arxiv: v2 [math.pr] 10 Apr 2014

Size: px
Start display at page:

Download "arxiv: v2 [math.pr] 10 Apr 2014"

Transcription

1 arxiv: v2 [mah.pr 1 Apr 214 Srog Rae of Covergece for he Euler-Maruyama Approximaio of Sochasic Differeial Equaios wih Irregular Coefficies Hoag-Log Ngo, Dai Taguchi Absrac We cosider he Euler-Maruyama approximaio for muli-dimesioal sochasic differeial equaios wih irregular coefficies. We provide he rae of srog covergece where he possibly discoiuous drif coefficie saisfies a oe-sided Lipschiz codiio ad he diffusio coefficie is Hölder coiuous ad uiformly ellipic. 21 Mahemaics Subjec Classificaio: 6H35; 41A25; 6H1; 65C3 Keywords: Euler-Maruyama approximaio Srog approximaio Rae of covergece Sochasic differeial equaio Irregular coefficie 1 Iroducio Le us cosider he d-dimesioal sochasic differeial equaio SDE) X = x + bs,x s )ds+ σs,x s )dw s, x R d, [,T, 1) where W := W ) T is a sadard d-dimesioal Browia moio o a probabiliy space Ω,F,P) wih a filraio F ) T saisfyig he usual codiios. The drif coefficie b is a Borel-measurable fucio from [,T R d io R d ad he diffusio coefficie σ is a Borelmeasurable fucio from [,T R d io R d R d. I his aricle, we cosider ha elemes of R d are colum vecors. The diffusio process X := X ) T is used o model may radom dyamical pheomea i may fields of applicaio. Sice he soluio of 1) is rarely aalyically racable, oe ofe approximaes X by usig he Euler-Maruyama scheme give by X ) = x + ) b η s),x ) η s) ds+ ) σ η s),x ) η s) dw s, [,T, 2) This research has suppored by gras of he Japaeses goverme. Haoi Naioal Uiversiy of Educaio, 136 Xua Thuy, Cau Giay, Haoi, Vieam, golog@hue.edu.v Risumeika Uiversiy, Nojihigashi, Kusasu, Shiga, , Japa, dai.aguchi.dai@gmail.com 1

2 where η s) = kt/ =: ) k if s [kt/,k+1)t/). I is well-kowha if he coefficies b ad σ are Lipschiz coiuous i space ad 1/2-Hölder coiuous i ime he he Euler-Maruyama scheme is kow o have a srog rae of covergece order 1/2, i.e. for ay p >, here exiss C p > such ha [ E sup T X X ) p C p p/2. The srog rae i he case of o-lipschiz coefficies have bee sudied recely by usig he approximaio mehod of Yamada ad Waaabe [22, Theorem 1) i Gyögy ad Rásoyi[8. They have prove ha for a oe-dimesioal SDE, if he diffusio coefficie is α + 1/2)-Hölder coiuous i space ad he drif is he sum of a Lipschiz ad a moooe decreasig γ-hölder coiuous fucio he [ E sup T X { ) Clog) X 1/2 if α = C 2α2 + αγ ) if α,1/2, where X is he Euler s polygoal approximaio of X give by X ) = x + b s, ) ) X η s) ds+ 3) ) ) σ s, X η s) dw s, [,T. 4) Ya[23 has obaied a similar resul o3) for he Euler-Maruyama scheme for he oe-dimesioal SDE wih drif which is Lipschiz coiuous i space ad Hölder coiuous i ime by usig Taaka s formula ad some esimaes for he local ime. Whe he drif b is o supposed o be coiuous, Halidias e al. Theorem 3.1 i [9) have show he covergece of Euler-Maruyama approximaio i L 2 -orm see also Theorem 2.8 i [7). Regardig he raes of covergece, Gyögy has show ha if b saisfies he oe-sided Lipschiz codiio see Defiiio 2.3) ad σ is locally Lipschiz he he rae of almos covergece for he Euler-Maruyama s polygoal approximaio is of order 1/4 see [6 Theorem 2.6). Moreover, Basai e al. have recely prove srog L p -rae 1/4 for p 2 for spli-sep backward Euler approximaios of SDEs wih discoiuous drif ad Lipschiz coiuous diffusio coefficies see Theorem 5.2 i [1). Besides he srog approximaio problem, he weak approximaio for o-lipschiz coefficies SDE has also received a lo of aeio. The weak rae of he Euler-Maruyama approximaio whe boh drif ad diffusio coefficies as well as payoff fucios are Hölder coiuous has bee sudied i [13, 19, 8. Kohasu-Higa e al. sudied weak approximaio errors for SDE wih discoiuous drif by usig a perurbaio mehod i [14. The case of locally Lipschiz coefficies has bee sudied exesive oo, see [1 ad he refereces herei. I should be oed ha he srog rae of approximaio is very useful o impleme a effecive Muli-level Moe Carlo simulaio scheme for approximaig expecaio of some fucioals of X see [5). The goal of his aricle is o show ha he srog raes obaied i [8 ad [23 sill hold eve whe b is discoiuous. More precisely, we will ivesigae he srog rae of he Euler-Maruyama approximaio uder he assumpio ha he diffusio coefficie σ is α + 1/2)-Hölder coiuous ad he drif b is he oe-sided Lipschiz ad belogs o he class A of fucios which is, roughly speakig, of bouded variaio wih respec o a Gaussia measure o R d. I paricular, our resul implies ha he Euler-Maruyama approximaio has he opimal srog rae 1/2 i he case of Lipschiz coiuous diffusio coefficie ad discoiuous drif. Hece our resul parly improves 2

3 he oes i [6, 8, 23. I his aricle, Lemma 3.5 is he key esimaio. If he drif coefficie b is a Lipschiz coiuous fucio, i is easy o prove his lemma. To obai he same esimae wih discoiuous drif, we use he resul of Lemaire ad Meozzi which is he Gaussia boud for he desiy of he Euler-Maruyama approximaio see [18, Theorem 2.1). Fially we oe ha SDEs wih discoiuous drif appear i may applicaios such as opimal corol ad ieracig ifiie paricle sysems, see e.g. [2, 3, 16. Our paper is divided as follows: Secio 2 iroduces some oaios ad assumpios for our framework ogeher wih he mai resuls. All proofs are deferred o Secio 3. 2 Mai resuls 2.1 Noaios ad Assumpio We firs iroduce he class of fucios for he drif coefficie. Defiiio 2.1. Le A be a class of all bouded measurablefucios ζ : [,T R d R such ha here exiss a sequece of fucios ζ N, )) N N C 1 R d ;R) saisfyig he followig codiios: Ai) For ay L >, sup ζ N,x) ζ,x) dx as N. [,T x L Aii) There exiss a posiive cosa K such ha for ay x R d, sup [,T N N sup ζ N,x) K. Aiii) There exiss a posiive cosa K such ha for ay a R d ad u >, sup sup [,T N N where i is parial derivaive i space. R d i ζ N,x+a) e x 2 u u d 1)/2dx K1+ u), We call ζ N ) N N a A-approximaio sequece of ζ. This class of fucio A is similar o he oe iroduced i [15. The followig proposiio shows ha his class is quie large. Is proof is deferred o Secio 3.7. Proposiio 2.2. i) If ξ,ζ A ad α,β R, he ξζ A ad αξ +βζ A. ii) If g : [,T R d R is a bouded measurable fucio ad g, ) : R d R is moooe i each variable separaely he g A. iii) If g is bouded ad Lipschiz coiuous i space, he g A. Usig Proposiio 2.2 oe ca easily verify ha he class A coais fucio ζx) = x a 1 or ζx) = I a<x<b for some a,b R d. 3

4 Defiiio 2.3. A fucio f : [,T R d R d is called oe-sided Lipschiz fucio i space if here exiss a posiive cosa K such ha for ay,x,y) [,T R 2d, Le L be he class of all oe-sided Lipschiz fucios. x y,f,x) f,y) R d K x y 2. 5) Remark 2.4. By he defiiio of he class L, if f,g L ad α, he f+g, αf L. The oesided Lipschiz propery is closely relaed o he moooiciy codiio iroduced i [6 ad he class L obviously coais all fucios which are he sum of a Lipschiz fucio ad a moooe decreasig γ-hölder coiuous fucio cosidered i [8. May properies ad applicaios of SDEs wih he oe-sided Lipschiz drif ca be foud i [2. We eed he followig assumpios o he coefficies b = b 1),,b d) ) ad σ = σ i,j ) 1 i,j d. Here meas raspose for he marix. Assumpio 2.5. We assume ha he coefficies b ad σ are measurable fucios ad saisfy he followig codiios: i) b L ad b i) A for ay i = 1,...,d. ii) a = σσ is uiformly ellipic, i.e., here exiss λ 1 such ha for ay,x,ξ) [,T R 2d, λ 1 ξ 2 a,x)ξ,ξ R d λ ξ 2. iii) σ is a 1/2+α)-Hölder coiuous wih α [,1/2 i space, i.e., here exiss K > such ha σ,x) σ,y) sup K.,x,y) [,T R 2d,x y x y 1/2+α Remark 2.6. May fucios saisfy Assumpio 2.5 i). For example, moooe decreasig fucio or Lipschiz coiuous fucio. I paricular, for x R, he fucio 1, x) 1,+ ) x) saisfies Assumpio 2.5) i). This fucio is he opimal drif coefficie for some sochasic corol problem see [2 or [12 page 437). From Remark 2.2 ad 2.4, we kow ha if f ad g saisfy Assumpio 2.5 i) ad α,β, he αf + βg also saisfies his codiio. Assumpio2.5ii) implieshahediffusiocoefficieσ isboudedi.e., foray,x) [,T R d, σ,x) = { i,j σ2 i,j,x)}1/2 dλ. Assumpio 2.7. The coefficies b ad σ are β-hölder coiuous wih β 1/2 i ime i.e., here exis K > such ha for all,s [,T ad x R d, b,x) bs,x) + σ,x) σs,x) K s β. Remark 2.8. Vereeikov [21 has show he followig resul. Assume ha b ad σ are bouded measurable fucios such ha σσ is uiformly ellipic. If σ is 1/2-Hölder coiuous i x R whe d = 1 ad i is Lipschiz i x R d whe d 2, he here exiss a uique srog soluio o he sochasic differeial equaio 1) see also [4, 7, 16, 17, 24 for oher crieria for he exisece ad uiqueess of soluio of SDE wih o-lipschiz coefficies). 4

5 2.2 Mai Resuls Through he whole of his aricle, we will use he posiive cosas C ad c which do o deped o. Uless explicily saed oherwise, he cosa C depeds oly o K,T,λ,x,β ad d, he cosa c depeds oly o K,λ,η ad d. Moreover he cosas C ad c may chage from lie o lie. We obai he followig resuls o he raes of he Euler-Maruyama approximaio i boh L 1 -orm ad L 1 -sup orm. Theorem 2.9. Le Assumpios 2.5 ad 2.7 hold. The here exiss a cosa C such ha, for d = 1, { supe[ X τ X τ ) Clog) 1 if α =, τ T C α if α,1/2, 6) ad for d 2, where T is he se of all soppig imes τ T. supe[ X τ X τ ) C 1/2 if α = 1/2. τ T Theorem 2.1. Uder Assumpios 2.5 ad 2.7 we have for d = 1, [ { E sup X X ) Clog) 1/2 if α =, T C 2α2 if α,1/2, 7) ad for d 2, [ E sup X X ) T C 1/2 if α = 1/2. The followig heorem provides he boud of he error i L p -orm which is useful o desig a Muli-level Moe Carlo approximaio scheme. Theorem Le Assumpios 2.5 ad 2.7 hold. The for ay p 2, here exiss a cosa C = CK,T,λ,x,d,β,p) such ha for d = 1, [ E sup T X X ) p { 1 Clog) if α =, C α if α,1/2, 8) ad for d 2, [ E sup T X X ) p C 1/2 if α = 1/2. Remark I Theorem 2.11, for α [,1/2), he resul is he same as i Gyögy ad Rásoyi [8. Bu for α = 1/2, every mome bigger ha 2 of he error is of he same order. The reaso is ha we deal wih he discoiuous drif coefficies ad he esimae of discoiuous par is of 5

6 order 1/2 for ay q 1 see Lemma 3.5). The proof of Theorem 2.11 does o use he resul of Theorem 2.1 ad oly use he resul of Theorem 2.9. O he oher had, for α,1/2), usig Theorem 2.11 ad Jese s iequaliy, we ca obai ha he rae of covergece order is α/2 i L 1 -sup orm. For α [1/4,1/2), his resul is beer ha Theorem 2.1 ad for α,1/4, his resul is worse ha Theorem 2.1. I may applicaios such as he regime swichig problem, Assumpio 2.7 fails o be saisfied. However we are sill able o obai he same srog raes of covergece as above if we cosider he polygoal Euler-Maruyama scheme 4) isead of he origial Euler-Maruyama scheme 2). Corollary Assume d = 1 ad Assumpio 2.5. The all he esimaes 6), 7) ad 8) sill hold whe we replace X ) ) wih X. Corollary Le Assumpio 2.5 ad 2.7 be saisfied. The he coclusio of Theorem 2.9, 2.1 ad 2.11 sill hold if we replace X ) wih X ) defied by X ) = x + ) b s,x ) η s) ds+ 3 Proof of he Mai Theorems ) σ η s),x ) η s) dw s, [,T. 3.1 Gaussia boud for he desiy of he Euler-Maruyama scheme Uder Assumpio 2.5 ii) ad iii), i follows from [18, Theorem 2.1) ha he rasiio desiy p ) s,,x,x ) of X ) bewee imes s ad exiss ad here exis cosas C 1 ad c > such ha for ay x,x R d ad j < j, C 1 p c 1 ) j ) j,x,x ) p ) ) j, ) j,x,x ) Cp c ) j ) j,x,x ), 9) ) d/2 where p c s,x,x c ) := exp c x x 2 ). Noe ha he cosa C depeds o 2π s) 2 s) K,λ,η,d,T ad he cosa c depeds o K,λ,η,d bu o o T. The followig lemma plays a crucial role i our argume. Lemma 3.1. Assume ha Assumpio 2.5 ii) ad iii) hold. The here exis C 1 ad c > such ha for ay x,x R d, j < j ad ), we have Proof. Noe ha for ay u R d, j 1,) j p ) ) j,,x,x ) Cp c ) j,x,x ). p ) ) d/2 ) 1 j 1,,u,x ) 1 = 2π ) j 1 )d dea ) j 1,u) 6

7 exp [ a 1 ) j 1,u)x u ) j 1 )b) j 1,u)),x u ) j 1 )b) j 1,u)) R d 2 ) j 1 ) Sice a 1 is uiformly ellipic, usig he iequaliy x y x 2 y 2 for ay x,y R d, we obai a 1 ) j 1,u)x u ) j 1 )b) j 1,u)),x u ) j 1 )b) j 1,u)) R d 2 ) j 1 ) λ 1 x u ) j 1 )b) j 1,u) 2 2 ) j 1 ) 2λ ) 1 x u 2 λ 1 2 ) j 1 ) + ) j 1 )2 b ) j 1,u) 2 2 ) j 1 ) x u 2 c 2 ) j 1 ) +C.. Hece we have p ) ) j 1,,u,x ) C [ exp c x u 2 2 ) j 1 ) 2π ) j 1 ) ) d/2. This esimae ogeher wih he Chapma-Kolmogorov equaio ad 9) yield p ) ) j,,x,x ) ) = p ) ) j, ) j 1,x,u p ) ) j 1,,u,x ) du R [ d [ u x exp c 2 exp c x u 2 2 ) j C 1 ) j ) 2 ) j ) ) 1 d/2 ) d/2 du = Cp c ) R d 2π ) j 1 ) j ) 2π ) j,x,x ). j 1 ) We herefore obai he desired esimae. Corollary 3.2. Le p ) be a desiy for X ). From Lemma 3.1 wih j =, here exis C 1 ad c > such ha for ay,t ad x R d we have 3.2 Some auxiliary esimaes p ) x) = p ),,x,x) Cp c,x,x). 1) I his secio, we give a key esimaio Lemma 3.5) o prove he mai heorems. Lemma 3.3. Le ζ : [,T R d R be a bouded measurable fucio ad ζ N ) N N be a sequece of fucios saisfyig Ai) for ζ. Le Y ) T be a d-dimesioal sochasic process 7

8 wih Y = y R d. Suppose ha Y saisfies he Gaussia boud codiio o [κ,t for some κ,t, i.e., here exis posiive cosas C ad c such ha where p is he desiy fucio of Y. The p y) C e c y y 2, [κ,t, 11) d/2 ad if T/ κ T κ E[ ζ N,Y ) ζ,y ) d, N. 12) T T E [ ζn,y η)) ζ,y η)) d, N. 13) Proof. For give ε >, here exiss M Mε,y,c) > such ha for ay y M, From Ai), here exiss N N ε) such ha for ay N N, ζ N,y) ζ,y) dy < ε. e c y y 2 2 e c y y 2 2T < ε. 14) y <M Therefore for ay N N, usig he Gaussia boud codiio 11), he uiform boudedess of ζ N ad ζ, ad 14), we ge T κ C E[ζ N,Y ) ζ,y ) d T κ T C κ d 1 d/2d y <M y <M CT 1 κ d/2ε+ctε T κ d R d dy ζ N,y) ζ,y) p y) ) dy + dy ζ N,y) ζ,y) e c y y 2 y M d/2 T dy ζ N,y) ζ,y) +C d dy e c y y 2 κ y M d/2 R d e c y y 2 2 d/2 dy C T,κ ε, where he cosa C T,κ depedig oly o T ad κ. Hece by leig ε o, we coclude he proof of 12). I he same way, we ca show 13). Corollary 3.4. Le Assumpio 2.5 hold ad b i) N ) be a A-approximaio sequece of bi) for each i = 1,...,d. The for ay i = 1,,d ad N, we have T lim E[ b i) N N s,x) s ) b i) N s,x) T η s) ) ds = T T E[ b i) s,x s ) ) b i) s,x ) η s) ) ds < +. 8

9 Proof. I follows from Lemma 3.1 ha he desiies of X s ) ad X ) η s) saisfy he Gaussia boud codiio for s T. Hece usig Lemma 3.3 wih κ = T/ ad he simple iequaliy, a b a b a a + b b, we have T T T T T T T E[ b i) N s,x) s ) b i) N s,x) η ) ds s) E[ b i) s,x s ) ) b i) s,x ) T η s) ) ds [ b i) E N s,x) s ) b i) N s,x) η s) ) bi) s,x s ) ) b i) s,x ) η ) s) ds [ T [ E b i) N s,x) s ) b i) s,x s ) ) ds+ E b i) N s,x) η T s)) ) bi) s,x ) η s)) ds, as N, which implies he desired resul. The above corollary is useful o prove he followig key esimae. Lemma 3.5. Le b i) A for i = 1, d. Uder Assumpio 2.5 ii) ad iii), for ay q 1, here exiss C CK,T,λ,x,d,q) such ha T E[ b i) s,x ) s ) b i) s,x ) η s) ) q ds C. 15) Remark 3.6. The boud 15) is igh. Ideed, le us cosider he case d = 1, x =, σ = 1 ad bx) = 1, x) 1,+ ) x). We will show ha for ay q >, i holds T E[ bx ) s ) bx ) η s) ) q ds C 16) for some cosa C >. Ideed, for ay s T/, sice X ) η s) ad W s W ηs) are idepede, E[ bx s ) ) bx ) η s) ) q = 2 q 1 E[ bx s ) ) bx ) η ) s) ) = 2 q P X ) η +s η s) x))bx ) η )+W s) s W ηs))x ) η < s) = 2 q dx 1x 2 +s η s))bx)x+yx < )p ) R dx 1x s η s))+y < )p ) R R y 2 2s ηs)) η x) e s) 2πs η s)) dy y 2 2s ηs)) η x) e s) 2πs η s)) dy. Le Φu) := u e v2 2 2π dv. The by he chage of variable z = y/ s η s), we have ) E[ bx ) s ) bx ) η s) ) q p ) η s) x)φ x s η s)) s η s) dx. 9

10 Recall ha x =. I follows from he lower boud of 9) ha E[ bx s ) ) bx ) η s) ) q 1 C s η s) 1 C 1 C = s η s) s η s) C e x2 2cηs) 2πcη s) Φ x s η s)) s η s) e s ηs) 2cηs) 2πcη s) Φ ) e x2 2cηs) 2πcη s) Φ x s η s)) dx s η s) ) dx ) s η s) s η s)) dx s η s) e s ηs) 2cηs) 2πcη s) Φ 1 )) s η s). Moreover, usig he Komasu s iequaliy see [11 page 17 Problem 1), we ge for ay T, Φ x ) E[ bx ) s ) bx ) η s) ) q C T,c πc c 2e x2 2 2π x + x2 +4), s η s), for ay s T η s), where he cosa C T,c is a cosa depedig oly o T ad c. Therefore, we have T T E[ bx s ) ) bx ) s η s) η s) ) q ds C ds C, T/ η s) for max{t,2}. This cocludes 16). Proof of Lemma 3.5. Sice b is bouded, i is sufficie o prove 15) for q = 1. Le b i) N ) be a A-approximaio sequece of b i) for each i = 1,...,d. From Corollary 3.4, we have T = E[ b i) s,x ) s ) b i) s,x ) η s) ) ds T C + lim N E[ b i) s,x ) s ) b i) s,x ) η s) ) ds+ T T T T E[ b i) s,x ) s ) b i) s,x ) η s) ) ds E[ b i) N s,x) s ) b i) N s,x) η s) ) ds. 17) So we esimae he secod par of 17). Sice W s W ηs) ad X ) η s) are idepede, we have for i = 1, d, [ b i) E N s,x) s ) b i) N s,x) η ) s) 1

11 [ b i) = E N b i) ) s,x ) η +s η s) s))bη s),x ) η )+ση s) s),x ) η )W s) s W ηs)) η ) s) N s,x) = dx dyb i) N s,x+s η s))bη s),x)+ση s),x)y) b i) N s,x) R d R d ) d/2 p ) η x) 1 y s) exp[ 2 2πs η s)) 2s η s)). 18) From he Gaussia boud codiio for p ) η s), here exiss posiive cosa C 1 ad c > such ha he las erm of 18) is less ha C dx dyb i) N s,x+s η s))bη s),x)+ση s),x)y ) b i) N s,x) R d R ) d d/2 1 exp[ c x x 2 ) d/2 1 y exp[ 2. 19) η s) 2η s) s η s) 2s η s)) Applyig he chage of variables z = s η s))bη s),x)+ση s),x)y, 19) is bouded by b i) N s,x+z) bi) N s,x) ) d/2 1 C dx dz exp[ c x x 2 R d R deση d s),x)) η s) 2η s) ) d/2 1 exp[ σ 1 η s),x)z s η s))bη s),x)) 2. 2) s η s) 2s η s)) Sice a 1 is uiformly ellipic, σ 1 η s),x)z s η s))bη s),x)) 2 = a 1 η s),x)z s η s))bη s),x)),z s η s))bη s),x) R d λ 1 z s η s))bη s),x) 2. By he iequaliy x y x 2 y 2 for ay x,y R d, we have σ 1 η s),x)z s η s))bη s),x)) 2 2s η s)) λ 1 z 2 4s η s)) + λ 1 s η s)) 2 bη s),x) 2 2s η s)) z 2 c 2s η s)) +C. Usig his esimae ad Fubii heorem, 2) is less ha [ C dz dxb i) exp [ c x x 2 z N s,x+z) bi) N s,x) 2η s) exp c 2 2s η s)). 21) R d R d η s)) d/2 s η s)) d/2 Sice b i) N s,x+z) bi) N s,x) = 1 z, bi) C dz dx R d R d 1 N s,x+θz) Rddθ, 21) is less ha [ dθ z, b i) exp [ c x x 2 z N s,x+θz) 2η s) exp c 2 2s η s)) R d η s)) d/2 s η s)) d/2 11

12 [ 1 exp [ c x x 2 z C dz dx dθ z b i) N s,x+θz) 2η s) exp c 2 2s η s)) R d R d η s)) d/2 s η s)) d/2 [ 1 exp [ c y 2 z C dz dy dθ z j b i) N s,y +x 2η s) exp c 2 2s η s)) +θz), 22) R d R d η s)) d/2 s η s)) d/2 j=1 where we use he chage of variable y = x x i he las equaio. I follows from Fubii heorem ad codiio Aiii) ha 22) is bouded by [ Sice z exp C dz η s) R d = C η s) Therefore we have T R d c z 2 2 2s η s)) 1 [ 1 z 2 dθ z exp c s η s)) d/2 2s η s)) [ c z 2 [ exp c z 2 22s η s)) 22s η s)) z exp s η s)) d/2 2 ec s η s) for ay z R d, 23) is less ha C s η s) C η s) η s). E[ b i) s,x ) s ) b i) s,x ) η s) ) ds C + C T which cocludes he proof of Lemma 3.5. T 1 η s) ds C + C T dz. 23) 1 s ds C, 3.3 Proof of Theorem 2.9 Before provig Theorem 2.9, we iroduce some oaios. Defie Y ) = Y,1) The by he defiiio of X ad X ) Y ) = Y,i),Y,j) = k=1,,y,d) ) :=X X ), U ) we have { bs,x s ) bη s),x ) η s) ) }ds+ := X ) X ) η ). 24) { σs,x s ) ση s),x ) η s) ) }dw s, { σ i,k s,x s ) σ i,k η s),x ) η s) ) }{ σ j,k s,x s ) σ j,k η s),x ) η s) ) }ds. The followig esimaio is sadard see Remark 1.2 i [8). For he coveiece of he reader we will give a proof below. 12

13 Lemma 3.7. Uder Assumpio 2.5 ii) ad iii), for ay q >, here exis C CK,T,λ,d,q) such ha sup E[ U ) q C [,T q/2. Proof. From he defiiio of U ) ad usig he iequaliy m a i) q m q 1) m aq i for ay m N, a i ad q >, we have U ) q = X,i) X,i) η ) ) q/2 2 2 q/2 = η ))b i) η ),X ) η )+ ) σ i,j η ),X ) η ) )Wj W j η ) ) j=1 C η ) q K q + λ q/2 W j W j η ) q, j=1 so we have E[ U ) q C η ) q + C η ) q + E[ W j W j η ) q j=1 η ) q/2 C q/2. j=1 This cocludes Lemma 3.7. Proof of Theorem 2.9. Ispired by he paper [8, we will use he approximaio echique of Yamada ad Waaabe see [22, Theorem 1). For each δ 1, ) ad ε,1), we ca defie a coiuous fucio ψ δ,ε : R R + wih suppψ δ,ε [ε/δ,ε such ha ε ε/δ We defie a fucio φ δ,ε C 2 R;R) by ψ δ,ε z)dz = 1; ψ δ,ε z) 2 zlogδ, z >. φ δ,ε x) := x y ψ δ,ε z)dzdy. I is easy o verify ha φ δ,ε has he followig useful properies: φ δ,εx) = x x φ δ,ε x ), for ay x R\{}. 25) φ δ,ε x) 1, for ay x R. 26) 13

14 Moreover we defie fucio Φ δ,ε : R d R by Φ δ,ε x) := φ δ,ε x ). The we also have he followig useful properies: x ε+φ δ,ε x), for ay x R d. 27) φ δ,ε x ) δ x ε, for ay x Rd \{}. 28) φ δ,ε ± x ) = ψ 2 δ,ε x ) x logδ 1 [ε/δ,ε x ), for ay x R d \{}. 29) Noe ha parial differeiaios of Φ δ,ε give he followig: for ay x R d \{}, i Φ δ,ε x) = φ δ,ε x ) x i x, 3) i 2 Φ δ,εx) = φ δ,ε x ) x2 i x 2 x 2 +φ δ,ε x ) x 2 ) i x 3, i j Φ δ,ε x) = φ δ,ε x )x ix j x 2 φ δ,ε x ) xi x j x 3 Noice also ha all derivaives of φ δ,ε ad Φ δ,ε a origi equal o. I paricular, oe ha for ay x R d ad i = 1,,d, usig 26) ad 3), The Iô s formula, 25) ad 27) imply ha where ad Y ) = ε+ ε+φ δ,ε Y ) M δ,ε, := ) Is δ,ε, ds+m δ,ε, I δ,ε, s := k=1 Sice i Φ δ,ε ad σ are bouded, M δ,ε, i Φ δ,ε x) 1. i,j=1 ). i j Φ δ,ε Y ) s )d Y,i),Y,j) s, 31) { } i Φ δ,ε Y s ) ) b i) s,x s ) b i) η s),x ) η ) s) { i Φ δ,ε Y s ) ) σ i,k s,x s ) σ i,k η s),x ) η ) s) }dw s k. 32) equals o, so we oly esimae he secod ad fourh par of 31). Firs we cosider he secod par. From Assumpio 2.7, 25), 26) ad parial differeiaios of Φ δ,ε, we have I δ,ε, s ds = φ ) δε Y is a marigale. Therefore he expecaio of M δ,ε, s ) Y s,i) Y s ) { b i) s,x s ) b i) s,x ) η s) ) ) 14

15 + b i) s,x ) η s) ) bi) η s),x ) η ) s) )}ds = + + φ ) δε Y s ) Y s,i) Y s ) φ ) δε Y s ) Y s,i) Y s ) φ δε Y s ) ) Y s,i) Y s ) X s X ) s,bs,x s ) bs,x ) s ) R d b i) s,x s ) b i) s,x ) η s) ) )ds+ C β ) b i) s,x s ) b i) s,x s ) ) ds b i) s,x ) s ) b i) s,x ) η s) ) )ds+ C β φ ) δε Y s ) Y s ) b i) s,x s ) ) b i) s,x ) ds+ η ) C s) By usig he oe-sided Lipschiz codiio 5), we have Is δ,ε, ds K Y ) s ds+ T β b i) s,x s ) ) b i) s,x ) ds+ η ) C s) β. 33) Nex we esimae he fourh par of 31). Usig parial differeiaios of Φ δ,ε, he fourh par of 31) ca be expressed by where 1 2 i,j=1 A 1,δ,ε, := 1 2 i j Φ δ,ε Y s ) )d Y,i),Y,j) s = A 1,δ,ε, +A 2,δ,ε,, i,j=1 φ ) δ,ε Y s ) Y s,i) Y,j) s Y ) s 2 ds d Y,i),Y,j) s ad A 2,δ,ε, := i<j d φ δ,ε Y ) s ) { φ ) δ,ε Y Y ) s 2 Y,i) s 2 s ) Y s,i) Y ) s 3 Y,j) s Y ) s 3 } ) d Y,i),Y,i) s d Y,i),Y,j) s. Here we remark ha A 2,δ,ε, = for d = 1. So we should esimae A 1,δ,ε, defiiio of quadraic variaio of Y ) A 1,δ,ε, 1 2 k=1 i,j=1, φ ) δ,ε Y s ),i) Y s Y s,j) Y s ) 2 15 ad A 2,δ,ε,. By he σ i,k s,x s ) σ i,k η s),x ) η s) )

16 ad A 2,δ,ε, σ j,k s,x s ) σ j,k η s),x ) ds, η ) s) k, k=11 i<j d φ δ,ε Y ) s ) Y ) s 2 Y,i) s 2 φ ) δ,ε Y s ) Y ) s 3,i) Y s Y s,j) Y s ) 3 σ j,k s,x s ) σ j,k η s),x ) ds. η ) s) ) σi,ks,x s ) σ i,kη s),x ) η s) ) 2 ds σ i,k s,x s ) σ i,k η s),x ) η s) ) Sice σ is 1/2+α)-Hölder coiuous i space ad β-hölder coiuous i ime, we have A 1,δ,ε, C C C Similarly, we obai A 2,δ,ε, i,j=1 φ ) δ,ε Y s ) φ ) δ,ε Y φ ) δ,ε Y s ),i) Y s Y s,j) Y ) s 2 { Xs s ) X ) { Y ) φ ) δ,ε Y s ) C Y s ) I follows from 26), 28) ad 29) ha ad A 1,δ,ε, 1 [ε/δ,ε Y s ) ) C Y s ) logδ A 2,δ,ε, Cε2α logδ + Cδ εlogδ C Y s ) s T η s) 1+2α + { Xs X ) 1+2α + 1 U s ) { Y ) 1+2α + s 2β } ds 1+2α + 1 U s ) { Y ) 1+2α + s U s ) η s) 2β 1+2α + 1 } ds. 1+2α + 1 2β 1+2α + 1 2β 2β } ds. } ds } ds U s ) 1+2α Cδ ds+ εlogδ) 2β 34) 2α ds+ Cδ ε Le τ be a soppig ime wih τ T. Defie Z ) ad Rα,δ,ε,) := ε+ Cε2α logδ + Cδ T εlogδ Sα,δ,ε,) := Cδ ε T U s ) 1+2α ds+ Cδ ε 2β. := Y ) τ ad for ay α [,1/2, T U s ) 16 U s ) 1+2α ds+ 1+2α ds+ Cδ ε 2β. Cδ εlogδ) 2β

17 The we cosider he followig wo cases. Case 1 d 2 ad α = 1/2): I his case, gaherig he above esimaes, we have Z ) C Z ) s ds+ T b i) s,x ) s ) b i) s,x ) η s) ) ds + C β +Mδ,ε, τ +R1/2,δ,ε,)+S1/2,δ,ε,). 35) We choose δ = 2 ad ε = 1/2. The for ay α,1/2, we obai ad Rα,2, 1/2,) C +C T U s ) 1+2α C ds+ 2β 1/2 Sα,2, 1/2,) C T U s ) 1+2α C ds+ 2β 1/2. Noice ha 2β 1/2 1/2. I follows from Lemma 3.7 wih q = 1+2α ha for ay α,1/2, E[Rα,2, 1/2,), E[Sα,2, 1/2,) C α. 36) Recall α = 1/2. By usig he above esimae ad Lemma 3.5, we obai By Growall s iequaliy, we have E[Z ) C E[Z ) s ds+ C. E[Z ) C. Therefore from domiaed covergece heorem, we complee he saeme akig T. Case 2 d = 1): As remarked before ha A 2,δ,ε, =. From 33) ad 34), we have T Z ) C Z s ) ds+ bs,x s ) ) bs,x ) ds+ η ) C s) β +Mδ,ε, τ +Rα,δ,ε,). 37) For α,1/2, we ca prove he saeme i 6) i he same way as Case 1 by akig δ = 2 ad ε = 1/2. For α =, we choose δ = 1/3 ad ε = log) 1. The we have ad so we ge R, 1/3,log) 1,) C T log +C1/3 U ) C s ds+ 2β 1/3 E[R, 1/3,log) 1,) C log. 38) 17

18 From Lemma 3.5, 3.7 ad 38), we have E[Z ) C Hece by Growall s iequaliy we see ha E[Z ) s ds+ C log. E[Z ) C log. Therefore from domiaed covergece heorem, we obai 6) for α = as akig T. 3.4 Proof of Theorem 2.1 Recallig 24), we defie V ) := sup s Y s ). To esimae he expecaio of V ), we use 35) ad herefore we eed o calculae he expecaio of sup s Ms δ,ε,. We use he oaio C for a posiive cosa isead of C. This cosa C ca deped o K,T,α ad β while he cosa C ca be deped o K,T,λ,x,β ad d. For ay d N, by usig 32) ad Burkholder- Davis-Gudy s iequaliy we have [ E sup M δ,ε, s CE[ M δ,ε, 1/2 s = CE k=1 { } i Φ δ,ε Y s ) ) σ i,k s,x s ) σ i,k η s),x ) η ) s) 2 1/2 ds. Sice i Φ δ,ε, i = 1,,d) are bouded ad σ is 1/2+α-Hölder coiuous i space ad β-hölder coiuous i ime, we have [ E sup M δ,ε, s CE s [ i,k=1 { σi,k s,x s ) σ i,k s,x s ) ) 2 + σ i,k s,x s ) ) σ i,k s,x ) η ) 2 s) ) + σ i,k s,x ) η ) σ s) i,kη s),x ) 1/2 η ) s) 2}ds [ = CE { σs,xs ) σs,x s ) ) 2 + σs,x s ) ) σs,x ) η ) 2 s) ) + σs,x ) η ) ση s) s),x ) 1/2 η ) s) 2}ds CE [ { X s X s ) 1+2α + X s ) X ) η s) 1+2α + s η s) 2β} ) 1/2 ds 18

19 { C E[A ) +B ) + 1 } β, 39) where by he defiiio of Y ) ad U ) give i 24), ) 1/2 1/2 A ) := Y s ) 1+2α ds, B ) := U s ) ds) 1+2α. From Lemma 3.7 wih q = 1+2α ad usig Jese s iequaliy, we have Nex we esimae A ) E[B ) ad V ) T [ 1/2 E U s ) ds) 1+2α = sup s Y ) s by he followig wo cases. Case 1 d 2 ad α = 1/2): Sice Y s ) V ) for all s, we have [ [ E[A ) = E Usig Youg s iequaliy xy x2 ) 1/2 Y s ) 1+2α ds E + Cy 2 2 C 2 V ) ) 1/2 C 1/4+α/2. 4) ) 1/2 Y s ) 2α ds., for ay x,y ad Theorem 2.9, as α = 1/2, we ge E[A ) 1 ) E[V + C T E[ Y s ) ds 1 ) E[V + C. 41) 2 C 2 2 C Therefore as β 1/2, we have usig 39), 4) ad 41), [ E M δ,ε, s 1 ) E[V +C 2 sup s Takig supremum i 35) wih τ = T, we obai V ) C V ) s ds+ From 36), 41) ad 42), we have From Growall s iequaliy we have T { β } 1 ) E[V + C. 2 b i) s,x ) s ) b i) s,x ) η s) ) ds + C β + sup Ms δ,ε, +R1/2,δ,ε,)+S1/2,δ,ε,). 42) s E[V ) C E[V ) s ds+ C E[V ) C. 19

20 Case 2 d = 1): For α,1/2, by usig he same mehod as i Case 1, we have ha 41) becomes E[A ) 1 ) E[V + C T E[ Y ) s ) 2α 1 ) ds E[V + C. 43) 2 C 2 2 C 2α2 Therefore from 39), usig 4) ad 43) we obai [ E Ms δ,ε, 1 { ) 1 E[V +C + 2 2α2 sup s Takig supremum i 37) wih τ = T, we have V ) C V ) s ds+ T /4+α/2 β } 1 2 ) E[V + C 44) 2α2 bs,x s ) ) bs,x ) η ) ds+ C s) β + sup Ms δ,ε, +Rα,δ,ε,). 45) s Therefore by usig 36), 44) ad applyig Growall s iequaliy we have E[V ) C. 2α2 For α =, i follows from Theorem 2.9 ha we have E[A ) T [ E Y s ) ds ) 1/2 C. log Therefore from 45) ad applyig Growall s iequaliy we have Hece we fiish he proof of Theorem 2.1. E[V ) C. log 3.5 Proof of Theorem 2.11 To prove Theorem 2.11, we iroduce he followig Growall ype iequaliy. Lemma 3.8 [8 Lemma 3.2.). Le Z ) be a oegaive coiuous sochasic process ad se V := sup s Z s. Assume ha for some r >, q 1, ρ [1,q ad some cosas C ad ξ, [ ) r [ ) r/q E[V r C E V s ds +C E Zs +ξ ρ ds < for all. The for each T he followig saemes hold. i) If ρ = q he here exiss a cosa C 1 depedig o C,T,q ad r such ha E[V r T C 1 ξ. ii) If r q or q +1 ρ < r < q hold, he here exiss cosa C 2 depedig o C,T,ρ,q ad r, such ha T E[VT r C 2 ξ +C 2 E[Z s ds. 2

21 Proof of Theorem Le p 2. Firs we esimae he expecaio of sup s Ms δ,ε, p. By usig 32) ad Burkholder-Davis-Gudy s iequaliy, for ay δ 1, ) ad ε,1), we have [ E sup Ms δ,ε, p CE[ M δ,ε, p/2 s [ CE CE CE [ [ ) p/2 Y s ) 1+2α + U s ) 1+2α + s η s) 2β ds ) p/2 Y s ) 1+2α C ds + + C p/4+pα/2 pβ 46) ) p/2 Y s ) 1+2α ds + C pα. 47) Now we esimae he expecaio of V ) ) p. Case 1 d 2 ad α = 1/2): We choose δ = 2 ad ε = 1/2. From 42), by usig he iequaliy m a i) q m q 1) m aq i for ay m N, a i ad q >, we have V ) ) p C { V ) s ds) p + T I he same way as i 36), for ay α,1/2 we have b i) s,x ) s ) b i) s,x ) η s) ) p ds } sup M δ,ε, pβ s p +R p 1/2,δ,ε,)+S p 1/2,δ,ε,). 48) s E[R p α,2, 1/2,), E[S p α,2, 1/2,) C pα. 49) Usig Lemma 3.5 wih q = p, 47), 48) ad 49) we have [ ) p [ ) p/2 E[V ) ) p CE V s ) ds +CE Y s ) 2 ds + C. From Lemma 3.8 i) wih r = p, ρ = q = 2 ad ξ = C 1/2, we obai E[V ) ) p C. Case 2 d = 1): From 45), we have { p T V ) ) p C V s ds) ) + bs,x s ) ) bs,x ) η s) ) p ds sup M pβ s δ,ε, p +R p α,δ,ε,) s }. 5) 21

22 For α = 1/2, we ca show he saeme i he same way as Case 1. For α,1/2), we also ake δ = 2 ad ε = 1/2. By usig 47), 49) ad Lemma 3.5 wih q = p we have E[V ) ) p CE [ ) p [ ) p/2 V s ) ds +CE Y s ) 1+2α ds + C pα + C. From Lemma 3.8 ii) wih r = p, q = 2, ρ = 1+2α ad ξ = C pα +C 1/2, we have E[V ) ) p C pα + C T { 1 +C E[ Y ) s ds C pα } α C α. For α =, we choose δ = 1/3 ad ε = log) 1. I he same way as i 38), we have E[R p, 1/3,log) 1,) Usig Lemma 3.5 wih q = p, 46),49) ad 5) we obai [ [ E[V ) ) p CE ) p V s ) ds +CE C log) p. ) p/2 Y s ) ds + From Lemma 3.8 ii) wih r = p, q = 2, ρ = 1 ad ξ = Clog) p, we have E[V ) ) p C log) p +C Hece he proof of he heorem is complee. 3.6 Proof of Corollaries 2.13 ad 2.14 T E[ Y ) s ds C log. C log) p. Usig he same argume as i [18, Theorem 2.1), oe ca esablish he Gaussia boud for he desiy of X) for d = 1, ad for he desiy of X ) for d 1. Hece we ca prove Corollaries 2.13 ad 2.14 by usig he same mehod as i secios 3.4 ad Proof of Proposiio 2.2 i). I is easy o prove ha A is a vecor space over R. ii). Le g : [,T R d R be a bouded measurable fucio ad g, ) : R d R is moooe i each variable separaely. Le ρx) be a desiy fucio of he d-dimesioal sadard ormal disribuio, i.e. ρx) := e x 2 /2 /2π) d/2 ad a sequece ρ N ) N N be defied by ρ N x) := N d ρnx). Fially, we se g N,x) := R g,y)ρ d N x y)dy ad g := sup [,T,x R d g,x). We will show ha g N ) is a A-approximaio sequece of g. Ideed, sice R ρ d N y)dy = 1, we have g N,x) g. Thus g N ) saisfies Aii). Moreover, for ay L >, we have g N,x) g,x) dx dx dy g,y) g,x) ρ N x y) x L x L R d 22

23 = x L = dz R d dx dz g,x z) g,x) ρ N z) R d dx g,x z N ) g,x) ρz). For each z R d, we wrie z = z 1,,z d ), z ) = ad z k) = z 1,,z k,,,) for k = 1,,d. We have g,x z N ) g,x) dx x k L x L k=1 x k L x 1 L x L dx 1 dx k 1 dx k+1 dx d x k 1 L x k+1 L x d L zk) zk 1) g,x ) g,x N N ) dx k. Sice g, ) is moooe i each variable, zk) zk 1) g,x ) g,x N N ) dx k = x k L By he chage of variable, we have ) g,x zk) zk 1) L ) g,x N N ) dx k = x k L Therefore This implies ha ) g,x zk) zk 1) ) g,x N N ) dx k. L z k /N 2 z k g. N sup g,x z [,T x L N ) g,x) dx k=1 sup g N,x) g,x) dx [,T x L R d as N. Thus g N ) N N saisfies Ai). ) L + g,x zk 1) L z k /N N )dx k 2 z k g L d 1. N 2 z k g L d 1 ρz)dz. N Sice g, ) is a moooe fucio i each variable separaely, so is g N, ). Usig he iegraio by pars formula, we have Rd i g N,x+a) e x 2 /u /u u d 1)/2dx = dx 1 dx i 1 dx i+1 dx d dx i i g N,x+a) e x 2 R d 1 R u d 1)/2 g N,x+a) 2 x i e x 2 /u R u u d 1)/2dx 2 g x e x 2 /u dx = 2 g d R u u d/2 y e y 2 dy, d R d 23 k=1

24 where we use he chage of variable y = x/ u i he las equaio. This cocludes g N ) N N saisfies Aiii). iii). Le g N ) be defied as i ii). For each L >, sice g is Lipschiz coiuous, we have g N,x) g,x) dx dx dy g,y) g,x) ρ N x y) x L x L R d C dx dy y x ρ N x y) R d = C x L x L dx Rd dz z e z2 2 N C N, as N. This implies g N ) saisfyig Ai). I is sraighforward o verify g N ) saisfyig Aii). To check Aiii), we oe ha from he fac i ρ N x) = N d+2 x i ρnx) ad Lipschiz propery of g, i g N,x) = g,y) i ρ N x y)dy = {g,y) g,x)} i ρ N x y)dy R d R d Rd y x 2 N d+2 y x y i x i e N2 2 dy. 2π) d/2 The chage of variable x = y +z/n implies ha Rd N d+2 y x y i x i e N2 y x 2 Hece for ay a R d ad u >, sup N N R d i g N,x+a) 2 2π) d/2 dy Rd z e z 2 /2 2π) d/2dz = C <. e x 2 Rd u u d 1)/2dx C e x 2 u u d 1)/2dx C u holds wih cosa C which is idepede of a ad u. This cocludes g N ) N N saisfyig Aiii). Ackowledgme. The auhors are very graeful o Professor Aruro Kohasu-Higa for suggesig his problem, ad fruiful discussios ad hak o Aurélie Alfosi ad our Laboraory members for good advice. We also hak he referees for heir commes which improve he readabiliy of he paper. Refereces [1 Basai, A.F. ad Tahmasebi, M.: Srog covergece of spli-sep backward Euler mehod for sochasic differeial equaios wih o-smooh drif. J. Com. Appl. Mah. 2367), ). [2 Beeš, V. E., Shepp, L. A. ad Wisehause, H. S.: Some Solvable Sochasic Corol Problems. Sochasics 4, 39 83, 198). 24

25 [3 Cha, K.S. ad Sramer, O.: Weak Cosisecy of he Euler Mehod for Numerically Solvig Sochasic Diereial Equaios wih Discoiuous Coefficie. Sochasic Process. Appl. 76, ). [4 Chery, A. ad Egelber, H-J.: Sigular Sochasic Differeial Equaios. Lecure Noes i Mah. Vol Spriger 25). [5 Giles, M.B.: Mulilevel Moe Carlo pah simulaio. Oper. Res. 56, ). [6 Gyögy, I.: A oe o Euler s approximaios. Poeial Aal. 8, ) [7 Gyögy, I. ad Krylov, N.V.: Exisece of srog soluios for Iô s sochasic equaios via approximaios. Probab. Theory Relaed Fields, 15, ). [8 Gyögy, I. ad Rásoyi, M.: A oe o Euler approximaios for SDEs wih Hölder coiuous diffusio coefficies. Sochasic. Process. Appl. 121, ). [9 Halidias, N. ad Kloede, P.E.: A oe o he Euler-Maruyama scheme for sochasic differeial equaios wih a discoiuous moooe drif coefficie. BIT 481) ). [1 Huzehaler, M., Jeze, A. ad Kloede, P. E.: Srog ad weak divergece i fiie ime of Euler s mehod for sochasic differeial equaios wih o-globally Lipschiz coiuous coefficies. Proc. R. Soc. Lod. Ser. A Mah. Phys. Eg. Sci. 467, o. 213, ). [11 Iô K. ad McKea H. P., Jr.: Diffusio processes ad heir sample pahs. Spriger-Verlag, New York 1964). [12 Karazas, I. ad Shreve, S. E.: Browia moio ad sochasic calculus. Secod ediio. Spriger 1991). [13 Kloede, P. ad Plae, E.: Numerical Soluio of Sochasic Differeial Equaios. Spriger 1995). [14 Kohasu-Higa. A., Lejay, A. ad Yasuda, K.: Weak approximaio errors for sochasic differeial equaios wih o-regular drif. Prepri 213). [15 Kohasu-Higa, A., Makhlouf, A. ad Ngo, H-L.: Approximaios of o-smooh iegral ype fucioals of oe dimesioal diffusio processes. Sochasic. Process. Appl ) ) [16 Krylov, N.V. ad Röcker, M.: Srog soluios of sochasic equaios wih sigular ime depede drif. Probab. Theory Relaed Fields. 131, ). [17 Krylov, N.V. : O Iô sochasic differeial equaios, Theory of Probab. Appl., 14, No.2, ) [18 Lemaire, V. ad Meozzi, S.: O some No Asympoic Bouds for he Euler Scheme. Elecro J. Probab., 15, ) [19 Mikulevicius, R. ad Plae, E.: Rae of covergece of he Euler approximaio for diffusio processes, Mah. Nachr. 151, ). 25

26 [2 Schurz, H.: Sabiliy, Saioariy, ad Boudedess of some Implici Numerical Mehods for Sochasic Differeial Equaios ad Applicaios. Logos Verlag, Berli, 1997). [21 Vereeikov, A.Yu.: O srog soluio ad explici formulas for soluios of sochasic iegral equaios. Mah. USSR Sb. 39, ). [22 Yamada, T. ad Waaabe, S.: O he uiqueess of soluios of sochasic differeial equaios. J. Mah. Kyoo Uiv. 11, ). [23 Ya, B. L.: The Euler scheme wih irregular coefficies. A. Probab. 3, o. 3, ). [24 Zvoki, A. K.: A rasformaio of he phase space of a diffusio process ha removes he drif. Mah. USSR Sborik, 22, ). 26

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Completeness of Random Exponential System in Half-strip

Completeness of Random Exponential System in Half-strip 23-24 Prepri for School of Mahemaical Scieces, Beijig Normal Uiversiy Compleeess of Radom Expoeial Sysem i Half-srip Gao ZhiQiag, Deg GuaTie ad Ke SiYu School of Mahemaical Scieces, Laboraory of Mahemaics

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

Averaging of Fuzzy Integral Equations

Averaging of Fuzzy Integral Equations Applied Mahemaics ad Physics, 23, Vol, No 3, 39-44 Available olie a hp://pubssciepubcom/amp//3/ Sciece ad Educaio Publishig DOI:269/amp--3- Averagig of Fuzzy Iegral Equaios Naalia V Skripik * Deparme of

More information

arxiv: v1 [math.pr] 16 Dec 2018

arxiv: v1 [math.pr] 16 Dec 2018 218, 1 17 () arxiv:1812.7383v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

A Change-of-Variable Formula with Local Time on Surfaces

A Change-of-Variable Formula with Local Time on Surfaces Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le =

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form,

11. Adaptive Control in the Presence of Bounded Disturbances Consider MIMO systems in the form, Lecure 6. Adapive Corol i he Presece of Bouded Disurbaces Cosider MIMO sysems i he form, x Aref xbu x Bref ycmd (.) y Cref x operaig i he presece of a bouded ime-depede disurbace R. All he assumpios ad

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping

Boundary-to-Displacement Asymptotic Gains for Wave Systems With Kelvin-Voigt Damping Boudary-o-Displaceme Asympoic Gais for Wave Sysems Wih Kelvi-Voig Dampig Iasso Karafyllis *, Maria Kooriaki ** ad Miroslav Krsic *** * Dep. of Mahemaics, Naioal Techical Uiversiy of Ahes, Zografou Campus,

More information

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme America Joural of Compuaioal ad Applied Maemaics, (6): 77-8 DOI:.59/.acam.6. Numerical Soluio of Parabolic Volerra Iegro-Differeial Equaios via Bacward-Euler Sceme Ali Filiz Deparme of Maemaics, Ada Mederes

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS JIE HAN AND YI ZHAO Absrac For d l

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

On Stability of Quintic Functional Equations in Random Normed Spaces

On Stability of Quintic Functional Equations in Random Normed Spaces J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 3, NO.4, 07, COPYRIGHT 07 EUDOXUS PRESS, LLC O Sabiliy of Quiic Fucioal Equaios i Radom Normed Spaces Afrah A.N. Abdou, Y. J. Cho,,, Liaqa A. Kha ad S.

More information

Persistence of Elliptic Lower Dimensional Invariant Tori for Small Perturbation of Degenerate Integrable Hamiltonian Systems

Persistence of Elliptic Lower Dimensional Invariant Tori for Small Perturbation of Degenerate Integrable Hamiltonian Systems JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 08, 37387 997 ARTICLE NO. AY97533 Persisece of Ellipic Lower Dimesioal Ivaria Tori for Small Perurbaio of Degeerae Iegrable Hamiloia Sysems Xu Juxiag Deparme

More information

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES The Aals of Probabiliy 996, Vol, No 3, 3077 GAUSSIAN CAOS AND SAMPLE PAT PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES BY MICAEL B MARCUS AND JAY ROSEN Ciy College of CUNY ad College

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

hal , version 5-4 Oct 2012

hal , version 5-4 Oct 2012 Auhor mauscrip, published i "Advaces i Applied Probabiliy 13 3" ERROR BOUNDS FOR SMALL JUMPS OF LÉVY PROCESSES EL HADJ ALY DIA Absrac The pricig of opios i expoeial Lévy models amous o he compuaio of expecaios

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Convergence of Solutions for an Equation with State-Dependent Delay

Convergence of Solutions for an Equation with State-Dependent Delay Joural of Mahemaical Aalysis ad Applicaios 254, 4432 2 doi:6jmaa2772, available olie a hp:wwwidealibrarycom o Covergece of Soluios for a Equaio wih Sae-Depede Delay Maria Barha Bolyai Isiue, Uiersiy of

More information

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups

Integration by Parts and Quasi-Invariance for Heat Kernel Measures on Loop Groups joural of fucioal aalysis 149, 47547 (1997) aricle o. FU97313 Iegraio by Pars ad Quasi-Ivariace for Hea Kerel Measures o Loop Groups Bruce K. Driver* Deparme of Mahemaics, 112, Uiversiy of Califoria, Sa

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS

ON THE n-th ELEMENT OF A SET OF POSITIVE INTEGERS Aales Uiv. Sci. Budapes., Sec. Comp. 44 05) 53 64 ON THE -TH ELEMENT OF A SET OF POSITIVE INTEGERS Jea-Marie De Koick ad Vice Ouelle Québec, Caada) Commuicaed by Imre Káai Received July 8, 05; acceped

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Global and local asymptotics for the busy period of an M/G/1 queue

Global and local asymptotics for the busy period of an M/G/1 queue Queueig Sys 2010 64: 383 393 DOI 10.1007/s11134-010-9167-0 Global ad local asympoics for he busy period of a M/G/1 queue Deis Deisov Seva Sheer Received: 5 Jauary 2007 / Revised: 18 Jauary 2010 / Published

More information

arxiv:math/ v1 [math.pr] 5 Jul 2006

arxiv:math/ v1 [math.pr] 5 Jul 2006 he Aals of Applied Probabiliy 2006, Vol. 16, No. 2, 984 1033 DOI: 10.1214/105051606000000088 c Isiue of Mahemaical Saisics, 2006 arxiv:mah/0607123v1 [mah.pr] 5 Jul 2006 ERROR ESIMAES FOR INOMIAL APPROXIMAIONS

More information

On Another Type of Transform Called Rangaig Transform

On Another Type of Transform Called Rangaig Transform Ieraioal Joural of Parial Differeial Equaios ad Applicaios, 7, Vol 5, No, 4-48 Available olie a hp://pubssciepubcom/ijpdea/5//6 Sciece ad Educaio Publishig DOI:69/ijpdea-5--6 O Aoher Type of Trasform Called

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 9-9466 ol., No. (December 8) pp. 5 5 Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) O Exisece ad Uiqueess heorem Cocerig ime Depede Hea rasfer

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model

On Existence and Uniqueness Theorem Concerning Time Dependent Heat Transfer Model Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 9-9466 ol., Issue 6 (December 8) pp. 5 5 (Previously ol., No. ) Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) O Exisece ad Uiqueess heorem

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEAR APPROXIMATION OF THE BASELINE RBC MODEL FEBRUARY, 202 Iroducio For f(, y, z ), mulivariable Taylor liear epasio aroud (, yz, ) f (, y, z) f(, y, z) + f (, y, z)( ) + f (, y, z)( y y) + f (, y, z)(

More information

AN EXPOSITION OF GÖTZE S ESTIMATION OF THE RATE OF CONVERGENCE IN THE MULTIVARIATE CENTRAL LIMIT THEOREM. Rabi Bhattacharya Susan Holmes

AN EXPOSITION OF GÖTZE S ESTIMATION OF THE RATE OF CONVERGENCE IN THE MULTIVARIATE CENTRAL LIMIT THEOREM. Rabi Bhattacharya Susan Holmes AN EXPOSITION OF GÖTZE S ESTIMATION OF THE RATE OF CONVERGENCE IN THE MULTIVARIATE CENTRAL LIMIT THEOREM By Rabi Bhaacharya Susa Holmes Techical Repor No. 2-2 March 2 Deparme of Saisics STANFORD UNIVERSITY

More information

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12 Iroducio o sellar reacio raes Nuclear reacios geerae eergy creae ew isoopes ad elemes Noaio for sellar raes: p C 3 N C(p,) 3 N The heavier arge ucleus (Lab: arge) he ligher icomig projecile (Lab: beam)

More information

Prakash Chandra Rautaray 1, Ellipse 2

Prakash Chandra Rautaray 1, Ellipse 2 Prakash Chadra Rauara, Ellise / Ieraioal Joural of Egieerig Research ad Alicaios (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue, Jauar -Februar 3,.36-337 Degree Of Aroimaio Of Fucios B Modified Parial

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS M.A. (Previous) Direcorae of Disace Educaio Maharshi Dayaad Uiversiy ROHTAK 4 Copyrigh 3, Maharshi Dayaad Uiversiy, ROHTAK All Righs Reserved. No par of his publicaio may be reproduced

More information

An approximate approach to the exponential utility indifference valuation

An approximate approach to the exponential utility indifference valuation A approximae approach o he expoeial uiliy idifferece valuaio akuji Arai Faculy of Ecoomics, Keio Uiversiy, 2-15-45 Mia, Miao-ku, okyo, 18-8345, Japa e-mail: arai@ecokeioacjp) Absrac We propose, i his paper,

More information

Change of angle in tent spaces

Change of angle in tent spaces Chage of agle i e spaces Pascal Auscher To cie his versio: Pascal Auscher. Chage of agle i e spaces. 4 pages. 20. HAL Id: hal-00557746 hps://hal.archives-ouveres.fr/hal-00557746 Submied

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables Available olie a wwwsciecedireccom ScieceDirec Procedia - Social ad Behavioral Scieces 30 ( 016 ) 35 39 3 rd Ieraioal Coferece o New Challeges i Maageme ad Orgaizaio: Orgaizaio ad Leadership, May 016,

More information

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows

On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows Joural of Applied Mahemaics ad Physics 58-59 Published Olie Jue i SciRes hp://wwwscirporg/joural/jamp hp://dxdoiorg/6/jamp76 O he Exisece ad Uiqueess of Soluios for oliear Sysem Modelig hree-dimesioal

More information

Shige Peng 1,2 and Mingyu Xu 2, 3

Shige Peng 1,2 and Mingyu Xu 2, 3 ESAIM: MAN 5 () 335 36 DOI:.5/ma/59 ESAIM: Mahemaical Modellig ad Numerical Aalysis www.esaim-ma.org NUMERICAL ALGORITHMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH -D BROWNIAN MOTION: CONVERGENCE

More information