Borexino: real-time detection of low energy solar neutrinos

Size: px
Start display at page:

Download "Borexino: real-time detection of low energy solar neutrinos"

Transcription

1 Borexino: real-time detection of low energy solar neutrinos Andrea Pocar - Stanford University SSI SLAC, August 12, 2008 A. Pocar - SSI SLAC, August 12,

2 outline - solar neutrinos and neutrino oscillations - Borexino: physics goals and design - background reduction days of Borexino data - future A. Pocar - SSI SLAC, August 12,

3 Fundamental fusion reaction: 4p 4 He + 2e + + 2ν e MeV neutrino production in the sun pp chain p + p d + e + + ν e (99.77%) p + e - + p d + ν e (0.23%) ν pp ν pep ~3% of the energy is carried away by kinetic energy of neutrinos 85% p + d 3 He + γ 10-5 % ν hep 3He + 3 He α + 2p 15% 3He + p 4 He + e + + ν e pp I 99.9% 3He + α 7 Be + γ 0.1% 7Be + e - 7 Li + ν e 7Be + p 8 (p, B + γ 4 He) ν Be7 7Li + p 2α 8B 2α + e + + ν e (p,γ) pp II pp III ν B8 (p, 4 He) A. Pocar - SSI SLAC, August 12, C 15N CNO cycle (p,γ) e +,ν e ν O15 (p,γ) 13N 15O e +,ν e ν N13 (p,γ) e +,ν e 13C 14N 16O 17F 17O ν F17 (p,γ)

4 solar neutrino spectrum water ~2/5 gallium ~1/2 chlorine ~1/3 BPS % Borexino 10 ± 5 A. Pocar - SSI SLAC, August 12,

5 the solar neutrino problem - All experiments prior to SNO have observed fewer (1/3 to 1/2) solar neutrinos than expected from the standard solar model (SSM) and the theory of weak interactions - Furthermore, the data vs theory deficit was inconsistent between experiments Clues: - different thresholds - Cl/Ga experiments only sensitive to electron ν s - water Čerenkov detectors are sensitive to all ν flavours (with different cross sections) - SNO measured charged and neutral currents: ν x + d ν x + p + n ν e + d e - + p + p A. Pocar - SSI SLAC, August 12, SNU (Solar Neutrino Unit) = captures/atom/second 5

6 charged current neutral current elastic scattering neutrino oscillations SNO measured: - a reduced solar ν e flux (~1/3) - a positive solar ν μ,τ flux - total solar neutrino flux consistent with expectations from the SSM [Ahmad et al., Phys. Rev. Lett. 89 (2002) ] - the sun only produces electron neutrinos which therefore oscillate before they are detected on earth - oscillations imply that weak and energy (mass) eigenstates are different, which in turn requires neutrinos (at least one) to be massive: - solar experiments + KamLAND yield (LMA-MSW): Δm 2 12 ~ ev 2 tan 2 θ12 ~ 0.4 A. Pocar - SSI SLAC, August 12,

7 MSW effect - νe s interact with electrons via both neutral and charged currents; their propagation is affected by matter differently than for ν μτ s νe and νμτ has a different index of refraction (Wolfenstein, 1978) - resonant amplification of oscillations is possible due to enhanced forward scattering of νe (Mikheyev & Smirnov, 1985) - solar neutrinos are affected by the dense solar matter, an energy-dependent effect P ee Bahcall & Peña-Garay - Low energy (pp) neutrinos are barely affected (Pee ~ 56%) - High energy ( 8 B) neutrinos are most affected (P ee ~ 32%) (small effect for propagation through the earth, day/night) - no direct data at intermediate energy 0.0!!cos(2" 12 ) E A. Pocar - SSI SLAC, August 12,

8 before Borexino Solar Neutrino Survival Probability P ee Be LMA Prediction Be LMA-NSI Prediction MaVaN Prediction SNO Data Ga/Cl Data Before Borexino 0.6 Barger et al., PRL 95, (2005) A. Pocar - SSI SLAC, August 12, 2008 Friedland et al., PLB 594, 347 (2004) 1 10 E [MeV] 8

9 Borexino: main science goals - experiment conceived in the mid 90 s, before the discovery of atmospheric neutrino oscillations in 1998 by Super/Kamiokande - data from only 4 solar neutrino experiments (Chlorine, Gallex, Sage, Kamiokande) left no space for the 7 Be neutrinos without oscillations - Make the first ever observations of sub-mev neutrinos in real time, especially for 7 Be solar neutrinos, testing the Standard Solar Model and the MSW-LMA solution of the Solar Neutrino Problem (and check their solar origin by measuring the expected 7% seasonal variation of the signal due to the Earth s orbital eccentricity) - Provide a strong constraint on the 7 Be rate, at or below 5% (provide an essential input to check the balance between photon luminosity and neutrino luminosity of the Sun (requires 7 Be flux measured at 5% and pp flux at 1%) - Explore possible traces of non-standard neutrino-matter interactions or presence of mass varying neutrinos. A. Pocar - SSI SLAC, August 12,

10 additional possible first time measurements - CNO neutrinos (direct indication of metallicity in the Sun s core) - pep neutrinos (indirect constraint on pp neutrino flux) - low energy (2-5 MeV) 8B neutrinos - tail end of pp neutrinos spectrum? A. Pocar - SSI SLAC, August 12,

11 Detection technique Water Čerenkov detectors have a lower energy threshold of 5-6 MeV Neutrino electron scattering on electrons in a large target of organic liquid scintillator: - measure the energy of recoiling electrons: very low energy threshold - high light yield (good energy resolution) - good position reconstruction (photon time of flight) - possible to re-purify the scintillator (needed because ν, β, γ events look alike) - separate high and low ionization events (α/β discrimination) - no directional information 14C background 7Be: no oscillation 7Be: LMA prediction 7Be: if P ee = 0 finite energy resolution mono-energetic 862 kev 7 Be neutrinos produce an almost flat spectrum with a 667 kev endpoint A. Pocar - SSI SLAC, August 12,

12 Borexino challenges The experiment s main background is natural radioactivity Natural radioactivity: - 14 C, present in organic scintillator (β, t1/2=5730 y, Q=156 kev) - long-lived primordial radioactivity: 232 Th, 235 U, 238 U, 40 K (α, β, γ) - radon and radon daughters on surfaces ( 222 Rn, 210 Pb, 210 Po) - 39 Ar, 85 Kr ((β, t1/2=270/10 y, Q=565/687 kev) - need to use the cleanest materials available - minimize air exposure: 222 Rn (tens Bq/m 3 ), 85 Kr (1 Bq/m 3 ), 39 Ar (16 mbq/m 3 ) Muons and muon induced radioactivity - need to be deep underground - 11 C, 10 C, 7 Be and others [C. Arpesella et al., Astropart. Phys. 18 (2002) 1] A. Pocar - SSI SLAC, August 12,

13 Gran Sasso Gran Sasso (LNGS) 3500 m.w.e. shielding muon flux ~ 1/h/m 2 A. Pocar - SSI SLAC, August 12,

14 ν Graded shielding design ν n e γ Rn A. Pocar - SSI SLAC, August 12,

15 Event generation ν-e scattering + 2 ionization + UV light emission e scintillation light detection with 2200 PMTs solvent (PC) + fluor (PPO, 1,5 g/l) energy and position of each event with photon arrival time and collected charge A. Pocar - SSI SLAC, August 12,

16 Scintillator purification - petroleum derivative with 12 C/ 14 C ~ ( 10 6 lower than surface carbon) - fast shipment underground to minimize 7 Be activation (EC, t 1/2 =53 d, 478 kev γ-ray) - 6-stage distillation + low Ar/Kr N2 gas stripping for PC solvent - separate filtration, distillation + stripping for concentrated PPO fluor solution - all plants, tanks and lines precision cleaned (detergent + acid etching) A. Pocar - SSI SLAC, August 12,

17 Alimonti et al., Nucl. Instr. Meth A 406 (1998) 411 Counting Test Facility Measurement of scintillator contaminations proving the feasibility of Borexino (1995): 238U = (3.5 ± 1.3) x g/g 232Th = (4.4 ± 1.5) x g/g 14C/ 12 C = (1.94 ± 0.09) x note: Th and U contamination dominated by external background campaigns (1995, 2001, ): - testing facility for scintillator ( 14 C) - materials employed in Borexino (nylon, ropes) - scintillator purification strategies - limits on rare phenomena (e-decay, magnetic moment,...) A. Pocar - SSI SLAC, August 12,

18 the KamLAND example In KamLAND, where little specific measures were taken to maximize radio-purity at low energy, the background was 5 orders of magnitude above the 7 Be expected signal [Kishimoto for the KamLAND collaboration, TAUP 2007, Sendai, Japan] A. Pocar - SSI SLAC, August 12,

19 Nylon vessels - nylon pellets with Th, U concentration in weight (ppt) [C. Arpesella et al., Astropart. Phys. 18, 1 (2002)] - clean extrusion and post-extrusion surface cleaning to level 25 Mil. Std. 1246C ( 226 Ra contamination of final film < 21 μbq/kg) [M. Wójcik et al., NIM A 498, 240 (2003)] - nylon vessels (inner for scintillator containment, outer Rn barrier) made in a class 100 clean room - surfaces kept covered as much as possible during assembly, shipping and installation - each vessels assembled as a self-covering stack and assembled into a nested set - radon-scrubbed clean room make up air, via a room temperature vacuum swing adsorption (VSA) on activated charcoal device (first of its kind) - clean room air humidified with aged water - detector turned into a class 10,000 clean room [J. Benziger et al., NIM A 582, 509 (2007)] A. Pocar - SSI SLAC, August 12,

20 Nylon vessel installation A. Pocar - SSI SLAC, August 12,

21 Borexino gas purging Nylon vessel inflation: - low Rn synthetic air - low Rn N2 - low Ar, Kr, Rn N2 A. Pocar - SSI SLAC, August 12,

22 A. Pocar - SSI SLAC, August 12,

23 Borexino water filling interesting optics: total internal reflection! Detector filling with ultra-pure water 12 muon events from CNGS neutrino beam observed 10/2006 (the detector ~80% full) A. Pocar - SSI SLAC, August 12,

24 Borexino water filling Water filling: complete plant commissioning + rinse surfaces from Rn daughter A. Pocar - SSI SLAC, August 12,

25 Borexino scintillator filling Scintillator inserted from the top: track its purity with fully shielded detector A. Pocar - SSI SLAC, August 12,

26 Borexino scintillator filling Detector full, May A. Pocar - SSI SLAC, August 12,

27 First data Raw energy spectrum (no cuts) days of detector live time tons of scintillator Main features: 14 C: used for energy calibration and mass normalization 210 Po: monitor of detector stability continuous γ spectrum events/(days x 100 tons x 5 photoelectrons) 14 C 210 Po raw data predicted 7 Be neutrino signal (MSW-LMA oscillations) background from external gamma rays Borexino data Light yield: ~ 500 photoelectrons every 1 MeV of energy release (for electrons) [~ 10% less for γ rays, much less (factor of ~ 10) for α particles because of quenching where the ionization density in the scintillator is higher] A. Pocar - SSI SLAC, August 12,

28 Fiducial volume Select only the innermost 100 tons (within a 3 meter radius) of scintillator to improve S/N, taking advantage of the increased shielding layer - events selected according to their reconstructed position - eliminates most external γ-ray background - also eliminates signals from radioactivity on the inner vessel and radon emanated from its surface A. Pocar - SSI SLAC, August 12,

29 Fiducial volume definition: Selecting the fiducial volume - position reconstruction algorithms not completely calibrated and have some systematic radial biases - we select the spherical volume centered on the detector center which produces (100 tons / 278 tons) = 35.9% of the total number of 14 C-like events in the photoelectron range z vs R c scatter plot Possible problems: - 14 C may not be evenly distributed in the detector if the scintillator came from different batches and mixing is not complete - position reconstruction may have different systematic biases (scaling factors) at 14 C and 7 Be neutrino energies - possible light loss for events farther from the center of the detector!"#"$%&"'s$n).$/&%#$!&$,#'&<#$>)'').$9,&'$+-$#%/:0m. $ 9,&'$RLB.$!")!$M#%#!,)!#$!"#$=099#, The mass normalization is the largest source of systematic error - will perform source calibrations in the future R! x " y!! A. Pocar - SSI SLAC, August 12, c

30 Delayed coincidences Certain isotopes can be readily identified as they produce coincident decays in rapid succession at the same location in the detector β+γ α 214 Bi 214 Po 210 Pb (τ = 237 μs, 238 U chain, 222 Rn daughter) 3.3 MeV 7.7 MeV β+γ α 212 Bi 212 Po 208 Pb (τ = 431 ns, BR = 64%, 232 Th chain) 3.3 MeV 8.8 MeV β γ 85 Kr 85m Rb 85 Rb (τ = 1.46 μs, BR = 0.43%) 687 kev 514 kev False positives are extremely unlikely as the coincidence time is much smaller than the time separation of random events of similar energies (this is true even without applying tight constraints on the position of the events in the pair) A. Pocar - SSI SLAC, August 12,

31 Radon daughters subtraction Bi/ 214 Po decays can be easily removed from the data set - their rate in the detector is the same as that of all isotopes which constitute the rapid succession of α and β decays separating 222 Rn and 210 Pb: 222 Rn 218 Po 214 Pb 214 Bi 214 Po 210 Pb ( 210 Bi 210 Po 206 Pb) τ = 5.5 d 4.4 m 39 m 28 m 237 μs 22.3 y - Excluding events preceding a BiPo-214 coincidence by 3 hours or less, and within 1 m of the BiPo-214 events spatial locations, lets us eliminate > 90% of each of these five species from the data, with little sample loss - This is particularly useful for the β-emitting isotope 214 Pb, whose spectrum has a broad peak near the 7 Be neutrino shoulder energy. A. Pocar - SSI SLAC, August 12,

32 Data after fiducial volume and radon cuts days tons exposure (note: events with z > 1.8 m were also excluded due to Rn contamination during detector top-off operations) Main features: 14 C: unaltered 210 Po: - sharper peak - same amplitude gamma background substantially reduced 11 C: muon produced positron emitter events/(days x 100 tons x 5 photoelectrons) Energy Raw spectrum energy spectrum (fid. vol. (no + Rn cuts) cuts) 14 C 210 Po 7 Be raw data data after fid. vol. + Rn cuts predicted 7 Be neutrino signal (MSW-LMA oscillations) background from external gamma rays 7 Be Compton shoulder visible after these very simply cuts! background from external gamma rays 11 C Borexino data A. Pocar - SSI SLAC, August 12,

33 210 Po background Po (τ = 200 d) activity is ~ 60 events/d/ton (> 100 the predicted 7 Be solar neutrino rate!) Po is out of equilibrium with 210 Pb and 210 Bi, since the decay rate of the latter is >100 times smaller (β and γ decays of 210 Pb are < 100 kev and buried under 14 C) events/(days x 100 tons x 5 photoelectrons) 210 Po data after fid. vol. + Rn cuts fitted 210 Po α peak (gaussian) 210 Bi β spectrum if it were in equilibrium with 210 Po > 2 orders of magnitude Borexino data 210 Po has a very complicated chemistry, certainly different than that of 210 Pb: - confirms tests performed with the latest CTF runs - also seen during recent KamLAND scintillator purification - contamination and wash-off patterns studied in the lab - needs dedicated purification strategy A. Pocar - SSI SLAC, August 12, 2008 [Kishimoto, TAUP 2007, Sendai, Japan] 33

34 α/β discrimination α particles leave a more densely ionized track than electrons and photons (α s are ~ 8000 times more massive and travel much more slowly than electrons of the same kinetic energy, according to T = (γ - 1) mc 2 ) As a consequence, typical pulse shapes of α and β events producing the same amount of scintillation are different Two effects: 1) α particles produce less scintillation light per unit energy than electrons by a factor ~ 10, meaning that α decays (4-8 MeV) appear to have β-equivalent energies < 1 MeV 214Bi β average pulse shape 214Po α average pulse shape 2) the relative amplitude of the slow component of the scintillator pulse is greater for α particles [H. Back et al., Nucl. Instr. Meth. A 584 (2008) 98] A. Pocar - SSI SLAC, August 12,

35 Data after α subtraction raw data data after fiducial volume + Rn cuts data after α subtraction predicted 7 Be neutrino signal (MSW-LMA oscillations) Borexino data β and γ spectra unaffected by α subtraction A. Pocar - SSI SLAC, August 12,

36 7 Be solar neutrino flux Fit result for 7 Be ν: 47 ± 7 stat ± 12 sys events/(day x 100 tons) Predicted (SSM, no oscillations): 75 ± 4 theor events/(day x 100 tons) Borexino data Predicted (with LMA vacuum oscillations): 49 ± 4 theor events/(day x 100 tons) [Phys. Lett. B 658 (2008) 101, arxiv: ] A. Pocar - SSI SLAC, August 12,

37 Counts/(10 kev x day x 100 tons) days of data [arxiv: , submitted to Phys. Rev. Lett.] Fit:! 2 /NDF = 185/174 7 Be: 49±3 cpd/100 tons 210 Bi+CNO: 23±2 cpd/100 tons 85 Kr: 25±3 cpd/100 tons 11 C: 25±1 cpd/100 tons 14 C 10 C Borexino data Energy [kev] A. Pocar - SSI SLAC, August 12,

38 192 days of data (second, independent analysis) [arxiv: , submitted to Phys. Rev. Lett.] A. Pocar - SSI SLAC, August 12, 2008

39 Fiducial Volume definition: uniform background sources( 14 C, 222 Rn, capture of cosmogenic n), 220 Rn decay emitted by nylon, diffuser balls on the IV surface,laser activated. 192 days of data Expected interaction rate in absence of oscillations: 75±4 cpd/100 tons for LMA-MSW oscillations: 48±4 cpd/100 tons A. Pocar - SSI SLAC, August 12, 2008 Estimated 1σ Systematic Uncertainties * [%] Total Scintillator Mass 0.2 Fiducial Mass Ratio 6.0 Live Time 0.1 Detector Resp. Function 6.0 Cuts Efficiency 0.3 Total 8.5 * Prior to Calibration 7 Be Rate: 49±3stat±4syst cpd/100 tons

40 49 ± 3stat ± 4syst cpd/100 tons (862 kev 7 Be solar ν) Φ( 7 Βe) = (5.12 ±0.51) x 10 9 cm 2 s -1 SSM: high metallicity: (5.08±0.56) x10 9 cm -2 s -1 low metallicity: (4.55 ±0.5) x10 9 cm -2 s -1 after Borexino A. Pocar - SSI SLAC, August 12, 2008

41 !"#$%&%' ()'*+$,-"./01210&!"! 23%&'!"#$%"&'(%) *%# +,+ B8C9$,/, =D<,/, EC!"# $%&'()*+,)&(-&(,.(/ 010!"#$ %&' ()* %&' +# 456 7!"&(,.(* 010,"#$-./012"3$ &'5%/*!"#$%&'! "4 78 "49 56 $ "4 56 "$&(&)*+$$$$$$,-./0$$123 /#@$%&' 4/0$%&' ":$/;0!$#+$$$< =5>$$?;0@A 1B,!4* %&'CD?9EB)>'F G.'65"'&)H/)!B+* 64)'F#&'65')4I) 1B, J#0#6#K#%$$/)2,)5L&LK!"#$%&'$("#%)* +,)-.$/0)1,,2 A. Pocar - SSI SLAC, August 12, 2008 measured backgrounds 3#4%55"#64)7%6.55#)* 89:9;9:9)<'=9)&#)>#$%64

42 What next: pep and CNO solar neutrinos Scientifically desirable: - pep rate is closely connected with pp rate (low energy, mostly obscured by 14 C), first fusion step in the sun - CNO flux has large theoretical uncertainty (30%) depending on unknown factors of the solar chemical composition (metallicity of the mantle) Hard to detect: - the expected pep and CNO solar neutrino rates are 5-10 times smaller than 7 Be, which obscures most of their spectrum - pep Compton shoulder falls below the 11 C positron spectrum Bi, 40 K and 208 Tl ( 232 Th) backgrounds CNO, pep 11 C event-by-event subtraction: - when a muon produces a 11 C, simulations suggest that a free muon is also emitted ~95% of the times - muon, neutron capture (~200 μs) and 11 C decay (29 m) can be correlated in space and time with manageable dead time [C. Galbiati et al., Phys. Rev. C 71 (2005) ] A. Pocar - SSI SLAC, August 12,

43 μ Track n Capture 11 C #$ %&?''( %%?$6I# %% )I' I I! ' 6)5%(A.@' *"+&,& >'JK A. Pocar - SSI SLAC, August 12, 2008

44 What next: geo-neutrinos,... Antineutrinos are emitted by natural radioactivity in the earth s crust (β decays of 40 K and 238 U, 232 Th daughters) and by decaying fission products in nuclear reactors; some these can be detected by inverse β decay of protons (E > 1.8 MeV): νe + p n + e + One detects the e + annihilation followed by a 2.2 MeV γ from neutron capture on H Evidence of their detection published by KamLAND [Nature, 436 (2005) 499] ~10 geo-neutrino events/year are expected in Borexino, 280 tons (~10 from reactors) [Rothschild, Chen and Calaprice, Geophys. Res. Lett. 25 (1998) 1083; arxiv:nucl-ex/ ] What else? - 8 B solar neutrinos (matter- to vacuum-dominated oscillations) - pp solar neutrinos (possible shoulder above 14 C) - neutrinos and antineutrinos from supernovæ in our galaxy - neutrino magnetic moment with 1 MCi 51 Cr (10-11 μb sensitivity) A. Pocar - SSI SLAC, August 12,

45 A. Pocar - SSI SLAC, August 12,

46 Summary - Borexino has made the first real time measurement of 7 Be solar neutrinos and the observed flux, with 192 days of live time, is consistent with the MSW-LMA neutrino oscillation solution (and incompatible with no oscillations) - Borexino is the most sensitive solar neutrino running experiment, thanks to having achieved unprecedented low levels of background (first real-time neutrino detection below the threshold of natural radioactivity, the result of a decade-long, pioneering effort in low background physics) - Borexino is scheduled to run for many years with a challenging scientific agenda; it will attempt to measure the entire solar neutrino spectrum, terrestrial and supernova neutrinos, and possibly discover non-standard neutrino properties A. Pocar - SSI SLAC, August 12,

47 the Borexino collaboration New results on solar neutrino fluxes from 192 days of Borexino data C. Arpesella, 1, 2, a H.O. Back, 3, b M. Balata, 1 G. Bellini, 2 J. Benziger, 4 S. Bonetti, 2 A. Brigatti, 2 B. Caccianiga, 2 L. Cadonati, 5, 6 F. Calaprice, 6 C. Carraro, 7 G. Cecchet, 8 A. Chavarria, 6 M. Chen, 9, 6 F. Dalnoki-Veress, 6 D. D Angelo, 2 A. de Bari, 8 A. de Bellefon, 10 H. de Kerret, 10 A. Derbin, 11 M. Deutsch, 12, a A. di Credico, 1 G. di Pietro, 1, 2 R. Eisenstein, 6 F. Elisei, 13 A. Etenko, 14 R. Fernholz, 6 K. Fomenko, 15 R. Ford, 6, 1, c D. Franco, 2 B. Freudiger, 16, a C. Galbiati, 6, 2 F. Gatti, 7 S. Gazzana, 1 M. Giammarchi, 2 D. Giugni, 2 M. Goeger-Neff, 17 T. Goldbrunner, 17, d A. Goretti, 6, 2, 1 C. Grieb, 3, e C. Hagner, 17, f W. Hampel, 16 E. Harding, 6, g S. Hardy, 3 F.X. Hartman, 16 T. Hertrich, 17 G. Heusser, 16 Aldo Ianni, 1, 6 Andrea Ianni, 6 M. Joyce, 3 J. Kiko, 16 T. Kirsten, 16 V. Kobychev, 18 G. Korga, 1 G. Korschinek, 17 D. Kryn, 10 V. Lagomarsino, 7 P. Lamarche, 6, 1 M. Laubenstein, 1 C. Lendvai, 17 M. Leung, 6 T. Lewke, 17 E. Litvinovich, 14 B. Loer, 6 P. Lombardi, 2 L. Ludhova, 2 I. Machulin, 14 S. Malvezzi, 2 S. Manecki, 3 J. Maneira, 9, 2, h W. Maneschg, 16 I. Manno, 19, 2 D. Manuzio, 7, i G. Manuzio, 7 A. Martemianov, 14, a F. Masetti, 13 U. Mazzucato, 13 K. McCarty, 6 D. McKinsey, 6, j Q. Meindl, 17 E. Meroni, 2 L. Miramonti, 2 M. Misiaszek, 20, 1 D. Montanari, 1, 6 M.E. Monzani, 1, 2 V. Muratova, 11 P. Musico, 7 H. Neder, 16 A. Nelson, 6 L. Niedermeier, 17 L. Oberauer, 17 M. Obolensky, 10 M. Orsini, 1 F. Ortica, 13 M. Pallavicini, 7 L. Papp, 1 S. Parmeggiano, 2 L. Perasso, 2 A. Pocar, 6, k R.S. Raghavan, 3 G. Ranucci, 2 W. Rau, 16, 9 A. Razeto, 1 7, 16 E. Resconi, P. Risso, 7 A. Romani, 13 D. Rountree, 3 A. Sabelnikov, 14 R. Saldanha, 6 C. Salvo, 7 D. Schimizzi, 4 S. Schönert, 16 T. Shutt, 6, l H. Simgen, 16 M. Skorokhvatov, 14 O. Smirnov, 15 A. Sonnenschein, 6, m A. Sotnikov, 15 S. Sukhotin, 14 Y. Suvorov, 2, 14 R. Tartaglia, 1 G. Testera, 7 D. Vignaud, 10 S. Vitale, 7, a R.B. Vogelaar, 3 F. von Feilitzsch, 17 R. von Hentig, 17, e T. von Hentig, 17, e M. Wojcik, 20 M. Wurm, 17 O. Zaimidoroga, 15 S. Zavatarelli, 7 and G. Zuzel 16 (Borexino Collaboration) 1 INFN Laboratori Nazionali del Gran Sasso, SS 17 bis Km , Assergi (AQ), Italy 2 Dipartimento di Fisica, Università degli Studi e INFN, Milano, Italy 3 Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 4 Chemical Engineering Department, Princeton University, Princeton, NJ 08544, USA 5 Physics Department, University of Massachusetts, Amherst, AM 01003, USA 6 Physics Department, Princeton University, Princeton, NJ 08544, USA 7 Dipartimento di Fisica, Università e INFN, Genova 16146, Italy 8 INFN, Pavia 27100, Italy 9 Physics Department, Queen s University, Kingston ON K7L 3N6, Canada 10 Laboratoire AstroParticule et Cosmologie, Paris cedex 13, France 11 St. Petersburg Nuclear Physics Institute, Gatchina, Russia 12 Physics Department, Massachusetts Institute of Technology, Cambridge, MA, USA 13 Dipartimento di Chimica, Università e INFN, Perugia, Italy 14 RRC Kurchatov Institute, Moscow, Russia 15 Joint Institute for Nuclear Research, Dubna, Russia 16 Max-Planck-Institut für Kernphysik, Heidelberg, Germany 17 Physik Department, Technische Universität Muenchen, Garching, Germany 18 Kiev Institute for Nuclear Research, Kiev, Ukraine 19 KFKI-RMKI, 1121 Budapest, Hungary 20 M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland (Dated: June 9, 2008) A. Pocar - SSI SLAC, August 12,

Precision measurement of the Be solar neutrino interaction rate in Borexino

Precision measurement of the Be solar neutrino interaction rate in Borexino University of Massachusetts Amherst From the SelectedWorks of Laura Cadonati August 4, 011 Precision measurement of the Be solar neutrino interaction rate in Borexino Borexino Collaboration, Borexino Collaboration

More information

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration 192 days of Borexino Neutrino 2008 Christchurch, New Zeland May 26, 2008 Cristiano Galbiati on behalf of Borexino Collaboration 2 Solar Neutrinos Spectrum 3 Solar Neutrinos Spectrum SNO, SuperK 3 Solar

More information

PoS(ICHEP2012)392. Solar neutrino results with Borexino I

PoS(ICHEP2012)392. Solar neutrino results with Borexino I I, G. Bellini, J. Benziger, D. Bick, G. Bonfini, D. Bravo, M. Buizza Avanzini, B. Caccianiga, L. Cadonati, F. Calaprice, P. Cavalcante, A. Chavarria, A. Chepurnov, D. D Angelo, S. Davini, A. Derbin, A.

More information

First evidence of pep solar neutrinos by direct detection in Borexino

First evidence of pep solar neutrinos by direct detection in Borexino First evidence of pep solar neutrinos by direct detection in Borexino Results from solar neutrino experiments are consistent with the Mikheyev-Smirnov-Wolfenstein Large Mixing Angle (MSW-LMA) model [7],

More information

New Experimental Limits on Heavy Neutrino Mixing in 8 B-Decay Obtained with the Borexino Counting Test Facility

New Experimental Limits on Heavy Neutrino Mixing in 8 B-Decay Obtained with the Borexino Counting Test Facility JETP Letters, Vol. 78, No. 5, 003, pp. 61 66. From Pis ma v Zhurnal Éksperimental noœ i Teoreticheskoœ Fiziki, Vol. 78, No. 5, 003, pp. 707 71. Original English Text Copyright 003 by Back, Belata, Bari,

More information

Neutrino interactions at few MeV: results from Borexino at Gran Sasso

Neutrino interactions at few MeV: results from Borexino at Gran Sasso Neutrino interactions at few MeV: results from Borexino at Gran Sasso Laura Perasso a for the Borexino Collaboration: Nuclear Physics B (Proc. Suppl.) 212 213 (2011) 121 127 G. Bellini, S. Bonetti, M.

More information

Results from Borexino 26th Rencontres de Blois

Results from Borexino 26th Rencontres de Blois Results from Borexino 26th Rencontres de Blois - 2014 Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/

More information

New results of the Borexino experiment: pp solar neutrino detection

New results of the Borexino experiment: pp solar neutrino detection IL NUOVO CIMENTO 38 C (2015) 120 DOI 10.1393/ncc/i2015-15120-4 Colloquia: LaThuile15 New results of the Borexino experiment: pp solar neutrino detection S. Davini( 1 ), G. Bellini( 2 ),J.Benziger( 3 ),D.Bick(

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso 1 RADIOCHEMICAL Integrated in energy and time CHERENKOV Less than 0.01% of the solar neutrino flux is been measured in

More information

Geo-neutrinos from 1353 days with the Borexino detector

Geo-neutrinos from 1353 days with the Borexino detector Available online at www.sciencedirect.com ScienceDirect Physics Procedia 61 (2015 ) 340 344 Geo-neutrinos from 1353 days with the Borexino detector L.Miramonti on behalf of the Borexino Collaboration Physics

More information

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS Alex Wright Princeton University University of Chicago HEP Seminar May 10 th, 2010 Solar Neutrino Production p-p Solar

More information

Solar Neutrinos in Large Liquid Scintillator Detectors

Solar Neutrinos in Large Liquid Scintillator Detectors Solar Neutrinos in Large Liquid Scintillator Detectors M. Chen Queen s University DOANOW March 24, 2007 Low Energy Solar Neutrinos complete our understanding of neutrinos from the Sun pep, CNO, 7 Be, pp

More information

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Moscow, 15/10/2005 Aldo Ianni, INFN LNGS 1 Outline Borexino: Italian-Russian cooperation

More information

Neutrinos from the Sun and other sources: Results from the Borexino experiment

Neutrinos from the Sun and other sources: Results from the Borexino experiment Neutrinos from the Sun and other sources: Results from the Borexino experiment Marianne Göger-Neff 23.05.2014 Neutrinos from the Sun and other sources: Results from the Borexino experiment Motivation:

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

arxiv: v1 [physics.ins-det] 3 Oct 2014

arxiv: v1 [physics.ins-det] 3 Oct 2014 Solar neutrino with Borexino: results and perspectives 1 arxiv:1410.0779v1 [physics.ins-det] 3 Oct 2014 O. Smirnov b, G. Bellini a, J. Benziger k, D. Bick s, G. Bonfini e, D. Bravo q, B. Caccianiga a,

More information

Low background techniques in particle physics: an introduction

Low background techniques in particle physics: an introduction Low background techniques in particle physics: an introduction low background scientist? Andrea Pocar - UMass Amherst NEPPSR - August 12, 2009 A. Pocar - NEPPSR - 8/12/09 1 Outline - what is low background

More information

The high precision measurement of the 144 Ce activity in the SOX experiment

The high precision measurement of the 144 Ce activity in the SOX experiment Journal of Physics: Conference Series PAPER OPEN ACCESS The high precision measurement of the 144 Ce activity in the SOX experiment To cite this article: L Di Noto et al 2016 J. Phys.: Conf. Ser. 675 012035

More information

Real-time detection of solar neutrinos with Borexino

Real-time detection of solar neutrinos with Borexino IL NUOVO CIMENTO 40 C (2017) 58 DOI 10.1393/ncc/i2017-17058-9 Colloquia: IFAE 2016 Real-time detection of solar neutrinos with Borexino S. Marcocci( 24 ),M.Agostini( 24 )( 22 ),K.Altenmüller( 22 ), S.

More information

Scintillator phase of the SNO+ experiment

Scintillator phase of the SNO+ experiment Mathematik und Naturwissenschaften Institut für Kern- und Teilchen Physik Scintillator phase of the experiment Valentina Lozza On behalf of Collaboration TAUP2011, 05.09.2011 Munich Outline = SNO + Liquid

More information

Neutrinos from the primary proton proton fusion process in the Sun

Neutrinos from the primary proton proton fusion process in the Sun doi:.38/nature13702 Neutrinos from the primary proton proton fusion process in the Sun Borexino Collaboration* In the core of the Sun, energy is released through sequences of nuclear reactions that convert

More information

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Review of Solar Neutrinos Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Solar Neutrinos pp chain: 4p + 2e 4 He + 2ν e + 26.7

More information

BOREXINO - Status and Calibration

BOREXINO - Status and Calibration BOREXINO - Status and Calibration International Workshop on "Double Beta Decay and Neutrinos" Osaka, June 12, 2007 Christian Grieb for the Borexino Collaboration Virginia Tech Borexino Collaboration College

More information

Low Energy Neutrino Astronomy and Results from BOREXINO

Low Energy Neutrino Astronomy and Results from BOREXINO Low Energy Neutrino Astronomy and Results from BOREXINO DESY Hamburg / DESY Zeuthen March 25 th and 26th Lothar Oberauer, Physikdepartment E15, TU München Charge 0-1 +2/3-1/3 Neutrinos as probes? Neutrinos

More information

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration NOW 2014, Otranto, Lecce, Italy September 7-14, 2014 Intro Neutrino physics with the SNO+ detector 2 Intro What we know:! Neutrinos

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Monte Carlo simulations in neutrino physics: the example of the SOX experiment

Monte Carlo simulations in neutrino physics: the example of the SOX experiment Monte Carlo simulations in neutrino physics: the example of the SOX experiment A. Caminata 1, M. Agostini 2, K. Altenmüller 2, S. Appel 2, G. Bellini 3,J. Benziger 4, N. Berton 5, D. Bick 6, G. Bonfini

More information

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff Solar Neutrinos: Status and Prospects Marianne Göger-Neff NIC 2014, Debrecen TU München Solar Neutrinos Objective of the first solar neutrino experiment: to see into the interior of a star and thus verify

More information

Low Energy Neutrinos. G. RANUCCI Istituto Nazionale di Fisica Nucleare Via Celoria 16, Milano, Italy

Low Energy Neutrinos. G. RANUCCI Istituto Nazionale di Fisica Nucleare Via Celoria 16, Milano, Italy International Journal of Modern Physics: Conference Series c World Scientific Publishing Company Low Energy Neutrinos G. RANUCCI Istituto Nazionale di Fisica Nucleare Via Celoria 16, 20133 Milano, Italy

More information

Solar Neutrino Oscillations

Solar Neutrino Oscillations Solar Neutrino Oscillations ( m 2, θ 12 ) Background (aka where we were): Radiochemical experiments Kamiokande and Super-K Where we are: Recent results SNO and KamLAND Global picture Where we are going:

More information

DarkSide-50: performance and results from the first atmospheric argon run

DarkSide-50: performance and results from the first atmospheric argon run DarkSide-50: performance and results from the first atmospheric argon run Yann Guardincerri on behalf of the DarkSide Collaboration August 27th, 2014 1 / 21 DarkSide Direct detection search for WIMP dark

More information

arxiv: v2 [hep-ex] 11 Nov 2015

arxiv: v2 [hep-ex] 11 Nov 2015 A test of electric charge conservation with Borexino arxiv:1509.01223v2 [hep-ex] 11 Nov 2015 M. Agostini s,u, S. Appel s, G. Bellini k, J. Benziger o, D. Bick d, G. Bonfini j, D. Bravo q, B. Caccianiga

More information

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015 Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015 Signals in Borexino Solar n Anti-n from the Earth (see A. Ianni talk) Anti-n (or n) from a radioactive source (SOX,

More information

arxiv: v1 [hep-ex] 22 Jan 2009

arxiv: v1 [hep-ex] 22 Jan 2009 Solar neutrino detection Lino Miramonti Physics department of Milano University and INFN arxiv:0901.3443v1 [hep-ex] 22 Jan 2009 Abstract. More than 40 years ago, neutrinos where conceived as a way to test

More information

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino Muons in Borexino SFB Block Meeting Daniel Bick Universität Hamburg 24.03.2010 D. Bick (Uni HH) Muons in Borexino 24.03.2010 1 / 30 Overview 1 Motivation Physics at Borexino Neutrino Detection in Liquid

More information

Water Purification in Borexino

Water Purification in Borexino Water Purification in Borexino Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare - Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/ On

More information

arxiv:physics/ v2 [physics.ins-det] 27 Sep 2007

arxiv:physics/ v2 [physics.ins-det] 27 Sep 2007 Phenylxylylethane (PXE): a high-density, arxiv:physics/0408032v2 [physics.ins-det] 27 Sep 2007 high-flashpoint organic liquid scintillator for applications in low-energy particle and astrophysics experiments

More information

KamLAND. Introduction Data Analysis First Results Implications Future

KamLAND. Introduction Data Analysis First Results Implications Future KamLAND Introduction Data Analysis First Results Implications Future Bruce Berger 1 Tohoku University, Sendai, Japan University of Alabama University of California at Berkeley/LBNL California Institute

More information

Cosmic-Muon Flux and Annual Modulation in Borexino at 3800 m Water-Equivalent Depth

Cosmic-Muon Flux and Annual Modulation in Borexino at 3800 m Water-Equivalent Depth University of Massachusetts Amherst From the SelectedWorks of Andrea Pocar May 15, 2012 Cosmic-Muon Flux and Annual Modulation in Borexino at 3800 m Water-Equivalent Depth G. Bellini J. Benziger D. Bick

More information

Search for Sterile Neutrinos with the Borexino Detector

Search for Sterile Neutrinos with the Borexino Detector Search for Sterile Neutrinos with the Borexino Detector PANIC 2014 Hamburg on behalf of the BOREXINO Collaboration Institut für Experimentalphysik (Universität Hamburg) Borexino Detector Site 1400 m of

More information

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Results from Borexino on solar (and geo-neutrinos) Gemma Testera Results from Borexino on solar (and geo-neutrinos) Gemma Testera Istituto Nazionale di Fisica Nucleare (Genova) On behalf of the Borexino collaboration Scintillator: 270 t PC+PPO (1.5 g/l) in a 150 mm

More information

Measurements of extremely low radioactivity levels in BOREXINO

Measurements of extremely low radioactivity levels in BOREXINO Measurements of extremely low radioactivity levels in BOREXINO BOREXINO Collaboration C. Arpesella a, H.O. Back b, M. Balata a, T. Beau o, G. Bellini l&, J. Benziger r, S. Bonetti l, A. Brigatti l, C.

More information

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos 14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin The Solar Neutrinos 14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009

More information

Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory

Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory Frank Calaprice and Jingke Xu Department of Physics Princeton University 4/10/2014 Solar Neutrinos at Jin Ping 1 Solar Neutrinos

More information

1. Neutrino Oscillations

1. Neutrino Oscillations Neutrino oscillations and masses 1. Neutrino oscillations 2. Atmospheric neutrinos 3. Solar neutrinos, MSW effect 4. Reactor neutrinos 5. Accelerator neutrinos 6. Neutrino masses, double beta decay 1.

More information

Proton decay and neutrino astrophysics with the future LENA detector

Proton decay and neutrino astrophysics with the future LENA detector Proton decay and neutrino astrophysics with the future LENA detector Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München Paris, 11.09.08 Outline

More information

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico Results on geoneutrinos at Borexino experiment Heavy Quarks and Leptons 2018 - Yamagata Davide Basilico Outline 1. Geoneutrinos 2. Borexino 3. Analysis and results 2 What are geoneutrinos? Distribution

More information

KamLAND. Studying Neutrinos from Reactor

KamLAND. Studying Neutrinos from Reactor KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KEK : High Energy Accelerator Research Organization KamLAND Collaboration Outline 1. KamLAND Overview 2. Reactor Neutrinos 3. e Detection in Liquid

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich) GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09 Neutrinos mixing

More information

Solar Neutrinos Spectroscopy with Borexino Phase-II

Solar Neutrinos Spectroscopy with Borexino Phase-II Article Solar Neutrinos Spectroscopy with Borexino Phase-II L. Miramonti 10, * on behalf of the Borexino Collaboration, M. Agostini 17, K. Altenmüller 17, S. Appel 17, V. Atroshchenko 7, Z. Bagdasarian

More information

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM Solar Neutrinos & MSW Effect Pouya Bakhti General Seminar Course Nov. 2012 - IPM Outline Introduction Neutrino Oscillation Solar Neutrinos Solar Neutrino Experiments Conclusions Summary Introduction Introduction

More information

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 First Borexino proposal: 1991 Main goal: real time measurement of sub-mev solar neutrinos Why? To solve the Solar Neutrino Puzzle (missingsolarneutrinos)

More information

Physics Letters B 687 (2010) Contents lists available at ScienceDirect. Physics Letters B.

Physics Letters B 687 (2010) Contents lists available at ScienceDirect. Physics Letters B. Physics Letters B 687 (2010) 299 304 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Observation of geo-neutrinos Borexino Collaboration G. Bellini h,j.benziger

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Supervisor: Kai Schweda 5/18/2009 Johannes Stiller 1 Outline The Standard (Solar) Model Detecting Neutrinos The Solar Neutrino Problem Neutrino Oscillations Neutrino Interactions

More information

arxiv: v2 [hep-ex] 1 Dec 2017

arxiv: v2 [hep-ex] 1 Dec 2017 First Simultaneous Precision Spectroscopy of,, and pep Solar Neutrinos with Borexino Phase-II arxiv:0.099v [hep-ex] Dec 0 M. Agostini, K. Altenmüller, S. Ael, V. Atroshchenko, Z. Bagdasarian, D. Basilico,

More information

arxiv: v1 [nucl-ex] 5 Dec 2018

arxiv: v1 [nucl-ex] 5 Dec 2018 Solar Neutrino Measurements arxiv:1812.02326v1 [nucl-ex] 5 Dec 2018 A. Pocar 14, M. Agostini 16, K. Altenmüller 16, S. Appel 16, V. Atroshchenko 7, Z. Bagdasarian 24, D. Basilico 10, G. Bellini 10, J.

More information

4p 4 He + 2e + +2ν e. (1)

4p 4 He + 2e + +2ν e. (1) 1 SOLAR NEUTRINOS Revised September 2001 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan). 1. Introduction: The Sun is a main-sequence star at a stage of stable hydrogen burning.

More information

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016 Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration Dark Matter 2016 UCLA 17th - 19th February 2016 The DarkSide program 2 Double Phase Liquid Argon TPC, a staged approach:

More information

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos Stefania Ricciardi HEP PostGraduate Lectures 2016 University of London 1 Neutrino Sources Artificial: nuclear reactors

More information

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 International Meeting for Large Neutrino Infrastructures Ecole Architecture Paris Val de Seine, APPEC, 23-24 June, 2014 Soo-Bong

More information

Metallicities in stars - what solar neutrinos can do

Metallicities in stars - what solar neutrinos can do - what solar neutrinos can do Institute for Nuclear and Particle Physics, Technical University Dresden, 01069 Dresden, Germany E-mail: zuber@physik.tu-dresden.de New elemental abundance determinations

More information

arxiv: v1 [hep-ex] 28 Mar 2012

arxiv: v1 [hep-ex] 28 Mar 2012 Search for Solar Axions Produced in p(d, He)A Reaction with Borexino Detector arxiv:10.658v1 [hep-ex] 8 Mar 01 G. Bellini, 1 J. Benziger, D. Bick, G. Bonfini, 4 D. Bravo, 5 M. Buizza Avanzini, 1 B. Caccianiga,

More information

Particle Physics: Neutrinos part I

Particle Physics: Neutrinos part I Particle Physics: Neutrinos part I José I. Crespo-Anadón Week 8: November 10, 2017 Columbia University Science Honors Program Course policies Attendance record counts Up to four absences Lateness or leaving

More information

A multipurpose detector for low energy

A multipurpose detector for low energy A multipurpose detector for low energy neutrino physics: Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München DPG Teilchenphysik Heidelberg, 09.03.07

More information

The Solar Neutrino Problem. There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are

The Solar Neutrino Problem. There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are The Solar Neutrino Problem There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are 1 H + 1 H 2 H + e + + ν e (PP I) 7 Be + e 7 Li + ν e + γ (PP II) 8 B 8 Be + e +

More information

Detection of MeV scale neutrinos and the solar energy paradigm

Detection of MeV scale neutrinos and the solar energy paradigm Journal of Physics: Conference Series PAPER OPEN ACCESS Detection of MeV scale neutrinos and the solar energy paradigm To cite this article: Aldo Ianni 2018 J. Phys.: Conf. Ser. 940 012023 View the article

More information

Dark matter search with the SABRE experiment

Dark matter search with the SABRE experiment Dark matter search with the SABRE experiment Giulia D Imperio* for the SABRE collaboration *INFN Roma 1 25-07-2017 TAUP 2017 Sudbury, Canada 1 Dark matter detection through annual modulation WIMP is one

More information

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH Background Studies for the XENON100 Experiment Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH The XENON dark matter search program Target Volume 62 kg Total

More information

Solar Neutrinos and the Borexino experiment

Solar Neutrinos and the Borexino experiment Journal of Physics: Conference Series OPEN ACCESS Solar Neutrinos and the Borexino experiment To cite this article: D Vignaud 2015 J. Phys.: Conf. Ser. 593 012007 View the article online for updates and

More information

DarkSide-50: a WIMP search with a two-phase argon TPC

DarkSide-50: a WIMP search with a two-phase argon TPC Available online at www.sciencedirect.com ScienceDirect Physics Procedia 61 (2015 ) 124 129 DarkSide-50: a WIMP search with a two-phase argon TPC P.D. Meyers (for the DarkSide Collaboration) Department

More information

arxiv: v2 [astro-ph.he] 20 Oct 2016

arxiv: v2 [astro-ph.he] 20 Oct 2016 Borexino s search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts arxiv:1607.05649v2 [astro-ph.he] 20 Oct 2016 M. Agostini a, K. Altenmüller b, S. Appel b, V. Atroshchenko

More information

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017 The SOX experiment Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017 Beyond the Standard model with Neutrinos Neutrino masses call for physics beyond Standard model

More information

Neutrino oscillation experiments: Recent results and implications

Neutrino oscillation experiments: Recent results and implications Title transparency Neutrino oscillation experiments: Recent results and implications W. Hampel MPI Kernphysik Heidelberg Motivation for talk On the way from the Standard Model to String Theory: appropriate

More information

Daya Bay and joint reactor neutrino analysis

Daya Bay and joint reactor neutrino analysis Daya Bay and joint reactor neutrino analysis Logan Lebanowski (Tsinghua University) on behalf of the Daya Bay collaboration 2016/11/4 - NNN16, Beijing 1 Contents Daya Bay Reactor Neutrino Experiment Introduction

More information

Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+

Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+ Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+ by Sarah Elizabeth Quirk A thesis submitted to the Department of Physics, Engineering Physics and

More information

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 11 Neutrino astronomy introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 11.1 The standard solar model As we discussed in stellar evolution III, to obtain a reliable model for the sun, we

More information

GALLEX-GNO. GNO experiments: status and reports. Second International Summer Student School on Neutrino Physics in Memory of Bruno Pontecorvo

GALLEX-GNO. GNO experiments: status and reports. Second International Summer Student School on Neutrino Physics in Memory of Bruno Pontecorvo GALLEX-GNO GNO experiments: status and reports R. Bernabei Univ. Roma - Tor Vergata and INFN-Roma2 Second International Summer Student School on Neutrino Physics in Memory of Bruno Pontecorvo September

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2016.. 47.. 6 MEASUREMENT OF NEUTRINO FLUX FROM THE PRIMARY PROTONÄPROTON FUSION PROCESS IN THE SUN WITH THE BOREXINO DETECTOR O. Yu. Smirnov 1,, M. Agostini 2, S. Appel 2, G. Bellini

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

Workshop Towards Neutrino Technologies July Prospects and status of LENA

Workshop Towards Neutrino Technologies July Prospects and status of LENA 2047-10 Workshop Towards Neutrino Technologies 13-17 July 2009 Prospects and status of LENA Lothar OBERAUER Technical University of Munich Department of Physics James-Franck-Strasse, 1 D-85747 Garching,

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Direct dark matter search using liquid noble gases Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Physik Institut Universität Zürich Texas Symposium 2010, Heidelberg, 09.11.2010 Teresa Marrodán Undagoitia

More information

Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities

Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities Frank Calaprice Princeton University 10/15/13 U.S. - Italy Celebration, Princeton 1 Borexino Collaboration A 20 + year successful

More information

Status of Solar Neutrino Oscillations

Status of Solar Neutrino Oscillations Status of Solar Neutrino Oscillations With many thanks to Dave Wark - RAL/ University of Sussex and Stephen Brice - Fermilab The Solar Neutrino Problem Next three plots adapted from http://www.sns.ias.edu/~jnb/

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

The DarkSide-50 Outer Detectors

The DarkSide-50 Outer Detectors The DarkSide-50 Outer Detectors Shawn Westerdale Princeton University (for the DarkSide Collaboration) TAUP 2015 Torino Thursday, Sept 10, 2015 The DarkSide-50 Experiment Located in Hall C of Laboratori

More information

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Results from DEAP-1 and Status of DEAP-3600 Pierre Gorel for the DEAP collaboration University of Alberta Dark matter Experiment

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

arxiv: v2 [hep-ex] 24 May 2017

arxiv: v2 [hep-ex] 24 May 2017 Seasonal Modulation of the 7 Be Solar Neutrino Rate in Borexino arxiv:7.797v2 [hep-ex] 2 May 27 M. Agostini u, K. Altenmüller s, S. Appel s, V. Atroshchenko h, D. Basilico k, G. Bellini k, J. Benziger

More information

arxiv:hep-ph/ v1 23 Jun 2004

arxiv:hep-ph/ v1 23 Jun 2004 EPJ manuscript No. (will be inserted by the editor) New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility arxiv:hep-ph/0406252 v 23 Jun

More information

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Observation of Reactor Antineutrinos at RENO Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Outline Introduction Experimental setup & detector Data-taking & data

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Lecture 2 Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric

More information

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up Background suppression in GERDA Phase II and its study in the LARGE low background set-up bb Dušan Budjáš Technische Universität München for the GERDA collaboration http://www.mpi-hd.mpg.de/gerda E15 Modified

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration Recent results from Borexino Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration Borexino physics! Data-taking since May 2007 : many relevant results on solar/geo ν physics and

More information

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements PHYS 5326 Lecture #6 Wednesday, Feb. 14, 2007 Dr. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements 1. Solar Neutrinos 2. Atmospheric neutrinos 3. Accelerator Based Oscillation Experiments

More information

1. Introduction on Astroparticle Physics Research options

1. Introduction on Astroparticle Physics Research options Research options Large variety of topics in astro physics and particle physics Cosmic rays (sources, production and acceleration mechanisms) Stability of matter or proton decay (GUTs) Solar neutrinos (the

More information

Rn/ 226 Ra as a Background Source in the Solar Neutrino Experiments GALLEX and BOREXINO

Rn/ 226 Ra as a Background Source in the Solar Neutrino Experiments GALLEX and BOREXINO Rn/ 226 Ra as a Background Source in the Solar Neutrino Experiments GALLEX and BOREXINO M. Wójcik, G. Zuzel Institute of Physics, Jagiellonian University 7 th of June 2017, MPI Heidelberg From Cosmochemistry

More information