Numerical approximation of Backward Stochastic Differential Equations with Jumps

Size: px
Start display at page:

Download "Numerical approximation of Backward Stochastic Differential Equations with Jumps"

Transcription

1 Numerical approximaio of Bacward Sochasic Differeial Equaios wih Jumps Aoie Lejay, Ereso Mordeci, Soledad Torres To cie his versio: Aoie Lejay, Ereso Mordeci, Soledad Torres. Numerical approximaio of Bacward Sochasic Differeial Equaios wih Jumps. Research Repor 214, pp.32. <iria v3> HAL Id: iria hps://hal.iria.fr/iria v3 Submied o 9 Sep 213 (v3), las revised 18 Sep 214 (v4) HAL is a muli-discipliary ope access archive for he deposi ad dissemiaio of scieific research documes, wheher hey are published or o. The documes may come from eachig ad research isiuios i Frace or abroad, or from public or privae research ceers. L archive ouvere pluridiscipliaire HAL, es desiée au dépô e à la diffusio de documes scieifiques de iveau recherche, publiés ou o, émaa des éablissemes d eseigeme e de recherche fraçais ou éragers, des laboraoires publics ou privés.

2 Numerical approximaio of Bacward Sochasic Differeial Equaios wih Jumps Aoie Lejay Mordeci Soledad Torres Absrac. I his oe we propose a umerical mehod o approximae he soluio of a Bacward Sochasic Differeial Equaios wih Jumps (BS- DEJ). This mehod is based o he cosrucio of a discree BSDEJ drive by a complee sysem of hree orhogoal discree ime-space marigales, he firs a radom wal covergig o a Browia moio; he secod, aoher radom wal, idepede of he firs oe, covergig o a Poisso process. The soluio of his discree BSDEJ is show o wealy coverge o he soluio of he coiuous ime BSDEJ. A applicaio o parial iegro-differeial equaios is give. Keywords: Bacward SDEs wih jumps, Sorohod opology, Poisso Process, Moe Carlo mehod. 2 AMS MSC. Primary: 6H1, Secodary: 34F5, 93E3 Uiversi de Lorraie, IECN, UMR 752, Vadœuvre-lès-Nacy, F-545, Frace; CNRS, IECL, UMR 752, Vadœuvre-lès-Nacy, F-545, Frace; Iria, Villers-ls-Nacy, F-546, Frace Aoie.Lejay@uiv-lorraie.fr. Parially suppored by he MahAmSud Worshop Sochasic Aalysis Research Newor. Cero de Maemáica, Faculad de Ciecias, Uiversidad de la República. Iguá 4225, 114, Moevideo, Uruguay; mordeci@cma.edu.uy. This auhor acowledges suppor of Proyeco Fodo Clemee Esable 111. DEUV-CIMFAV, Uiversidad de Valparaíso, Casilla 53 Valparaíso, Chile; soledad.orres@uv.cl. Parially suppored by Laboraorio de Aálisis Esocásico, PBCT-ACT13 ad Fodecy Gra N

3 1 Iroducio Cosider a sochasic process {Y, Z, U : T } ha is he soluio of a Bacward Sochasic Differeial Equaio wih Jumps (i shor BSDEJ) of he form T T Y = ξ + f(s, Y s, Z s, U s )ds Z s db s U s (x)ñ(ds, dx), (,T R T. (1.1) Here {B : T } is a oe dimesioal sadard Browia moio; Ñ(d, dx) = N(d, dx) ν(d, dx) is a compesaed Poisso radom measure defied i, T (R \ {}). Boh processes are defied o a sochasic basis B = (Ω, F T, F = {F } T, P), ad, as usual i his framewor, we assume ha hey are idepede. The ermial codiio ξ is a F T -measurable radom variable i L q (P), q > 2 (see codiio (B) i Secio 2); he coefficie f is a o-aicipaive (w.r.. (F ) ), coiuous, bouded ad Lipschiz fucio f : Ω, T R 3 R (see codiio (A) i Secio 2). The problem of solvig a BSDEJ give he ermial codiio ξ, he coefficie f, ad he drivig processes B ad Ñ, defied o a sochasic basis B, is o fid hree adaped processes {Y, Z, U : T } such ha (1.1) holds. I his oe oce he exisece ad uiqueess of he soluio of a BSDEJ as described above is ow we propose a umerical mehod ha approximaes he soluio of he equaio (1.1) i he case whe Ñ is a compesaed Poisso process. Noliear bacward sochasic differeial equaios of he form Y = ξ + T f(s, Y s, Z s )ds T Z s dw s, T, were firs iroduced by E. Pardoux ad S. Peg 15 i 199. Uder some Lipschiz codiios o he geeraor f, he auhors saed he firs exisece ad uiqueess resul. Laer o, he same auhors i 1992 developed he BSDE heory relaxig he hypoheses ha esure he exisece ad uiqueess o his ype of equaios i 16. May subseque effors have bee made i order o relax furher he assumpios o he coefficie f(s, y, z), ad may applicaios i mahemaical fiace have bee proposed. The bacward sochasic differeial equaios wih jumps heory begis wih a exisece resul obaied by S. Tag ad X. Li 12. The auhors 2

4 saed such a heorem whe he geeraor saisfies some Lipschiz codiio. Aoher releva coribuio o BSDEJ is he paper by R. Siu 21. I 2, G. Barles, R. Bucdah ad E. Pardoux cosider a BSDEJ whe he drivig oises are a Browia moio ad a idepede Poisso radom measure. They show he exisece ad uiqueess of he soluio, ad i addiio, hey esablish a li wih a parial iegro-differeial equaio (i shor PIDE). A releva problem i he heory of BSDEs is o propose implemeable umerical mehods o approximae he soluio of such equaios. Several effors have bee made i his direcio as well. For example, i he Marovia case, J. Douglas, J. Ma ad P. Proer 9 proposed a umerical mehod for a class of forward-bacward SDEs, based o a four sep scheme developed by J. Ma, P. Proer ad J. Yog 14. O he oher had, D. Chevace 6 proposed a umerical mehod for BSDEs. I 23, J. Zhag proposed a umerical scheme for a class of bacward sochasic differeial equaios wih possible pah-depede ermial values. See also 4, 11, amog ohers, where umerical mehods for decoupled forward-bacward differeial equaios are proposed, ad 1, 3, 13 for bacward differeial equaios. I he prese wor we propose o approximae he soluio of a BSDEJ drive by a Browia Moio ad a idepede compesaed Poisso process, hrough he soluio of a discree bacward equaio, followig he approach proposed for BSDE by P. Briad, B. Delyo ad J. Mémi i 5. The algorihm o compue his approximaio is simple. I he case wihou jumps, umerical examples of implemeaios of his scheme may be foud i 17 for example. Noe ha whaever he mehod, he compuaio of a codiioal expecaio is umerically cosly. However, he rae of covergece is difficul o esablish. The difficuly comes from he represeaio heorem. No surprisigly, sudyig closely his erm requires sophisicaed ools such as Mallavia calculus, o which he wor of B. Bouchard ad R. Élie relies 3. Here, we prefer o use relaively simple ools a he price of o sudyig he rae of covergece. The res of he oe is orgaized as follows. I secio 2 we prese he problem, propose a approximaio process ad a simple algorihm o compue i, ad prese he mai covergece resul of he oe. Secio 3 is devoed o he proof of he previous mai resul, i he adequae opology. I secio 4 we prese a applicaio of he mai resul o a decoupled sysem of a sochasic differeial equaio ad a bacward sochasic differeial equaio, resulig i a umerical approximaio of he soluio of a associaed parial iegro-differeial equaio. 3

5 2 Mai resul I order o propose a implemeable umerical scheme we cosider ha he Poisso radom measure is simply geeraed by he jumps of a Poisso process For he sae of simpliciy of oaio we wor i he ime ierval, 1. We he cosider a Poisso process {N : 1} wih iesiy λ ad jump epochs {τ : =, 1,... }. The radom measure is he N 1 Ñ(d, dx) = δ (τ,1)(d, dx) λdδ 1 (dx), =1 where δ a deoes he Dirac dela a he poi a. We also deoe Ñ = N λ. As a cosequece, he uow fucio U (x) ha i priciple depeds o he jump magiude x becomes U = U (1), ad our BSDEJ i (1.1) becomes Y = ξ + = ξ + f(s, Y s, Z s, U s )ds f(s, Y s, Z s, U s )ds Z s db s Z s db s N 1 i=n +1 (,1 U Ti + λ U s ds, U s dñs, (2.2) for 1. Here, we resric ourselves wihou loss of geeraliies o a ime horizo T = 1. I order o esure exisece ad uiqueess of he soluio of his equaio we cosider he followig codiios o he coefficie: (A) The fucio f : Ω, 1 R 3 R is o-aicipaive wih respec o (F ) ad here exiss K ad a bouded, o-decreasig coiuous fucio Λ wih Λ() = such ha f(ω, s 1, y 1, z 1, u 1 ) f(ω, s 2, y 2, z 2, u 2 ) Λ(s 2 s 1 ) + K ( y 1 y 2 + z 1 z 2 + u 1 u 2 ), a.s. (2.3) I wha respecs he ermial codiio, we assume: (B) The radom variable ξ is F 1 -measurable ad E ξ q < for some q > 2. 4

6 2.1 Discree ime BSDE wih jumps We propose o approximae he soluio of he BSDEJ i (2.2) by he soluio of a discree bacward sochasic differeial equaio wih jumps i a discree sochasic basis wih a filraio geeraed by wo idepede, ceered radom wals. I order o obai he represeaio propery a hird marigale is cosidered. The covergece of his approximaio relies o he fac ha he firs radom wal coverges o he drivig Browia moio, ad he secod o he drivig compesaed Poisso process. Le us defie hese wo radom wals. For N we iroduce he firs radom wal {W : =,..., } by W =, W = 1 ɛ i ( = 1,..., ), (2.4) where ɛ 1,..., ɛ are idepede symmeric Beroulli radom variables: i=1 P ( ɛ = 1 ) = P ( ɛ = 1 ) = 1/2, ( = 1,..., ). The secod radom wal {Ñ : =,..., } is o symmeric, ad give by Ñ =, Ñ = ηi ( = 1,..., ), (2.5) i=1 where η1,..., η are idepede ad ideically disribued radom variables wih probabiliies, for each, give by P(η = κ 1) = 1 P(η = κ ) = κ ( = 1,..., ), (2.6) where κ = e λ/. We assume ha boh sequeces ɛ 1,..., ɛ ad η1,..., η are defied o he origial probabiliy space (Ω, F, P) (ha ca be elarged if ecessary), ad ha hey are muually idepede. The (discree) filraio i he probabiliy space is F = {F : =,..., } wih F = {Ω, } ad F = σ{ɛ 1,..., ɛ, η 1,..., η } for = 1,...,. I his discree sochasic basis, give a F+1 -measurable radom variable y +1, o represe he marigale differece m +1 := y +1 E ( ) y +1 F we eed a se of hree srogly orhogoal marigales. This is a moivaio o iroduce a hird marigale icremes sequece {µ = ɛ η : = 5

7 ,..., }. I his coex here exis uique F -measurable radom variables z, u, v such ha m +1 = y +1 E ( y +1 F ha ca be compued as ) = 1 z ɛ +1 + u η +1 + v µ +1, (2.7) z = E ( ) ( ) y +1 ɛ +1 F = E y+1 ɛ +1 F, (2.8) u = E( y +1 η+1 F ) E ( 1 ) = (η+1 )2 F κ (1 κ ) E( ) y +1 η+1 F, (2.9) v = E( y +1 µ +1 F ) E ( 1 ) = (µ +1 )2 F κ (1 κ ) E( ) y +1 µ +1 F. (Observe ha he marigales are orhogoal bu o orhoormal, hece he ormalizaio.) Wih his iformaio we proceed o formulae he discree BSDEJ. Le us iroduce a supplemeary codiio o f: (A ) There exiss a sequece of fucios f : Ω, T R 3 R oaicipaive w.r.. (F ) =,...,, saisfyig (2.3) ad such ha f (ω,,, ) coverges uiformly o f(ω,,, ) almos surely. Remar 1. The prooypal example of such a sequece f is whe here is a uderlyig sochasic process X drive by B ad N ad f(ω, s, y, z) = g(x s (ω), s, y, z). If g is uiformly coiuous wih respec o is firs variable ad for =,...,, X is a approximaio of X / cosruced from {ɛ i } i=,..., ad {ηi } i=,...,, he se f (ω, s, y, z) = g(x (ω), /, y, z) for s /, ( + 1)/). This allows oe o cosider a sysem of decoupled Forward-Bacward Sochasic Differeial Equaios (See Secio 4). From ow, we drop he referece o he radomess ω i f ad f. Cosider he a square iegrable ad F -measurable ermial codiio ξ ad deoe h = 1/. Cosider he discree ime bacward sochasic differeial equaio wih ermial codiio y := y = ξ, ad for = 1,..., give by 1 y = ξ + i= 1 hf ( i, yi, zi, u i ) i= ( ) hz i ɛ i+1 + u i ηi+1 + vi µ i+1, (2.1) 6

8 where yi := y, ad i i = i/ (i =,..., ). A soluio o (2.1) is a F -adaped sequece {y, z, u, v : =,..., } such ha y = ξ ad (2.1) holds. Equaio (2.1) is equivale o a bacward recursive sysem, begiig by y = ξ, followed by y = y +1 + hf (, y, z, u ) hz ɛ +1 u η +1 v µ +1 (2.11) = y +1 + hf (, y, z, u ) m +1, for = 1,...,. I view of he represeaio propery (2.7), his las equaio (2.11) is equivale o y = E(y +1 F ) + hf (, y, z, u ). (2.12) The soluio ca be compued by he followig simple algorihm: (I) Se (y, z, u, v ) = (ξ,,, ). (II) For from 1 dow o, compue E(y+1 F ). Compue z ad u as i (2.8) ad (2.9) ad solve (2.12) o fid y, usig a fixed poi priciple. This algorihm shows he exisece ad uiqueess of he soluio of he discree BSDEJ defied i (2.1), as i is always possible o solve i usig he fixed poi priciple for large eough, such ha Kh = K/ < 1. Bouds o he soluio are give below i Secio 3.1. Remar 2 (Compuig codiioal expecaios). Our scheme is very simple o impleme. As for ay scheme ha solves BSDEs umerically, i requires o compue codiioal expecaios. Various mehods have he bee proposed: rees 5, quaizaio 1, regressio 11. Ay mehod faces he explosio of is compuaioal cos as he dimesio icreases. I our case, for a fucio Φ: R 2+2 R we use he formula EΦ(ɛ 1,..., ɛ +1, η 1,..., η +1) F = κ 2 Φ(ɛ 1,..., ɛ, 1, η 1,..., η, κ 1) + κ 2 Φ(ɛ 1,..., ɛ, 1, η 1,..., η, κ 1) + 1 κ Φ(ɛ 2 1,..., ɛ, 1, η1,..., η, κ ) + 1 κ Φ(ɛ 2 1,..., ɛ, 1, η1,..., η, κ ). (2.13) 7

9 Remar 3. The simpliciy of his mehod is also is drawbac. Theoreically, his wor for Browia moio i space dimesio ad ay Poisso process of he form Π(dz) = i=1,...,l π iµ xi (dz). However, i he pah-depeda cases, we should cosider compuig some values for all he possible oucomes of he {ɛ } = ad he {η } = for each of he Browia compoe ad each of he Poisso measure µ xi. This leads o a very high compuaioal cos as soo as he dimesio icreases. I he case where f does o deped o a forward par, or oly o he Browia moio, ad ξ depeds oly o he ermial value of W ad N, he he compuaioal cos may be reduced sice oe eed oly o compue some values a he ode of a muli-dimesioal ree represeig he possibles values of he marigales { i= ɛ i } = ad { i= η i } =. Ayway, he compuaio cos remais high as soo as he Poisso radom measures ivolves more ha oe Dirac mass or he Browia moio have several dimesios. 2.2 The mai covergece resul Cosider he coiuous ime versio {Y, Z, U, V : 1} of he soluio {yi, zi, u i, vi : i =,..., } of he discree equaio (2.11) defied by Y = y, Z = z, U = u, V = v, (2.14) for, 1. Noe ha Y, Z, U ad V are measurable w.r.. he σ-algebra F whe, 1. The discree BSDEJ i (2.1), deoig c () = / ( 1), ca be wrie as Y1 = ξ (he square iegrable ad F -measurable ermial codiio), ad Y = ξ + f (c (s), Ys, Zs, Us )dc (s) Zs dw s (,1 (,1 Us dñ s Vs d M s for, 1, ad M s = W s Ñ s. Wih our oaios (2.11) becomes Y i = Y + 1 i+1 f( i, Y, Z i, U ) 1 i i Z ɛ i i+1 U η i i+1 V µ i i+1. (2.15) I Secio 2.1 ad Remar 2, we gave a umerical scheme o compue he soluio {Y i, Z i, U i : 1}. 8 (,1 (,1

10 We fially sae he covergece assumpio o he ermial codiios of he approximaig equaios: (B ) For some q > 2, sup N E ξ q +E ξ q < + ad E ξ ξ 2. Theorem 1. Uder he assumpios (A), (A ), (B) ad (B ), he se of processes (ξ, Y, Z s ds, U s ds) coverges i he J 1 -Sorohod opology, ad i probabiliy, owards he soluio (ξ, Y, Z sds, U sds) of he BS- DEJ (1.1). 3 Proofs Our heorem is ispired i he mai resul of 5. The proof follows, whe possible, he mai seps of he proof of his resul. The mai differece appears due o he fac ha he uderlyig represeaio heorem for he simple symmeric Beroulli radom wal does o ae place i our case, beig ecessary o cosider a complee sysem of orhogoal marigales i order o have his represeaio propery, as we have see i equaio (2.11). The idea is he o cosider for boh he discree ad he coiuous ime equaios he approximaios provided by he Picard s mehod. I he coiuous case deoe Y, = Z, = U, = ad defie {Y,p+1, Z,p+1, U,p+1 : 1} iducively as he soluio of he bacward differeial equaio Y,p+1 = ξ+ f(s, Y,p s, Z,p, U,p )ds s s Zs,p+1 db s (,1 Us,p+1 dñs. I he discree case, give deoe y, = z, = u, = v, = for =,..., ad defie {y,p+1, z,p+1, u,p+1, v,p+1 : =,..., } iducively as he soluio of he bacward differece equaio wih ermial codiio = ξ ad bacwards recursio defied by y,p+1 y,p+1 = y,p hf (, y,p v,p+1 µ +1 = y,p hf (, y,p, z,p, u,p, z,p, u,p ) hz,p+1 ɛ +1 u,p+1 η +1 ) m,p (3.16) 9

11 If we cosider he coiuous ime versios of he discree Picard approximaios as defied i (2.14), our mehod of proof relies o he decomposiios Y Y = (Y Y,p ) + (Y,p Y,p ) + (Y,p Y ), Z Z = (Z Z,p ) + (Z,p Z,p ) + (Z,p Z), U U = (U U,p ) + (U,p U,p ) + (U,p U), where (Y, Z, U ) (resp. (Y,p, Z,p, U,p )) are he càdlàg processes o, 1 associaed o (y, z, u ) (resp. (y,p, z,p, u,p )) as i (2.14). We prove he covergece of he discree soluio as o he soluio of (1.1), by provig he uiform covergece i he he Picard ieraio priciple, as well as he covergece of he approximaio of his soluio give by his ieraio priciple a each sep whe he ime sep is refied. 3.1 Covergece of he Picard s ieraio procedure i he discree case Wih sadard compuaios, we have ha ad E sup E p> sup Y,p 2 +,1 sup Y,p Y 2 +,1 Zs,p 2 ds + λ Z,p s Z s 2 ds + λ Us,p 2 ds U,p s < + (3.17) U s 2 ds p. We ow prese similar resuls for he discree approximaios. The ex lemma evaluaes he covergece rae of he Picard approximaio sequece (y,p, z,p, u,p ) o (y, z, u ) i he discree scheme, ad shows his rae is uiform i he ime sep 1/. I also provides he covergece of he discree auxiliary sequece (v,p ) o zero. We deoe (y, z, u) = {(y, z, u ): =,..., } (wih or wihou super- 1

12 scrip ) ad, for γ > 1 iroduce he orms (y, z, u ) 2 γ := E ( sup ) ( γ / y ) E γ / z 2 = ( ) 1 + E κ (1 κ ) γ / u 2, = 1 ) v 2 γ (κ := E (1 κ ) γ / v 2. Lemma 1. There exiss γ > 1 ad N such ha for all ad p N, ( y,p+1 y,p, z,p+1 z,p, u,p+1 u,p) 2 + γ v,p+1 vp 2 γ 1 ( y,p y,p 1, z,p z,p 1, u,p u,p 1) 2 4. γ Proof. We iroduce some oaios. As remais fixed durig he mai par of he proof, i will be omied i he oaios wheever possible. We deoe δx p+1 = := x,p+1 x,p for a quaiy x = y, z, u, v, m. Wih his oaio observe ha where m is give i (2.11). We se δf p = f (, y,p δy p+1 = δy p δf p δmp+1 +1, (3.18), z,p, u,p Now, for some β > 1 we develop he quaiy ) f (, y,p 1, z,p 1, u,p 1 ). β (δy p+1 ) 2 β (δy p+1 ) 2 = β (δy p+1 ) 2 11

13 hrough a discree (ime depede) Iô Formula (compare wih 2, VII 9): 1 ( β (δy p+1 ) 2 = β i+1 (δy p+1 i+1 )2 β i (δy p+1 i ) 2) i= 1 = (β 1) i= 1 = (β 1) i= 1 + β i= From (3.18) follows, ha 1 β i (δy p+1 i ) 2 + i= 1 β i (δy p+1 i ) 2 + 2β β i+1 ( (δy p+1 i+1 )2 (δy p+1 i ) 2) i= β i δy p+1 i (δy p+1 i+1 δyp+1 i ) β i (δy p+1 i+1 δyp+1 i ) 2. (3.19) (δy p+1 i+1 δyp+1 i ) ( ) δm p i+1 (δf p 2 i )2. Chagig sigs, usig he previous iequaliy ad (3.18) agai, from (3.19) we obai β (δy p+1 ) 2 + β 2 1 i= 1 (1 β) β ( ) i δm p+1 2 i+1 i= 1 β i (δy p+1 i ) 2 + 2β i= ( ) 1 β i δy p+1 i δf p i+1 δmp+1 i+1 + β 1 β ( i δf p 2 i+1). (3.2) 2 i= We ow use he iequaliy, for λ >, ( ) ( ) δy p+1 2β i δf p i+1 λ ( ) δy p+1 2 2β 2 ( ) i + δf p 2 λ 2 i+1 12

14 i he secod erm of (3.2) o obai β (δy p+1 ) 2 + β 2 1 i= β ( ) i δm p+1 2 i+1 1 (1 + λ β) β i (δy p+1 i ) 2 + β + 4λ 1 β i= i= 1 2β β i ( δf p i+1 i= ) 2 β i δy p+1 i δm p+1 i+1. We ow assume ha 1 + λ β < ad deoe B := β + 4λ 1 β 2 o obai β (δy p+1 ) 2 + β 2 1 i= β ( ) i δm p+1 2 i+1 B 1 β ( ) i δf p i+1 2β β i δy p+1 i δm p+1 i+1. (3.21) i= Formula (3.21) is our firs mai iequaliy. From i we obai he followig wo resuls. Firs, as he las summad is a marigale, aig expecaios wih =, we obai 1 β 2 E β ( ) i δm p+1 2 B i+1 E 1 β ( i δf p 2 i+1). (3.22) 2 i= Secod, aig supremum over =,..., we have sup β (δy p+1 ) 2 B 1 β ( i δf p 2 i+1) + 4β sup β i δy p+1 2 i= i= i= i= i δm p+1 i+1. (3.23) To obai a coveie boud i he las erm of (3.22), we use Davis (see 2, VII 3) ad aferwards Hölder iequaliies. Wih F a uiversal cosa, 13

15 we obai 4βE sup β i δy p+1 i= 4βF E sup i δm p+1 i+1 F E β (δy p+1 ) 2 i= i= β 2 E sup β (δy p+1 ) βF 2 E β 2i ( δy p+1 i β ( ) i δm p+1 2 i+1 i= ) 2 ( ) δm p+1 2 i+1 β i ( δm p+1 i+1 ) 2. Taig expecaio i (3.23), usig he previous resul, ad fially (3.22), we obai ha (1 β/2)e sup β (δy p+1 ) 2 B ( ) βF 2 β ( i δf p 2 i+1). (3.24) 2 Combiig (3.22) ad (3.24) we arrive o 1 E sup β (δy p+1 ) 2 + E β ( ) i δm p+1 2 C i+1 E 1 β ( i δf p 2 i+1), (3.25) 2 i= wih C = 2B(1 + 1/β + 64βF 2 )/(1 β/2). Usig ow he Lipschiz propery (A) we see ha here exiss a cosa K such ha δf p i 2 K ( (δy p i )2 + (δz p i )2 + κ (1 κ )(δu p i )2). (3.26) Equaios (3.25) ad (3.26) give E sup β (δy p+1 1 ) 2 + E C K i= ( E sup β ( ) i δm p+1 2 i+1 i= i= β (δy p ) E β (δz p )2 14 = 1 + κ (1 κ )E β (δu p ). )2 =

16 I remais o choose properly β ad λ as a fucio of. For some γ > 1, se β = γ 1/ ad λ = β/. The codiio 1 + λ < β is he equivale o γ > (1 1/). Thus, if γ > e, for large eough his choice is suiable wih our assumpios o β ad λ, ad C/ remais bouded as. Compuig E ( δm p+1 i+1 ) 2, we coclude he proof. Jus lie i he coiuous case, we ca use he Cauchy crierio ad he precedig lemma o ge he followig resul. Proposiio 1. Followig he oaios of (2.15) ad (3.16), ( E Y,p Y Z,p Z 2 d + λ U,p U sup 1 coverges o uiformly i as p. ) 2 d We may ow sae a global boud which will be used o prove L 2 (P) covergece i Lemma 4 below. Lemma 2. Uder Hypoheses (A), (A ), (B) ad (B ), 1 1 q E f (, y,p, z,p, u,p ) < +. I addiio, sup N sup p N 1 sup E p N = f(s, Y,p s q, Zs,p, Us,p )ds < +. Proof. Here, we deal oly wih he discree case, which is raher similar o he coiuous case whose proof is a variaio of he oe give i 3, 1. Agai, we drop he superscrip. Here, we assume i a firs ime ha he ime horizo is T ad h = T/. We se (z p, u p ) := T ( z p 2 + u p 2). =1 Sice η 2 is bouded i ad, we ge from he Burholder-Davies- Gudy iequaliy ha for some cosas C 1 ad C 2, ( ) q/2 E (z p, u p ) q/2 C 1 E m p 2 C 2 E sup m p q. =1,..., =1 15

17 O he oher had, E sup m p+1 l q E l=1,..., sup l=1,..., E ξ + T 1 q f (, y p, zp, up ) F l. Wih Hypohesis (A), for some cosa C 3 depedig oly o Λ(T ) ad K, = ( T 1 f (, y p, zp, up ) T 1 ) 1/2 f (, y p, zp, up )2 = = T 1 C 3 ( + ( y p 2 + z p 2 + u p 2 ) = C 3 T + C 3 T ) 1/2 sup y p + C 3 T (z p, u p ) 1/2. =,..., 1 Wih he Jese iequaliy for he codiioal expecaio ad he Doob iequaliy, E sup m p+1 q C 4 E ξ q + C 4 T q y p q, + C 4 T + C 4 T q E (z p, u p ) q/2 =1,..., wih y p q, := E sup y p q. =,..., 1 O he oher had, we have wih similar compuaios, for some cosa C 4 depedig oly o C 3 ad q, y p+1 E sup E ξ + T 1 q f (, y p, zp, up ) F l l=,..., 1 This proves ha for C 5 = 2C 4, y p+1 q, + E (z p+1, u p+1 ) q/2 =l C 4 E ξ q + C 4 T + C 4 T q y p q, + C 4 T q E (z p, u p ) q/2. C 5 E ξ q + C 5 T + C 5 T q ( y p q, + E (z p, u p ) q/2 ). If T is small eough so ha C 5 T < 1, he his proves ha y p q, + E (z p, u p ) q/ C 5 T (1 + C 5E ξ q ).

18 Here, we have obaied a boud whe T is small eough. Now, i order o cosider he Picard scheme o he ime ierval, 1, we may fid for each a ime T such ha C 5 T < 1 ad T = l()/ for some l for some fixed, ad solve recursively he Picard scheme o T T, T, T 2T, T T,... usig he ermial codiio ξ ad he y,p l(),... We he obai he desired boud. 3.2 Approximaio of Browia moio ad Poisso process I order o esablish covergece i probabiliy, we cosider ha all he processes are defied o he same probabiliy space. Lemma 3. (I) Le N be a Poisso process of iesiy λ ad se Ñ = N λ. The here exiss a family of idepede radom variables (η ) =1,..., whose disribuio is give by (2.6) ad he process defied by Ñ = /h 1 =1 η, is a marigale which coverges i probabiliy o Ñ i he J 1-Sorohod opology. (II) Le W be a Browia moio. The here exiss a family of realizaios idepede radom variables ɛ such ha P(ɛ = 1) = P(ɛ = 1) = 1/2 ad he process defied by W = h /h 1 i=1 ɛ i coverges uiformly i probabiliy o W. (III) The couple (W, Ñ ) coverges i he J 1 -Sorohod opology i probabiliy o (W, Ñ). Proof. (I) Le (Ω, F, P) be he probabiliy space o which N is defied. Deoe by {τ i } i=1,...,l 1 he ime jumps de N. To simplify he oaios, we se τ = ad τ l = T. Le A he he eve { } here is a mos oe jump of N A =. o ay ierval h, h( + 1)) for =,..., We deoe by A he complemeary eve of A. We se η = κ 1 wih κ = e λ/ if oe jumps occurs o h, h( + 1)) ad η = κ oherwise. The disribuio of η is give by (2.6). Le φ (, ω) be he radom piecewise liear fucio defied so ha for i =,..., l, φ (τ i ) = c (τ i ) o A ad by φ () = o A. I is easily checed ha φ () h for, 1. 17

19 The for τ i, τ i+1, Ñ φ () Ñ c (τ i ) = (e λ/ 1)(c (φ ()) c (τ i )). O he oher had, Ñ Ñτ i = λ( τ i ) ad he here exiss some cosa K such ha Ñ φ () Ñ c (τ i ) Ñ + Ñτ i Kh (3.27) for τ i, τ i+1. Besides, o A, for h small eough, Ñ c (τ i ) Ñ c (τ i ) Ñτ i Ñτ i = e λ/ 1 2λh. (3.28) Combiig (3.27) ad (3.28), oe ges ha o A, I addiio, El < + so ha O A, he φ () = ad he E sup Ñ φ () Ñ (2 + K)lh.,1 sup Ñ φ () Ñ ; A.,1 Ñ ih Ñ i 1 ih = λih h(κ 1)i + (N (j+1)h N j 1)1 {N(j+1)h N j 2}. j= From he very defiiio of A ad sice N (i+1)h N ih has he disribuio of a Poisso radom variable wih iesiy λh, P A 1 P N (i+1)h N ih 2 (1 e λh λhe λh ) λ2 T 2. i= For ay C >, P sup Ñ Ñ φ () > C,1 P A 1 + C E sup Ñ Ñ φ () ; A,1 ad his quaiy coverges o as. Thus here exiss a family (φ ) N of oe-o-oe radom ime chages from, 1 o, 1 such ha 18

20 sup,1 φ () almos surely ad sup,1 Ñ Ñ φ () i probabiliy, which meas ha Ñ coverge i he J 1 -Sorohod opology o N. Poi (II) follows from he Doser heorem, whe oe uses for example he Sorohod embeddig heorem o cosruc he ɛ s from he Browia pah 18 ad (III) holds sice W is coiuous so ha he 2-dimesioal pah (W, Ñ ) coverges i he J 1 -opology o (W, Ñ). 3.3 Covergece of marigales Le H = (W, N) be such ha W is a Browia moio ad N is a idepede Poisso process of iesiy λ. Le W ad Ñ be he oe defied i Lemma 3 ad se H = (W, Ñ ). Le (F ),1 (resp. (F ),1 ) be he filraio geeraed by H (resp. H ). Le X (resp. X ) be a of F 1 (resp. F 1 )-measurable radom variable such ha (H) EX 2 + sup N E(X ) 2 < + ad E X X. Le M (resp. M ) be he cdlg marigales M = E ( X F ) ad M = E ( X F ). (3.29) We deoe by M, M (resp. M, M) he quadraic variaio of M (resp. M) ad by M, W, M, Ñ (resp. M, W, M, Ñ) he cross variaio of M ad W (resp. Ñ ). The followig proposiio is a adapaio of Theorem 3.1 i 5, ad 7 for he covergece of filraios. Hypohesis (H) esures he uiform square iegrabiliy of M ad he he covergece of he braces. Proposiio 2. Uder he above codiios, (H, M, M, M, M, W, M, Ñ ) i probabiliy for he J 1 -Sorohod opology. (H, M, M, M, M, W, M, Ñ) Corollary 1. Se M = /h 1 =1 η ɛ, which is a marigale orhogoal o W ad Ñ. Assume i addiio o (H) ha 19

21 (H ) E X X 2. The here exis hree sequeces (Z ) 1, (V ) 1 ad (U ) 1 of F. - predicable processes, ad wo idepede (Z ) 1 ad (U ) 1 F. -predicable processes such ha M = EX +, 1, M = EX + wih E (Z Z ) 2 d + λ Z s dw s + Z s dw s + U s dñ s + U s dñs (U U ) 2 d. V s d M s Proof. The firs par is relaed o he predicable represeaio of F - marigales i erms of sochasic iegrals wih respec o hree idepede radom wals, W, Ñ ad M. The icremes of M may ae up o four differe values, which meas ha we eed hree orhogoal marigales o represe i 8. I is he easily obaied ha M is a marigale which is orhogoal o boh Ñ ad W. This is why we iroduce i. The predicable represeaio of M wih respec o W ad Ñ is classical. From he Doob iequaliy, Wih (H), sup E N 1 EM, M 1 E M 1 2 2E X 2. (Z s ) 2 dc (s) (η c (s)) 2 (U s ) 2 dc (s) (η c (s)) 2 (V s ) 2 dc (s) < +. (3.3) Sice E(η )2 λ ad U is predicable wih respec o F, oe easily ge ha lim sup E (Zs ) 2 ds + λ(us ) 2 ds < +. (3.31) 2

22 Le (F W ) be he filraio geeraed by he Browia moio. Sice W ad N are idepede, for X = X EX, EX F W 1 = Z s dw s. (3.32) Le also G be he σ-algebra geeraed by (ɛ 1,..., ɛ ). Hece, for X = X EX, I follows ha E X G = E E X G 2 = E (Zs ) 2 dc (s). Z s dw s. (3.33) Sice he ɛ s are cosruced from he rajecories of W, oe has F F1 W. Hece E E X G 2 2E E X X G 2 + 2E E X G 2. Wih he Jese iequaliy o codiioal expecaio ad (H ), oe ges ha E E X X G 2 ad E E X G 2 E E E X F1 W 2 G E E X F1 W 2. From (3.32) ad (3.33), oe ges ha lim sup E (Zs ) 2 ds Similar argumes prove ha lim sup E (Us ) 2 ds E Us 2 ds. E Zs 2 ds. (3.34) From Proposiio 2, M, W M, W i probabiliy for he J 1 -Sorohod opology, as well as M, M. The ψ () sup Z s dc (s) Z s ds (3.35) 1 21

23 i probabiliy, where ψ (). The we ge easily ha sup Zs ds Z s ds (3.36) 1 i probabiliy ad wih (3.31), i L 1 (P). O he oher had, M, Ñ M, Ñ i probabiliy for he J 1-Sorohod opology. This implies ha ψ () sup ηc 2 (s)us dc (s) λ U s ds. (3.37) 1 We ca apply he same argumes used for (3.36), Burholder-Davis-Gudy iequaliy o corol he disace bewee η 2 ad κ (1 κ ), ad he fac ha 1 κ λ/ o ge sup 1 λ U s ds U s ds (3.38) i probabiliy ad i L 1 (P). The secod par relies o he followig argume: le (g ) N { } be a sequece of fucios o, 1 Ω such ha lim sup E ad E (g (s, ω)) 2 ds sup,1 E (g (s, ω)) 2 ds (g (s, ) g (s, ))ds < +, (3.39). (3.4) For ay give fucio h i L 2 (, 1 Ω), here exiss a sequece of fucios (h ) N i L 2 (, 1 Ω) such ha h (s, ω) is of form p i=1 c i(ω)1 i, i+1 (s) ad h coverges o h i L 2 (, 1 Ω). Wih (3.39), E g (s, ω)h (s, ω)ds E g (s, ω)h m (s, ω)ds sup N g L 2 (,1 Ω h h m L 2 (,1 Ω 22

24 ad wih (3.39)-(3.4), E g (s, ω)h m (s, ω)ds E g (s, ω)h m (s, ω)ds. I follows ha g coverges wealy i L 2 (, 1 Ω) o g. I addiio, (3.39) implies ideed he srog covergece of g o g, which meas ha 1 E g (s, ω) g (s, ω) 2 ds coverges o. I is ow possible o apply his argume o boh Z ad U. 3.4 Covergece of he soluio of he BSDE The idea is ow o prove ha if (Y,p, Z,p, U,p ) coverges o (Y,p, Z,p, U,p ) i a give sese, he his is also rue for he (p + 1)-h Picard ieraio. Here, he oio of covergece is sup Y,p 1 ψ () Y,p 2 + Z,p s Z,p s 2 ds + λ U,p s U,p s 2 ds (3.41) i L 1 (P), where ψ is a radom oe-o-oe coiuous mappig from, 1 o, 1 ha coverges uiformly o almos surely. Le us se ad A,p = A,p = f (c (s), Y,p s, Z,p s, U,p s )dc (s) f(s, Y,p s, Z,p, U,p )ds. Lemma 4. If for some ieger p, (Y,p, Z,p, U,p ) coverges o (Y,p, Z,p, U,p ) i he sese of (3.41), he A,p ψ () coverges uiformly i o A,p i L 2 (P). Proof. Le us oe firs ha A,p is piecewise cosa o he iervals /, ( + 1)/). Le ξ () be he iverse of ψ (). The sup A,p,1 ψ () A,p = sup,1 A,p = sup A,p / A,p / + =,..., 1 s A,p ξ () sup =,..., 1 /,(+1)/ s sup A,p / A,p ξ (). 23

25 Because of (A), (A ) ad (3.17), we easily ge ha he las erm above coverges o i L 2 (P) uiformly i p. O he oher had, wih (A) ad (A ), A,p / A,p / K Ye le us oe ha Y,p s ( Ys,p Ys,p ds Ys,p + Zs,p Y,p s Y,p ξ (s) ds + Zs,p + Us,p Y,p Us,p )ds. ξ (s) Y s,p ds. The firs erm i he righ-had side of he previous iequaliy coverges o sice Y,p Y,p ξ coverges uiformly o i L 2 (P). Regardig he secod erm, s Ys,p is coiuous excep a he imes a which he Poisso process jumps. Hece, Y,p,p ξ (s) coverges o Ys for almos every s, 1 ad he,p Y ξ (s) Y s,p ds coverges o almos surely. Wih Lemma 2, sup,1 A,p coverges coverges o i L 2 (P). ψ () A,p Proposiio 3. Uder Hypoheses (A), (A ), (B) ad (B ), for ay p N, (Y,p, Z,p, U,p ) coverges o (Y,p, Z,p, U,p ) i he sese of (3.41). Proof. This will be doe by iducio o p. We rewrie (3.16) as Y,p+1 = ξ + A,p 1 A,p Z,p+1 s dw s U,p+1 s dñ s V s d M s. (3.42) The iducio hypohesis is ha (Y,p, Z,p, U,p ) coverges o (Y,p, Z,p, U,p ) i he sese of (3.41) so ha our aim is o prove ha he riple (Y,p+1, Z,p+1, U,p+1 ) coverges o (Y,p+1, Z,p+1, U,p+1 ) i he same sese. As (Y,, Z,, U, ) = (,, ) ad s f(s,,, ) is coiuous, he firs sep of he iducio is immediae from Corollary 1 usig (B ). Taig codiioal expecaios w.r.. F i (3.16) ad usig he fac ha Y,p+1 is F -measurable, we fid ha for c () < +1, Y,p+1 = E ξ + f (c (s), Y,p s, Z,p s, U,p s ) dc (s) F. 24

26 So ha M,p+1 :=Y,p+1 + =E ξ + =E M,p+1 1 F f (c (s), Y,p s, Z,p s, U,p s ) dc (s) = Y,p+1 + A,p s ) dc (s) F f (s, Y,p s, Z,p s, U,p is a F. marigale. Moreover, we have he represeaio = E Z,p+1 s dws + U,p+1 s dñ s + M,p+1 = = Z,p+1 s dw s + Z,p+1 s dw s + U,p+1 s dñ s + U,p+1 s dñ s + V,p+1 s d M s F V,p+1 s d M s V,p+1 s d M s. The las decomposiio correspods o he marigale represeaio heorem give i Corollary { 1. I order o apply his corollary o he sequece (M },p+1 of marigales ) 1 ; N, we have o prove he L 2 (P) covergece of M,p+1 1 (he ermial value). Usig he fac ha Y,p, Z,p ad U,p are piecewise cosa, we have ha M,p+1 1 ξ A,p 1 ξ ξ + A,p 1 A,p 1. Wih Lemma 2, Lemma 4 ad (H), his las quaiy eds o zero i L 2 (P). Applyig Corollary 1, we see ha M,p+1 coverges o M,p+1 := E i he sese ha sup M,p+1 ψ () 1 ( ξ + M,p+1 f (s, Ys p, Zs p, Us p ) ds ) F = Y,p+1 + A,p, (3.43) 2 + Z,p+1 s Zs,p+1 2 ds + λ U,p+1 s Us,p+1 2 ds i L 2 (P), where ψ is a radom oe-o-oe coiuous mappig from, 1 o, 1 ha coverges uiformly o almos surely. Wih (3.43) ad Lemma 4, he we ge he covergece of (Y,p+1, Z,p+1, U,p+1 ) o (Y,p+1, Z,p+1, U,p+1 ) i he sese of (3.41). 25

27 4 Applicaios o decoupled sysem of SDE ad BSDEJ ad o he umerical compuaios of he soluios of PIDE Le X be he soluio of he d-dimesioal SDE wih jumps X = x+ σ(s, X s )dw s + where we have assumed ha b(s, X s )ds+ c(s, X s )dñs, (4.44) b(, x) b(, y) + σ(, x) σ(, y) + c(, x) c(, y) K x y, (4.45) sup ( b(, ) + σ(, ) + c(, ) ) K (4.46),1 for all, 1 ad for alll x, y R. Of course, he BSDEJ Y = ξ + f(s, X s, Y s, Z s, U s )ds Z s σ(s, X s )dw s is lied o he o-liear PIDE (wih a = σ σ T ) by u(, x) + + d i,j=1 1 2 a i,j(, x) 2 u(, x) + x i x j d i=1 u(, x) b i (, x) x i ( u(, x + c(, x, z)) u(, x) c i (, x, z) ) Π(dz) U s dñs (4.47) u(, x) R x i = f(, x, u(, x), u(, x)σ(, x), u(, x + c(, x, )) u(, x)) (4.48) wih he ermial codiio u(1, x) = g(x). I is sadard i he heory of BSDE ha u(, X ) = Y ad hus u(, x) = Y. Oe ca compue similarly u(s, x) for ay s, ) by usig he soluio o (4.44) sarig from (s, x) isead of (, x). We use ow for Π(dz) he measure Π(dz) = x i π i δ xi, where x i belogs o he ierval I i. Followig Remar 3, we assume for he sae of simpliciy ha ideed Π(dz) = λδ ad ha he dimesio of he Browia moio W is 1. Hece, we rewrie c(, x, z) as c(, x) sice oly c(, x, ) is used. 26

28 The SDE (4.44) may be discreized he followig way for a ieger : we se χ = x ad for i =,...,, χ i+1 = χ i + hb((i + 1)h, χ i ) + hσ(((i + 1)h, χ i ))ɛ i+1 + c((i + 1)h, χ i )η i+1 (4.49) where η is a Beroulli approximaio of he compesaed Poisso process wih iesiy λ ad ɛ is a Beroulli approximaio of he Browia moio W. Of course, he χ i s are easily simulaed. This discree equaio (4.49) may be rewrie i coiuous ime as X = x + σ(s, X s )dw s + b(s, X s )dc (s) + c(s, X s )dñ s (4.5) Thas o he resuls i 22, X coverges i probabiliy i he J 1 -Sorohod opology o he soluio X o (4.44). Usig our algorihm, i is he possible o fid (y i, z i, u i ) i=1,..., adaped o (F i ) i=,..., ha solves he discree BSDE y i = y i+1 + hf((i + 1)h, χ i, y i, z i, u,i) z i ɛ i+1 u i η i+1 v i ɛ i+1η i+1 (4.51) for i =,..., 1 wih he ermial codiio y = g(χ ). We are looig for a fucio v (i, z) such ha y = v (i, χ i ) ad v solves a discree PDE. For a fucio v o {,..., } R, we defie usig (2.13) he discree operaors D v(, x) = Ev(, x) F = 1 κ ( v(, x + hb(h, x) + hσ(h, x) + κc(h, x)) 2 + v(, x + hb(h, x) ) hσ(h, x) + κc(h, x)) + κ ( v(, x + hb(h, x) + hσ(h, x) + (κ 1)c(h, x)) 2 + v(, x + hb(h, x) ) hσ(h, x) + (κ 1)c(h, x)) ad D 1 v(, x) = Ev(, x)ɛ +1 F ad D 2 v(, x) = Ev(, x)η +1 F, 27

29 for which formulae similar o he oe for D v(, x) ca be give. From hese resuls, oe ca deduce he represeaio of he soluio of a discree PDE wih he help of he χ i. This represeaio is similar o he represeaio of he soluio of he BSDEJ i erm of Y = u(, X ), where u is he soluio o he PIDE (4.48). Proposiio 4. Le v be he soluio o he discree PDE v i (i, x) = D v (i + 1, x) + hf((i + 1)h, x, v i (i, x), h 1/2 D 1 v (i + 1, χ i ), D 2 v (i + 1, x)) for i =,..., 1, x R, (4.52) wih he ermial codiio vi (1, x) = g(x). If hk < 1, he his soluio exiss ad is uique. I addiio, he soluio (y, z, u ) o he discree BSDE (2.11) wih he ermial codiio ξ = g(χ ) which we cosruc usig our algorihm saisfies yi = v (i, χ i ), zi = h 1/2 D1 v (i + 1, χ i ) ad u i = D2 v (i + 1, χ i ). Proof. As hk < 1 he exisece ad uiqueess of v (i, ) follows from he exisece of he soluio ρ(x) o ρ(x) = D v (i + 1, x) + hf((i + 1)h, x, ρ(x), h 1/2 D 1 v (i + 1, x), (1 κ) 1 D 2 v (i + 1, x)) for ay x R, oce v (i + 1, ) is ow. Thus, oe ca proceed recursively wih i = 1 dow o. Le (y, z, u ) be give by our algorihm. We assume v (i + 1, χ i+1) = y i+1, which is rue for i + 1 =. Usig (2.8), (2.9), ad he defiiios of D 1 ad D 2, z i = h 1/2 Ev (i + 1, χ i+1)ɛ i+1 F i = h 1/2 D 1 v (i + 1, χ i ), u i = Ev (i + 1, χ i+1)η i+1 F i = D 2 v (i + 1, χ i ). Taig codiioal expecaio wih respec o Fi 1, χ i ) = Ev (i + 1, χ i+1) Fi, we ge i (4.52), sice D v (i+ v (i, χ i ) = Ey i+1 F i + hf((i + 1)h, χ i, v (i, χ i ), h 1/2 D 1 v (i + 1, χ i ), D 2 v (i + 1, χ i )), (4.53) 28

30 while aig he codiioal expecaio wih respec o F i i (2.11), we ge y i = Ey i+1 F i + hf((i + 1)h, χ i, y i, h 1/2 D 1 v (i + 1, χ i ), D 2 v (i + 1, χ i )). (4.54) As hf(,,,, ) is Kh-Lipschiz i is hird argume wih Kh < 1, we obai ha yi ad v (i, χ i ) are equal. 5 A umerical example I his secio, we deal wih a umerical example. We cosider N a Poisso process wih λ = 1 ad c < 1, ad he followig BSDEJ: dy = cu d + Z dw + U (dn d), (5.55) wih ξ = N T. The explici soluio of (5.55) is give by (Y, Z, U ) = (N + (1 + c)(t ),, 1). Furhermore if ξ = he he soluio is equal o (Y, Z, U ) = (,, ). This example is borrowed from 2. We have implemeed his mehod o a sadard persoal compuig plaform (PC), ad have observed ha i performs very well usig simulaed daa, as ca be see from he simulaed daa i he Table 1 ad Figure 1. Despie he appare algebraic complexiy of he equaios (2.8), (2.9) ad (2.12) oe eeds o solve a each sep he codiioal expecaio o obai y i, he problem poses o difficuly. Usig MATLAB s simulaios ad algebra capabiliies (Versio 7. ruig o he Uiversiy of Valparaíso CIMFAV cluser) yielded bes compuig imes. I our implemeaio, ad for compuaioal coveieces we cosider he case whe T = 1. The ieraio of he algorihm begis from y = ξ = N1 a ime = T = 1 ad proceeds bacward o solve (y j, z j, u j ), where j = j/, a ime j =. Values are give wih 4 sigifica digis. I he followig able ad picure we summarize he resuls. 29

31 c =.3 c =.9 c =.1 c = Real Value Y Table 1: Numerical Scheme for dy = cu d + Z db U (dn d) wih from 1 uil = 5 seps, λ = 1, T = 1 ad differe values of c. 2.5 Moe Carlo Simulaios, =1, c=.3 2 Pahs of Y Time from > 1 Figure 1: Moe Carlo Simulaio; c =.3, λ = 1, = 1 ad T = 1. 3

32 Refereces 1 Bally, V. ad Pagès, G., A quaizaio algorihm for solvig mulidimesioal discree-ime opimal soppig problems. Beroulli 9:6 (23) Barles, G., Bucdah, R. ad Pardoux, E., BSDEs ad iegral-parial differeial equaios. Sochasics Sochasics Rep. 6:1 2 (1997) Bouchard B. ad Elie, R., Discree ime approximaio of decoupled Forward-Bacward SDE wih jumps, Sochasic Process. Appli. 118 (25) Bouchard, B. ad Touzi, N., Discree-ime approximaio ad Moe- Carlo simulaio of bacward sochasic differeial equaios. Sochasic Process. Appl. 111:2 (24) Briad, P., Delyo, B. ad Mémi, J., Doser-Type Theorem for BS- DEs. Elecro. Comm. Probab., 6 (21) Chevace, D., Numerical mehods for bacward sochasic differeial equaios. I Numerical mehods i fiace, Publ. Newo Is., Cambridge Uiv. Press, Cambridge, Coque, F., Mémi, J. ad S lomińsi, L., O wea covergece of filraios. Sémiaire de Probabiliés, XXXV, Lecure Noes i Mah Spriger, Berli, Doha, M. U., Prices i fiacial mares. The Claredo Press, Oxford Uiversiy Press, New Yor, Douglas, J., Ma, J. ad Proer, P., Numerical mehods for forwardbacward sochasic differeial equaios. A. Appl. Probab. 6:3 (1996) Elie, R., Corôle Sochasique e Méhodes Numériques, Ph.D. hesis, Uiversié Paris-Dauphie (26). 11 Gobe, E., Lemor, J-P. ad Wari, X., A regressio-based Moe Carlo mehod o solve Bacward Sochasic Differeial equaios. A. Appl. Probab. 15:3 (25)

33 12 Li, X. ad Tag, S., Necessary codiio for opimal corol of sochasic sysems wih radom jumps SIAM J. Corol Opim. 332:5 (1994), Ma J., Proer P., Sa Marí J. ad Torres S., Numerical mehod for Bacward Sochasic Differeial Equaios. A. Appl. Probab. 12:1 (22) Ma, J., Proer, P. ad Yog, J., Solvig forward-bacward sochasic differeial equaios explicily a four sep scheme. Probab. Theory Relaed Fields 98:3 (1994) Pardoux, E. ad Peg, S., Adaped soluio of bacward sochasic differeial equaio. Sysems Corol Le. 14:1 (199) Pardoux, E. ad Peg, S., Bacward sochasic differeial equaio ad quasiliear parabolic parial differeial equaios. I Sochasic parial differeial equaios ad heir applicaios (Charloe, NC, 1991), Lecure Noes i Corol ad Iform. Sci. 176 Spriger, Berli, Peg, S. ad Xu, M., Numerical algorihms for bacward sochasic differeial equaios wih 1-d Browia moio: Covergece ad simulaios. Mah. Model. Numer. Aal. 45 (211) Rogers, L.C.G. ad Williams, D., Diffusios, Marov Processes, ad Marigales: Foudaios, 2 d ed., Cambridge Uiversiy Press (2). 19 Sa Mari, J. ad Torres, S., Bacward sochasic differeial equaios: umerical mehods, Ecyclopedia of Quaiaive Fiace (21). 2 Shiryaev, A. N., Probabiliy, 2 d ed., Spriger, New Yor, Siu, R., O soluio of bacward sochasic differeial equaios wih jumps. Sochasic Process. Appl. 66:2 (1997) S lomińsi, L. Sabiliy of srog soluios of sochasic differeial equaios. Sochasic Process. Appl. 31:2 (1989) Zhag, J., A umerical scheme for BSDEs A. Appl. Probab. 14:1 (24)

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Change of angle in tent spaces

Change of angle in tent spaces Chage of agle i e spaces Pascal Auscher To cie his versio: Pascal Auscher. Chage of agle i e spaces. 4 pages. 20. HAL Id: hal-00557746 hps://hal.archives-ouveres.fr/hal-00557746 Submied

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

arxiv: v1 [math.pr] 16 Dec 2018

arxiv: v1 [math.pr] 16 Dec 2018 218, 1 17 () arxiv:1812.7383v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of

More information

Shige Peng 1,2 and Mingyu Xu 2, 3

Shige Peng 1,2 and Mingyu Xu 2, 3 ESAIM: MAN 5 () 335 36 DOI:.5/ma/59 ESAIM: Mahemaical Modellig ad Numerical Aalysis www.esaim-ma.org NUMERICAL ALGORITHMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH -D BROWNIAN MOTION: CONVERGENCE

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme America Joural of Compuaioal ad Applied Maemaics, (6): 77-8 DOI:.59/.acam.6. Numerical Soluio of Parabolic Volerra Iegro-Differeial Equaios via Bacward-Euler Sceme Ali Filiz Deparme of Maemaics, Ada Mederes

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information

arxiv:math/ v1 [math.pr] 5 Jul 2006

arxiv:math/ v1 [math.pr] 5 Jul 2006 he Aals of Applied Probabiliy 2006, Vol. 16, No. 2, 984 1033 DOI: 10.1214/105051606000000088 c Isiue of Mahemaical Saisics, 2006 arxiv:mah/0607123v1 [mah.pr] 5 Jul 2006 ERROR ESIMAES FOR INOMIAL APPROXIMAIONS

More information

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix 4h Ieraioal Coferece o Sesors, Mecharoics ad Auomaio (ICSMA 06) A Complex Neural Newor Algorihm for Compuig he Larges eal Par Eigevalue ad he correspodig Eigevecor of a eal Marix HANG AN, a, XUESONG LIANG,

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

A Change-of-Variable Formula with Local Time on Surfaces

A Change-of-Variable Formula with Local Time on Surfaces Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le =

More information

hal , version 5-4 Oct 2012

hal , version 5-4 Oct 2012 Auhor mauscrip, published i "Advaces i Applied Probabiliy 13 3" ERROR BOUNDS FOR SMALL JUMPS OF LÉVY PROCESSES EL HADJ ALY DIA Absrac The pricig of opios i expoeial Lévy models amous o he compuaio of expecaios

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

arxiv: v2 [math.pr] 10 Apr 2014

arxiv: v2 [math.pr] 10 Apr 2014 arxiv:1311.2725v2 [mah.pr 1 Apr 214 Srog Rae of Covergece for he Euler-Maruyama Approximaio of Sochasic Differeial Equaios wih Irregular Coefficies Hoag-Log Ngo, Dai Taguchi Absrac We cosider he Euler-Maruyama

More information

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes Poisso Process Iferece for Sochasic Processes 4. Lévy Processes τ = δ j, δ j iid Ex X sup { Z + : τ }, < By ober L. Wolper Duke Uiversiy ISDS, USA [X j+ X j ] id Po [ j+ j ],... < evised: Jue 8, 5 E[e

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

Introduction to the Mathematics of Lévy Processes

Introduction to the Mathematics of Lévy Processes Iroducio o he Mahemaics of Lévy Processes Kazuhisa Masuda Deparme of Ecoomics The Graduae Ceer, The Ciy Uiversiy of New York, 365 Fifh Aveue, New York, NY 10016-4309 Email: maxmasuda@maxmasudacom hp://wwwmaxmasudacom/

More information

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows Joural of Applied Mahemaics ad Physics 58-59 Published Olie Jue i SciRes hp://wwwscirporg/joural/jamp hp://dxdoiorg/6/jamp76 O he Exisece ad Uiqueess of Soluios for oliear Sysem Modelig hree-dimesioal

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1 Paper 3A3 The Equaios of Fluid Flow ad Their Numerical Soluio Hadou Iroducio A grea ma fluid flow problems are ow solved b use of Compuaioal Fluid Damics (CFD) packages. Oe of he major obsacles o he good

More information

On stability of first order linear impulsive differential equations

On stability of first order linear impulsive differential equations Ieraioal Joural of aisics ad Applied Mahemaics 218; 3(3): 231-236 IN: 2456-1452 Mahs 218; 3(3): 231-236 218 as & Mahs www.mahsoural.com Received: 18-3-218 Acceped: 22-4-218 IM Esuabaa Deparme of Mahemaics,

More information

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS JIE HAN AND YI ZHAO Absrac For d l

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017 Deparme of Ecoomics The Ohio Sae Uiversiy Ecoomics 8723 Macroecoomic Theory Problem Se 2 Professor Sajay Chugh Sprig 207 Labor Icome Taxes, Nash-Bargaied Wages, ad Proporioally-Bargaied Wages. I a ecoomy

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS M.A. (Previous) Direcorae of Disace Educaio Maharshi Dayaad Uiversiy ROHTAK 4 Copyrigh 3, Maharshi Dayaad Uiversiy, ROHTAK All Righs Reserved. No par of his publicaio may be reproduced

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Priciples of Commuicaios Lecure : Sigals ad Sysems Chih-Wei Liu 劉志尉 Naioal Chiao ug Uiversiy cwliu@wis.ee.cu.edu.w Oulies Sigal Models & Classificaios Sigal Space & Orhogoal Basis Fourier Series &rasform

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Review Answers for E&CE 700T02

Review Answers for E&CE 700T02 Review Aswers for E&CE 700T0 . Deermie he curre soluio, all possible direcios, ad sepsizes wheher improvig or o for he simple able below: 4 b ma c 0 0 0-4 6 0 - B N B N ^0 0 0 curre sol =, = Ch for - -

More information

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods joural of mulivariae aalysis 57, 175190 (1996) aricle o. 0028 Order Deermiaio for Mulivariae Auoregressive Processes Usig Resamplig Mehods Chaghua Che ad Richard A. Davis* Colorado Sae Uiversiy ad Peer

More information

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie The Aals of Probabiliy 999, Vol 27, No 3, 523535 RENEWAL TEORY FOR EMBEDDED REGENERATIVE SETS BY JEAN BERTOIN Uiversie Pierre e Marie Curie We cosider he age processes A A associaed o a moooe sequece R

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

Academic Forum Cauchy Confers with Weierstrass. Lloyd Edgar S. Moyo, Ph.D. Associate Professor of Mathematics

Academic Forum Cauchy Confers with Weierstrass. Lloyd Edgar S. Moyo, Ph.D. Associate Professor of Mathematics Academic Forum - Cauchy Cofers wih Weiersrass Lloyd Edgar S Moyo PhD Associae Professor of Mahemaics Absrac We poi ou wo limiaios of usig he Cauchy Residue Theorem o evaluae a defiie iegral of a real raioal

More information

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles Idia Joural of Sciece ad echology Vol 9(5) DOI: 7485/ijs/6/v9i5/8533 July 6 ISSN (Pri) : 974-6846 ISSN (Olie) : 974-5645 Fuzzy Dyamic Euaios o ime Scales uder Geeralized Dela Derivaive via Coracive-lie

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

If boundary values are necessary, they are called mixed initial-boundary value problems. Again, the simplest prototypes of these IV problems are:

If boundary values are necessary, they are called mixed initial-boundary value problems. Again, the simplest prototypes of these IV problems are: 3. Iiial value problems: umerical soluio Fiie differeces - Trucaio errors, cosisecy, sabiliy ad covergece Crieria for compuaioal sabiliy Explici ad implici ime schemes Table of ime schemes Hyperbolic ad

More information