluster M>3e14M! /h, c vir ~6 halo merger

More information

Wino dark matter breaks the siege

Wino dark matter breaks the siege Wino dark matter breaks the siege Shigeki Matsumoto (Kavli IPMU) In collaboration with M. Ibe, K. Ichikawa, and T. Morishita 1. Wino dark matter (Motivation & Present limits) 2. Wino dark matter is really

More information

Estimates of the Enclosed Mass and its Distribution. for several Spiral Galaxies. Abstract

Estimates of the Enclosed Mass and its Distribution. for several Spiral Galaxies. Abstract Estimates of the Enclosed Mass and its Distribution for several Spiral Galaxies Geoffrey M. Williams email: gmwill@charter.net Abstract Recently, high quality rotation curves for several spiral galaxies

More information

Constraining self-interacting dark matter with scaling laws of observed halo surface densities

Constraining self-interacting dark matter with scaling laws of observed halo surface densities Constraining self-interacting dark matter with scaling laws of observed halo surface densities Anastasia Sokolenko, T.Bringmann (University of Oslo) K.Bondarenko and A.Boyarsky (Leiden University) Rencontres

More information

Universitetskij pr. 28, Staryj Peterhof, St. Petersburg , Russia;

Universitetskij pr. 28, Staryj Peterhof, St. Petersburg , Russia; Baltic Astronomy, vol. 25, 53 59, 2016 STÄCKEL-TYPE DYNAMIC MODEL OF THE GALAXY BASED ON MASER KINEMATIC DATA A. O. Gromov 1, I. I. Nikiforov 2 and L. P. Ossipkov 1 1 Department of Space Technologies and

More information

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1 COSMOLOGY PHYS 30392 DENSITY OF THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - March 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Masses of Dwarf Satellites of the Milky Way

Masses of Dwarf Satellites of the Milky Way Masses of Dwarf Satellites of the Milky Way Manoj Kaplinghat Center for Cosmology UC Irvine Collaborators: Greg Martinez Quinn Minor Joe Wolf James Bullock Evan Kirby Marla Geha Josh Simon Louie Strigari

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

arxiv: v1 [astro-ph.he] 28 Jun 2016

arxiv: v1 [astro-ph.he] 28 Jun 2016 Revisiting the constraints on annihilating dark matter by radio observational data of M31 Man Ho Chan The Education University of Hong Kong arxiv:1606.08537v1 [astro-ph.he] 28 Jun 2016 (Dated: October

More information

Dark Matter Halos of M31. Joe Wolf

Dark Matter Halos of M31. Joe Wolf Dark Matter Halos of M31 Galaxies Joe Wolf TASC October 24 th, 2008 Dark Matter Halos of M31 Galaxies Joe Wolf Team Irvine: Louie Strigari, James Bullock, Manoj Kaplinghat TASC October 24 th, 2008 Dark

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

The Besançon Galaxy Model development

The Besançon Galaxy Model development The Besançon Galaxy Model development Annie C. Robin and collaborators Institut UTINAM, OSU THETA, Université Bourgogne-Franche-Comté, Besançon, France Outline Population synthesis principles New scheme

More information

Today in Astronomy 142: the Milky Way

Today in Astronomy 142: the Milky Way Today in Astronomy 142: the Milky Way The shape of the Galaxy Stellar populations and motions Stars as a gas: Scale height, velocities and the mass per area of the disk Missing mass in the Solar neighborhood

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

Dark Matter in Galaxies

Dark Matter in Galaxies Dark Matter in Galaxies Garry W. Angus VUB FWO 3rd COSPA Meeting Université de Liège Ellipticals. Old stars. Gas poor. Low star formation rate. Spiral (disk) galaxies. Often gas rich => star formation.

More information

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

Overview of Dynamical Modeling. Glenn van de Ven

Overview of Dynamical Modeling. Glenn van de Ven Overview of Dynamical Modeling Glenn van de Ven glenn@mpia.de 1 Why dynamical modeling? -- mass total mass stellar systems key is to their evolution compare luminous mass: constrain DM and/or IMF DM radial

More information

Tentative observation of a gamma-ray line at the Fermi Large Area Telescope

Tentative observation of a gamma-ray line at the Fermi Large Area Telescope Tentative observation of a gamma-ray line at the Fermi Large Area Telescope arxiv:1203.1312 with T. Bringmann, X. Huang, A. Ibarra, S. Vogl (accepted for JCAP), arxiv:1204.2797 (accepted for JCAP) Christoph

More information

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae The Geometry of Sagittarius Stream from PS1 3π RR Lyrae Nina Hernitschek, Caltech collaborators: Hans-Walter Rix, Branimir Sesar, Judith Cohen Swinburne-Caltech Workshop: Galaxies and their Halos, Sept.

More information

The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance

The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance Jacques R.D. Lépine,Tatiana A. Michtchenko,Douglas A. Barros, Ronaldo S.S. Vieira University of São Paulo Lund

More information

Homework 1. Astronomy 202a. Fall 2009

Homework 1. Astronomy 202a. Fall 2009 Homework 1 Astronomy 0a Fall 009 Solutions Problems: 1. A galaxy has an integrated blue magnitude of 6.5, a rotation velocity (essentially flat) of 107 km s 1, and is ellptical in overall shape with major

More information

Galaxies. Nebulae. Virgo Cluster of Galaxies sky.google.com

Galaxies. Nebulae. Virgo Cluster of Galaxies sky.google.com Virgo Cluster of Galaxies sky.google.com Galaxies Mid 18th century, Kant and Wright suggested that the Milky Way is a finite system of stars. Turns out this is accurate. Kant went on to suggest that the

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

The dark matter crisis

The dark matter crisis The dark matter crisis Ben Moore Department of Physics, Durham University, UK. arxiv:astro-ph/0103100 v2 8 Mar 2001 Abstract I explore several possible solutions to the missing satellites problem that

More information

Systematic Uncertainties from Halo Asphericity in Dark Matter Searches

Systematic Uncertainties from Halo Asphericity in Dark Matter Searches Systematic Uncertainties from Halo Asphericity in Dark Matter Searches Based on: Nicolas Bernal, Jaime Forero-Romero, RG & Sergio Palomares-Ruiz JCAP 1409 (2014) 004 Raghuveer Garani University of Bonn

More information

Disk Galaxy Rotation Curves and Dark Matter Halos

Disk Galaxy Rotation Curves and Dark Matter Halos Disk Galaxy Rotation Curves and Dark Matter Halos Thorben H. Mense 1 Galactic Astronomy SS 2018 1 Universität Bielefeld Outline Early Observations of Galaxy Rotation Curves Rotation of the Andromeda Nebula

More information