The Mystery Behind the Fine Structure Constant Contracted Radius Ratio Divided by the Mass Ratio? APossibleAtomistInterpretation

Size: px
Start display at page:

Download "The Mystery Behind the Fine Structure Constant Contracted Radius Ratio Divided by the Mass Ratio? APossibleAtomistInterpretation"

Transcription

1 The Mystey Behind the Fine Stuctue Constant Contacted Radius Ratio Divided by the Mass Ratio? APossibleAtomistIntepetation Espen Gaade Haug Nowegian Univesity of Life Sciences June 10, 017 Abstact This pape examines vaious altenatives fo what the fine stuctue constant might epesent. In paticula, we look at an altenative whee the fine stuctue constant epesents the adius atio divided by the mass atio of the electon, vesus the poton as newly suggested by Koshy [5], but hee deived and intepeted based on Haug atomism (see [7]). This atio is emakably vey close to the fine stuctue constant, and it is a dimensionless numbe. We also examine othe altenatives such as the poton mass divided by the Higgs mass, which also appeas as a possible candidate fo what the fine stuctue constant might epesent. Key wods: Fine stuctue constant, atomism, electon, poton, adius atio, mass atio, Higgs paticle. 1 The Fine Stuctue Constant In 1916 Anold Sommefeld [1] intoduced the fine stuctue constant in elation to spectal lines. This constant, (014 CODATA ecommended values), plays a vital ole in moden physics. Some have suggested that the fine stuctue constant is elated to the atio of the electon s velocity in the fist cicula obit of the Boh model of the atom to the speed of light in vacuum. An altenative suggestion elates the constant to the Boh adius by a 0 =, whee is the educed Compton wavelength of the electon. Futhemoe, the classical electon adius is given by e = a 0 =. The fine stuctue constant is also elated to the chage of an electon to the Planck chage = e = qp q h c q p p 10 7 h c p. (1) 10 7 The Rydbegs constant is also a function of the fine stuctue constant. We will not comment much on the impotance o elevance of these suggested connections. Still, we ask, why does the fine stuctue constant have exactly this magical value? O, as stated by Richad Feynman: It has been a mystey eve since it was discoveed moe than fifty yeas ago, and all good theoetical physicists put this numbe up on thei wall and woy about it. Immediately you would like to know whee this numbe fo a coupling comes fom: is it elated to o pehaps to the base of natual logaithms? Nobody knows. It s one of the geatest damn mysteies of physics: a magic numbe that comes to us with no undestanding by man. Othes have suggested that atomic stuctues somehow ae linked to the golden atio, which is in tun elated to the fine stuctue atio (see [,, 4]). The golden angle is given by , which is 1 not fa fom one divided by the fine stuctue constant: In this pape, we will suggest othe possible connections to the fine stuctue constant. espenhaug@mac.com. Thanks to Richad Whitehead fo assisting with manuscipt editing. Thanks to Thijs van den Beg fo a useful discussion on the wilmott.com foum in elation to cicle geomety. 1

2 The Contacted Radius Ratio Divided by the Mass Ratio In a ecent woking pape, Koshy [5] inteestingly suggested that the fine stuctue constant could be linked to a adius atio divided by the mass atio. Hee, we build on that idea but in a quite di eent way than Koshy. We assume all matte and enegy consist of indivisible paticles always moving at the speed of light in the void, as assumed by Haug [7, 8]. Haug s newly intoduced atomism theoy gives all the same mathematical end esults as in Einstein s special elativity when using Einstein-Poincaè synchonized clocks. The theoy, moeove, gives uppe bounday conditions such as elativistic mass and how close the speed of mass can be to the speed of light. Each indivisible paticle in the electon moves back and foth at the speed of light ove the educed Compton wavelength of the electon. Only at collision is the electon tuly a mass. Each collision epesents the Planck mass that lasts fo one Planck second. This leads to a mass gap of m pt p times pe second, which gives the well-known electon est-mass (see also [9]). The indivisible paticle has a adius equal to the Planck length [10]. This means that the electon has a adius equal to its educed Compton wavelength when extended 1. Futhemoe, it has only a adius equal to the Planck length when contacted kg. The electon is the mass gap c The poton-electon mass atio is We could assume the mass of a poton consisted of electons (o altenatively 186). We fo a moment assume that each of these electons is a sphee with a adius equal to the Planck length. If we packed these electons into a sphee, how much volume would they take up? In 181, Gauss [11] poved that the most densely one could pack sphees amongst all possible lattice packings was given by p () In 1611, Johannes Keple suggested that this was the maximum possible density fo both egula and iegula aangements; this is known as the Keple conjectue. The Keple conjectue was supposedly poven in 014 by Hale [1]. Based on this, the adius of the lage sphee consisting of lage numbes of densely packed sphees with adius is appoximately given by (see the appendix) R N 6p 18. () This means that the poton s contacted adius is p R (4) Next, we will define the contacted adius atio as q R R = R p = p = 18, (5) which is the poton s contacted adius divided by the contacted adius of the electon. If we then divide this contacted adius atio with the poton s mass divided by the electon s mass, we get a numbe vey close to the fine stuctue constant: Since R (6) = me, we could altenatively have witten this in the following fom: = R (7) Still, this di es somewhat fom the fine stuctue constant ( CODATA 014); the numbe is too lage. Howeve, the appoximation used to calculate the adius of the sphee-packed electons making up the poton mass will actually slightly oveestimate the adius of the sphee-packed sphee. This is because the sphee-packed sphee s oute suface is not smooth but athe jagged. We could measue the aveage adius of the sphee-packed sphees by measuing the adius fom the inside adius and the outside adius and divide by two (see figue 1). Figue 1 illustates how we account fo the sphee-packed sphee s jagged suface, namely the diamete of the aveage of the blue line and the geen line. To find the geen line, we can use Pythagoas theoem to discen the distance, as shown in the lowe pat of figue 1. If one popely adjusts fo the jagged 1 And it is extended c times pe second.

3 Figue 1: The figue illustates the contacted adius of a sphee (hee we only see a coss-section of the sphee). As a sphee-packed sphee s suface must be jagged, a good appoximation fo the adius is found by taking half the aveage of the black-lined diamete and the geen-lined diamete. To find the geen-lined diamete, we need to use Pythagoas theoem as illustated in the subfigue below. The contacted poton adius can in the same way be seen as 186 sphee-packed sphees. The geen-lined diamete is equal to the black-lined diamete minus ( p 1) 0.54, whee is the adius of the small sphees, which, based on ecent developments in mathematical atomism, must be = l p, that is the Planck length. suface of the hypothetical sphee-packed sphee, it then seems that the adius of the lage sphee should be vey close to elative to the electon s adius (the contacted adius atio). q N q 6p 18 + N 6p 18 1+( p 1) q = N 6p p 18 + N = R R 6p =1.401 (8) And fom this, we can calculate the fine stuctue constant by dividing the contacted adius atio by the mass atio: = RR (9) This also means that the fine stuctue constant can be epesented by the contacted adius atio multiplied by the atio of the educed Compton wavelengths. The calculated value is extemely close compaed to c = , which is the fine stuctue constant given by CODATA 014. The di eence between the two numbes is close to c c =0.0161%. We do not claim that this is what the fine stuctue constant must epesent, but again it is inteesting that this is a dimensionless numbe. Altenatively, we could have used the classical electon adius e = 1 e 4 0 c =

4 The classical electon adius divided by the educed Compton wavelength of the poton is: Radius atio = and the fine stuctue constant is given by , (10) = h 1 c h 1 c = (11) In this case it is the electon s adius divided by the poton s adius, while in the above analysis it was the poton s contacted adius divided by the electon s contacted adius (accoding to the atomism model.). We believe that the classical electon adius likely does not exist in a physical sense; it is just an imaginay unit that has the fine stuctue constant embedded. On the othe hand, the contacted adius atio is something that possibly exists if the depth of eality is atomism. When it comes to the elationship between the classical electon adius and the adius of the poton o neuton and thei mass atio, Koshy has in a ecent piece [5] suggested a simila elationship as a possible intepetation of the fine stuctue constant. Howeve, we believe that the Haug atomist model has moe going fo it, vesus what is gained fom the Einstein special elativity mathematical esult when using Einstein-Poincaé synchonized clocks. This theoy also seems to make the most sense when the diamete of the indivisible paticle is the Planck length and its mass is the Planck mass. Moeove, a seies of infinity poblems ae elegantly emoved via the Haug model. On its own this esult could pehaps be seen as nothing moe than numeology. Yet the esult of the Haug model is tuly inteesting when seen in light of ecent developments in mathematical atomism. Haug s mathematical atomism model is vey simple and thus fa has been shown to yield the same mathematical esult as Einstein s special elativity theoy when using Einstein-Poincaé synchonized clocks. Poton Mass Divided by Higgs Mass The 014 CODATA-ecommended poton mass is kg. That is equal to about MeV/c. On 4 July 01, CMS announced the discovey of a peviously unknown boson with mass 15. ± 0.6 GeV/c,see[1]. Thee is still consideable uncetainty about the mass of the Higgs boson [14]. Fo a moment assume the Higgs mass is appoximately MeV/c. In this case the poton mass divided by the Higgs mass would be basically identical to the fine stuctue constant, and it would be a dimensionless constant: mp , (1) m H while a Higgs mass of 15. GeV would give a fine stuctue constant of mp (1) m H 1500 Still, this suggested value of the Higgs boson seems to be too fa away fom what it needs to be to be elated to the fine stuctue constant. Moeove, it is also in elation to electons whee the fine stuctue constant seems to be most impotant. 4 Summay The fine stuctue constant plays an impotant ole in moden physics. Yet it continues to be a mystey as to exactly what it epesents and why it has the mystical value it has. We have in this pape suggested two new possibilities fo what the fine stuctue constant could epesent. It could be elated to what we would call the contacted adius atio of the electon vesus the poton divided by the mass atio, an idea closely elated to the wok of Koshy [5]. The contacted adius atio is given fom sphee packing of Planck diamete sphees and adjusting fo this sphee-packed sphee s jagged suface. This new atio seems to be extemely close to the fine stuctue constant given by CODATA. Altenatively, we have suggested that the fine stuctue constant could be elated to the Higgs mass ove the poton mass, The pevious analysis also means we can wite the classical electon adius as e = R Hee using CODATA (divided by to get the educed fom): and

5 but this late suggestion seems to give a fine stuctue constant consideably o fom the one given by CODATA. We have in this pape not concluded what the fine stuctue constant tuly epesents. But we believe that the speculative idea that spins o fom atomism deseves futhe investigation. Radius of Sphees Constucted fom a Lage Numbe of Small Sphees Assuming small sphees with adius, the volume of such a sphee is V = 4. When we pack the Planck sphees as densely as possible, they will occupy a volume of 4 V t = l p = lpp. p The total volume is then NV t. This means we need a lage sphee with adius NV t = 4 R R = R = s s 4 NVt 4 Np R = N 6p 18. (14) It is impotant to be awae that this fomula will only be a good appoximation fo a vey lage numbe of sphees. In the case of a poton, we will assume it consists of 186 sphees, which is a numbe of sphees whee this fomula should be quite accuate. Refeences [1] A. Sommefeld. On the quantum theoy of spectal lines. Annals of Physics, 51, [] R. Heyovska and S. Naayan. Fine-stuctue constant, anomalous magnetic moment, elativity facto and the golden atio that divides the Boh adius [] M. A. Shebon. Wolfgang Pauli and the fine-stuctue constant. Jounal of Science, (): , 01. [4] R. Heyovska. Golden atio based fine stuctue constant and Rydbeg constant fo hydogen specta. Intenational Jounal of Sciences,,01. [5] J. P. Koshy. Fine stuctue constant a mystey esolved. vixa.og , 017. [6] E. G. Haug. Moden physics incomplete absud elativistic mass intepetation. and the simple solution that saves einstein s fomula [7] E. G. Haug. Unified Revolution, New Fundamental Physics. Oslo, E.G.H. Publishing, 014. [8] E. G. Haug. ThePplanck mass paticle finally discoveed! Good bye to the point paticle hypothesis! [9] E. G. Haug. The mass gap, kg, the planck constant and the gavity gap [10] M. Planck. The Theoy of Radiation. Dove 1959 tanslation, [11] C. F. Gauss. Bespechung des buchs von l.a. seebe: Intesuchungen be die eigenschaften de positiven tenäen quadatischen fomen usw. Gttingsche Gelehte Anzeigen.,

6 [1] T. Hales and et. al. Flyspeck announcingcompletion [1] C. collaboation. Obsevation of a new boson with a mass nea 15 GeV. Cms-Pas-Hig-1-00, 01. [14] G. Aad and et al. Combined measuement of the Higgs boson mass in pp collisions at p s =7and 8 TeV with the atlas and CMS expeiments. Physical Review Lettes, 114,015. 6

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Reductio ad Absurdum Modern Physics Incomplete Absurd Relativistic Mass Interpretation And the Simple Solution that Saves Einstein s Formula.

Reductio ad Absurdum Modern Physics Incomplete Absurd Relativistic Mass Interpretation And the Simple Solution that Saves Einstein s Formula. Reductio ad Absudum Moden Physics Incomplete Absud Relativistic Mass Intepetation And the Simple Solution that Saves Einstein s Fomula. Espen Gaade Haug Nowegian Univesity of Life Sciences Januay, 208

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

The Millikan Experiment: Determining the Elementary Charge

The Millikan Experiment: Determining the Elementary Charge LAB EXERCISE 7.5.1 7.5 The Elementay Chage (p. 374) Can you think of a method that could be used to suggest that an elementay chage exists? Figue 1 Robet Millikan (1868 1953) m + q V b The Millikan Expeiment:

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria Quantum Mechanics and Geneal Relativity: Ceation Ceativity Youssef Al-Youssef, Rama Khoulandi Univesity of Aleppo, Aleppo, Syia Abstact This aticle is concened with a new concept of quantum mechanics theoy

More information

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0},

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0}, ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION E. J. IONASCU and A. A. STANCU Abstact. We ae inteested in constucting concete independent events in puely atomic pobability

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects Pulse Neuton Neuton (PNN) tool logging fo poosity Some theoetical aspects Intoduction Pehaps the most citicism of Pulse Neuton Neuon (PNN) logging methods has been chage that PNN is to sensitive to the

More information

1 Dark Cloud Hanging over Twentieth Century Physics

1 Dark Cloud Hanging over Twentieth Century Physics We ae Looking fo Moden Newton by Caol He, Bo He, and Jin He http://www.galaxyanatomy.com/ Wuhan FutueSpace Scientific Copoation Limited, Wuhan, Hubei 430074, China E-mail: mathnob@yahoo.com Abstact Newton

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

Gaia s Place in Space

Gaia s Place in Space Gaia s Place in Space The impotance of obital positions fo satellites Obits and Lagange Points Satellites can be launched into a numbe of diffeent obits depending on thei objectives and what they ae obseving.

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Projection Gravitation, a Projection Force from 5-dimensional Space-time into 4-dimensional Space-time

Projection Gravitation, a Projection Force from 5-dimensional Space-time into 4-dimensional Space-time Intenational Jounal of Physics, 17, Vol. 5, No. 5, 181-196 Available online at http://pubs.sciepub.com/ijp/5/5/6 Science and ducation Publishing DOI:1.1691/ijp-5-5-6 Pojection Gavitation, a Pojection Foce

More information

Euclidean Figures and Solids without Incircles or Inspheres

Euclidean Figures and Solids without Incircles or Inspheres Foum Geometicoum Volume 16 (2016) 291 298. FOUM GEOM ISSN 1534-1178 Euclidean Figues and Solids without Incicles o Insphees Dimitis M. Chistodoulou bstact. ll classical convex plana Euclidean figues that

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Single Particle State AB AB

Single Particle State AB AB LECTURE 3 Maxwell Boltzmann, Femi, and Bose Statistics Suppose we have a gas of N identical point paticles in a box of volume V. When we say gas, we mean that the paticles ae not inteacting with one anothe.

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Introduction to Nuclear Forces

Introduction to Nuclear Forces Intoduction to Nuclea Foces One of the main poblems of nuclea physics is to find out the natue of nuclea foces. Nuclea foces diffe fom all othe known types of foces. They cannot be of electical oigin since

More information

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist Histoy of Astonomy - Pat II Afte the Copenican Revolution, astonomes stived fo moe obsevations to help bette explain the univese aound them Duing this time (600-750) many majo advances in science and astonomy

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs Math 30: The Edős-Stone-Simonovitz Theoem and Extemal Numbes fo Bipatite Gaphs May Radcliffe The Edős-Stone-Simonovitz Theoem Recall, in class we poved Tuán s Gaph Theoem, namely Theoem Tuán s Theoem Let

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

Nuclear size corrections to the energy levels of single-electron atoms

Nuclear size corrections to the energy levels of single-electron atoms Nuclea size coections to the enegy levels of single-electon atoms Babak Nadii Nii a eseach Institute fo Astonomy and Astophysics of Maagha (IAAM IAN P. O. Box: 554-44. Abstact A study is made of nuclea

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anyone who can contemplate quantum mechanics without getting dizzy hasn t undestood it. --Niels Boh Lectue 17, p 1 Special (Optional) Lectue Quantum Infomation One of the most moden applications of QM

More information

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2.

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2. Lectue 5 Solving Poblems using Geen s Theoem Today s topics. Show how Geen s theoem can be used to solve geneal electostatic poblems. Dielectics A well known application of Geen s theoem. Last time we

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

The Schwartzchild Geometry

The Schwartzchild Geometry UNIVERSITY OF ROCHESTER The Schwatzchild Geomety Byon Osteweil Decembe 21, 2018 1 INTRODUCTION In ou study of geneal elativity, we ae inteested in the geomety of cuved spacetime in cetain special cases

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

Psychometric Methods: Theory into Practice Larry R. Price

Psychometric Methods: Theory into Practice Larry R. Price ERRATA Psychometic Methods: Theoy into Pactice Lay R. Pice Eos wee made in Equations 3.5a and 3.5b, Figue 3., equations and text on pages 76 80, and Table 9.1. Vesions of the elevant pages that include

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Gravitation on the PC

Gravitation on the PC Pupose: To undestand obital mechanics and the Law of Univesal Gavitation. Equipment: Inteactive Physics Pencil, Pape, Calculato Theoy: It was Galileo, back in the seventeenth centuy, who finally discedited

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angula Momentum Rotational Motion Evey quantity that we have studied with tanslational motion has a otational countepat TRANSLATIONAL ROTATIONAL Displacement x Angula Position Velocity

More information

CHEM1101 Worksheet 3: The Energy Levels Of Electrons

CHEM1101 Worksheet 3: The Energy Levels Of Electrons CHEM1101 Woksheet 3: The Enegy Levels Of Electons Model 1: Two chaged Paticles Sepaated by a Distance Accoding to Coulomb, the potential enegy of two stationay paticles with chages q 1 and q 2 sepaated

More information

Mitscherlich s Law: Sum of two exponential Processes; Conclusions 2009, 1 st July

Mitscherlich s Law: Sum of two exponential Processes; Conclusions 2009, 1 st July Mitschelich s Law: Sum of two exponential Pocesses; Conclusions 29, st July Hans Schneebege Institute of Statistics, Univesity of Elangen-Nünbeg, Gemany Summay It will be shown, that Mitschelich s fomula,

More information

Measure Estimates of Nodal Sets of Polyharmonic Functions

Measure Estimates of Nodal Sets of Polyharmonic Functions Chin. Ann. Math. Se. B 39(5), 08, 97 93 DOI: 0.007/s40-08-004-6 Chinese Annals of Mathematics, Seies B c The Editoial Office of CAM and Spinge-Velag Belin Heidelbeg 08 Measue Estimates of Nodal Sets of

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version The Binomial Theoem Factoials Auchmuty High School Mathematics Depatment The calculations,, 6 etc. often appea in mathematics. They ae called factoials and have been given the notation n!. e.g. 6! 6!!!!!

More information

PHYSICS 151 Notes for Online Lecture #36

PHYSICS 151 Notes for Online Lecture #36 Electomagnetism PHYSICS 151 Notes fo Online Lectue #36 Thee ae fou fundamental foces in natue: 1) gavity ) weak nuclea 3) electomagnetic 4) stong nuclea The latte two opeate within the nucleus of an atom

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Pearson s Chi-Square Test Modifications for Comparison of Unweighted and Weighted Histograms and Two Weighted Histograms

Pearson s Chi-Square Test Modifications for Comparison of Unweighted and Weighted Histograms and Two Weighted Histograms Peason s Chi-Squae Test Modifications fo Compaison of Unweighted and Weighted Histogams and Two Weighted Histogams Univesity of Akueyi, Bogi, v/noduslód, IS-6 Akueyi, Iceland E-mail: nikolai@unak.is Two

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

Radial Inflow Experiment:GFD III

Radial Inflow Experiment:GFD III Radial Inflow Expeiment:GFD III John Mashall Febuay 6, 003 Abstact We otate a cylinde about its vetical axis: the cylinde has a cicula dain hole in the cente of its bottom. Wate entes at a constant ate

More information

Research Article On Alzer and Qiu s Conjecture for Complete Elliptic Integral and Inverse Hyperbolic Tangent Function

Research Article On Alzer and Qiu s Conjecture for Complete Elliptic Integral and Inverse Hyperbolic Tangent Function Abstact and Applied Analysis Volume 011, Aticle ID 697547, 7 pages doi:10.1155/011/697547 Reseach Aticle On Alze and Qiu s Conjectue fo Complete Elliptic Integal and Invese Hypebolic Tangent Function Yu-Ming

More information

Today in Astronomy 142: the Milky Way s disk

Today in Astronomy 142: the Milky Way s disk Today in Astonomy 14: the Milky Way s disk Moe on stas as a gas: stella elaxation time, equilibium Diffeential otation of the stas in the disk The local standad of est Rotation cuves and the distibution

More information

New problems in universal algebraic geometry illustrated by boolean equations

New problems in universal algebraic geometry illustrated by boolean equations New poblems in univesal algebaic geomety illustated by boolean equations axiv:1611.00152v2 [math.ra] 25 Nov 2016 Atem N. Shevlyakov Novembe 28, 2016 Abstact We discuss new poblems in univesal algebaic

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

MEASURING CHINESE RISK AVERSION

MEASURING CHINESE RISK AVERSION MEASURING CHINESE RISK AVERSION --Based on Insuance Data Li Diao (Cental Univesity of Finance and Economics) Hua Chen (Cental Univesity of Finance and Economics) Jingzhen Liu (Cental Univesity of Finance

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t. Diffusion and Tanspot 10. Fiction and the Langevin Equation Now let s elate the phenomena of ownian motion and diffusion to the concept of fiction, i.e., the esistance to movement that the paticle in the

More information

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by Poblem Pat a The nomal distibution Gaussian distibution o bell cuve has the fom f Ce µ Calculate the nomalization facto C by equiing the distibution to be nomalized f Substituting in f, defined above,

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN NUFACT Note 117 June ISOCHRONOUS MACHINES WITH SECTOR MAGNET FIELDS AND CONDITIONS FOR SIMILARITY OF THE ORITS CERN-OPEN--4 /6/ J. A. Riche Cicula machines

More information

Today in Physics 218: radiation from moving charges

Today in Physics 218: radiation from moving charges Today in Physics 218: adiation fom moving chages Poblems with moving chages Motion, snapshots and lengths The Liénad-Wiechet potentials Fields fom moving chages Radio galaxy Cygnus A, obseved by Rick Peley

More information

Contact impedance of grounded and capacitive electrodes

Contact impedance of grounded and capacitive electrodes Abstact Contact impedance of gounded and capacitive electodes Andeas Hödt Institut fü Geophysik und extateestische Physik, TU Baunschweig The contact impedance of electodes detemines how much cuent can

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

Empirical Prediction of Fitting Densities in Industrial Workrooms for Ray Tracing. 1 Introduction. 2 Ray Tracing using DRAYCUB

Empirical Prediction of Fitting Densities in Industrial Workrooms for Ray Tracing. 1 Introduction. 2 Ray Tracing using DRAYCUB Empiical Pediction of Fitting Densities in Industial Wokooms fo Ray Tacing Katina Scheebnyj, Muay Hodgson Univesity of Bitish Columbia, SOEH-MECH, Acoustics and Noise Reseach Goup, 226 East Mall, Vancouve,

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

Evidence for Granulated Space

Evidence for Granulated Space I Abstact This pape shows that the foce of chage and gavity can be modeled fom a sphee, indicating ganulated space. Planck Spinning Sphees, (Planck) packed in a cuboctahedon stuctue, whee many sphees ae

More information

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS 5.6 Physical Chemisty Lectue #3 page MAY ELECTRO ATOMS At this point, we see that quantum mechanics allows us to undestand the helium atom, at least qualitatively. What about atoms with moe than two electons,

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Fresnel Diffraction. monchromatic light source

Fresnel Diffraction. monchromatic light source Fesnel Diffaction Equipment Helium-Neon lase (632.8 nm) on 2 axis tanslation stage, Concave lens (focal length 3.80 cm) mounted on slide holde, iis mounted on slide holde, m optical bench, micoscope slide

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD TAMPINES JUNIOR COLLEGE 009 JC1 H PHYSICS GRAVITATIONAL FIELD OBJECTIVES Candidates should be able to: (a) show an undestanding of the concept of a gavitational field as an example of field of foce and

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

Midterm Exam #2, Part A

Midterm Exam #2, Part A Physics 151 Mach 17, 2006 Midtem Exam #2, Pat A Roste No.: Scoe: Exam time limit: 50 minutes. You may use calculatos and both sides of ONE sheet of notes, handwitten only. Closed book; no collaboation.

More information

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o Last Time Exam 3 esults Quantum tunneling 3-dimensional wave functions Deceasing paticle size Quantum dots paticle in box) This week s honos lectue: Pof. ad histian, Positon Emission Tomogaphy Tue. Dec.

More information

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011 Enegy Levels Of Hydogen Atom Using Ladde Opeatos Ava Khamseh Supeviso: D. Bian Pendleton The Univesity of Edinbugh August 11 1 Abstact The aim of this pape is to fist use the Schödinge wavefunction methods

More information

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces Foces Lectue 3 Basic Physics of Astophysics - Foce and Enegy http://apod.nasa.gov/apod/ Momentum is the poduct of mass and velocity - a vecto p = mv (geneally m is taken to be constant) An unbalanced foce

More information