Overview of the (e,e'p) Reaction

Size: px
Start display at page:

Download "Overview of the (e,e'p) Reaction"

Transcription

1 Overview of the (e,e'p) Reaction Paul Ulmer Old Dominion University EEP03: International Workshop on Probing Nucleons and Nuclei via the (e,e'p) Reaction October 14-17, 2003 Grenoble, France

2 Nuclei Spectroscopic factors NN correlations Reaction mechanism Outline Deuteron and the NN interaction Nucleons Elastic form factors Medium modifications Color transparency Pion electroproduction Virtual Compton Scattering

3 Kinematics scattering plane e out-of-plane angle e' (ω,q) p φ x p A 1 θ pq reaction plane In ERL e : Q 2 q µ q µ = q 2 ω 2 = 4ee' sin 2 θ/2 Missing momentum: p m = q p = p A 1 = p 0 Missing mass: ε m = ω T p T A 1 PWIA

4 Response Functions (OPEA) electron kinematics. depend only on the (known) ' the where ) ( ] )cosφ ( )sin φ [( ] )sin 2φ ( )cos 2φ [( ] )sin φ ( )cosφ [( ) ( ) ( σ (2π) dp dω d d σ d } { x x x x x x M 3 p e 6 s v S R S R hv S R S R S R R hv S R S R S R R v S R S R S R R v S R R v S R R v pe t t TT l l TT TT t t LT l l LT n n LT LT LT t t TT l l TT n n TT TT TT t t LT l l LT n n LT LT LT n n T T T n n L L L LAB = Ω Ω

5 The Spectral Function In nonrelativistic PWIA: dω e 6 d σ dω dpdω p = K σ ep S( p m,ε m ) e-p cross section nuclear spectral function For bound state of recoil system: dω e 5 d σ dω p dω = K σ proton momentum distribution ep Φ( p m ) 2

6 Final State Interactions (FSI) FSI p A 1 e' p 0' e q p 0 A r r r r q p = p p A 1 0

7 Distorted Wave Impulse Approximation (DWIA) Treat outgoing proton distorted waves in presence of potential produced by residual nucleus (optical potential). dω e 6 d σ dω dpdω p = K σ ep S D ( p m,ε m, p) Distorted spectral function

8 Nuclei

9 1964: Frascati Synchrotron 12 C(e,e'p) U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964).

10 1976: Saclay Cross Section (10-34 cm 2 /MeV 2 /sr 2 ) 12 C(e,e'p) 0 p m 36 MeV/c Missing Energy (MeV) J. Mougey et al., Nucl. Phys. A262, 461 (1976).

11 1988: NIKHEF S(E x,p m ) [(MeV/c) -3 MeV -1 ] 12 C(e,e'p) p m = 29 MeV/c 1s 1/2 knockout E x [MeV] G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988).

12 1p knockout from 12 C 12 C(e,e'p) 11 B ρ(p m ) [(MeV/c) 3 ] DWIA calculations give correct shapes, but: Missing strength observed. p m [MeV/c] NIKHEF G. van der Steenhoven, et al., Nucl. Phys. A480, 547 (1988).

13 Spectroscopic Factors

14 Normalization factors z target mass A V. Pandharipande, I. Sick and Peter K.A. dewitt Huberts, Rev. Mod. Phys. 69, 981 (1997).

15 Transfer Reactions and Normalization Factors B.A. Brown et al., Phys. Rev. C 65, (2002).

16 12 C(e,e'p) S 1p S 1s Low Q 2 : optical potential High Q 2 : Glauber Discontinuity seen with strength nearly saturated at high Q 2. Q 2 [(GeV/c) 2 ] L. Lapikás, et al., Phys. Rev. C 61, (2000).

17 16 O(e,e'p) Data: M. Leuschner et al. The same spectroscopic factors used throughout: (p 1/2 ) and (p 3/2 ). Data: J. Gao et al. Marco Radici, W.H. Dickhoff and E. Roth Stoddard, Phys. Rev. C 66, (2002).

18 12 C(e,e'p) For ω<ω QE, essentially no quenching is observed. Bates Linear Accelerator J.H. Morrison et al., Phys. Rev. C 59, 221 (1999).

19 Where does the missing strength go? Short-range correlations?

20 3 He n(k) 2-body ε m MeV total ε m 300 MeV SRC dominate high k (=p m ) and are related to large values of ε m. ε m 50 MeV C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984).

21 3 He(e,e'p) Calculations by Laget: dashed=pwia dot-dashed=dwia solid=dwiamec Arrows indicate expected position for correlated pair. C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). Saclay

22 3 He(e,e'p)d 3 He(e,e'p)np 3BBU similar to d np C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988).

23 4 He(e,e'p) Peak roughly tracks kinematics of knockout of correlated 2N pair E A 2 A 1 p 2m 2 m m E thr Laget: full Laget: no MEC/IC J.J. van Leeuwe et al., Nucl. Phys. A631, 593c (1998). AmPS NIKHEF-K

24 PRELIMINARY Data CBF GF Data do not seem to follow naïve expectation for NN correlation peak. Data: D. Rohe, E (Preliminary) GF: H. Müther et al., Phys. Rev. C 52, 2955 (1995). CBF: O. Benhar et al., Nucl. Phys. A579, 493 (1994). JLab Hall C

25 Reaction Mechanism

26 Delta Between dip and Peak of 12 C(e,e'p) Quasielastic Q 2 =0.30 Q 2 =0.48 Q 2 =0.58 H. Baghaei et al., Phys. Rev. C 39, 177 (1989). Bates Linear Accelerator L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). Bates Linear Accelerator

27 12 C(e,e'p) L/T Separations Q 2 =0.15 GeV 2 Q 2 =0.64 GeV 2 P.E. Ulmer et al., Phys. Rev. Lett. 59, 2259 (1987). Bates Linear Accelerator D. Dutta et al., Phys. Rev. C 61, (2000). JLab Hall C

28 Excess transverse strength at high ε m. Persists, though declines, at higher Q 2. JLab Hall C D. Dutta et al., Phys. Rev. C 61, (2000).

29 Transverse Enhancement T/L ratio (η) [-] Li 10 B 12 C E m E 2-body threshold [MeV] J.J. Kelly, Adv. Nucl. Phys. 23, 75 (1996).

30 Relativity

31 A LT 2 H(e,e'p)n A LT de Forest Mosconi/Ricci Arenhövel/Fabian NR de Forest CC1 nucleon cross section gives same qualitative features as more complete calculations here, relativistic effects mainly in nucleonic current. Arenhövel/Fabian NR Hummel/Tjon de Forest Wilbois/Arenhövel Wilbois/Arenhövel G. van der Steenhoven, Few-Body Syst. 17, 79 (1994).

32 Saclay data: L. Chinitz et al. RCC1 RCC2 NIKHEF data: C.M. Spaltro et al. PCC1 PCC2 16 O(e,e'p) Discrepancy reported earlier was based on nonrelativistic calculations. Relativistic treatment is required even at these modest momenta. J.M. Udías et al., Phys. Rev. C 64, (2001). Previous non-relativistic analysis

33 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic 1p 1/2 Effect of spinor distortion significant. Calculations: Udías, et al. 1p 3/2 JLab Hall A J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000) and K.G. Fissum et al., in preparation, to be submitted to Phys. Rev. C.

34 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Two-body calculations (Janssen et al.) reproduce flat distribution, but underpredict by roughly a factor of two. JLab Hall A J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000) and K.G. Fissum et al., in preparation, to be submitted to Phys. Rev. C.

35 The deuteron and the NN interaction

36 M. Bernheim et al., Nucl. Phys. A365, 349 (1981). Saclay

37 2 H(e,e'p) varying Q 2, x 2 H(e,e'p) Q 2 =0.23 GeV 2 near Mainz Bonn FSIMECIC PWBAFSIMECIC FSI PWBAFSI PWBAFSIMEC K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). Calculations: H. Arenhövel H. Breuker et al., Nucl. Phys. A455, 641 (1986). Calculations: Leidemann and Arenhövel

38 2 H(e,e'p)n Q 2 = 0.67 GeV 2 x = 0.96 High momentum structure of 2 H? JLab Hall A Evidence for large FSI P.E. Ulmer et al., Phys. Rev. Lett. 89, (2002).

39 D. Jordan et al., Phys. Rev. Lett. 76, 1579 (1996).

40 2 r r H( e, e p) Sensitive to D-state AmPS NIKHEF-K I. Passchier et al., Phys. Rev. Lett. 88, (2002). 0 [ d V d T ( d V d 1 A P A h A P A P A T )] σ = σ P1 d 2 d e 1 ed 2 ed

41 The Nucleon

42 Proton Polarization and Form Factors = = = 2 θ tan τ ) 2 (1 1 τ 2 θ tan τ ) τ (1 2 θ tan τ ) τ (1 2 e e e 0 scattering Free M E M z M E x G G I G m e e P I G G P I p e r * M E G G ~ ~ = 2 θ tan 2 e m e e P P G G z x M E in nucleus model assumptions * R. Arnold, C. Carlson and F. Gross, Phys. Rev. C 23, 363 (1981).

43 Proton Elastic Form Factors via 1 H(e,e'p) O. Gayou, et al., Phys. Rev. Lett. 88, (2002).

44 Searching for Medium Effects on the Nucleon In parallel kinematics: ] [ σ (2π) dω d d d σ d M 3 p e 6 T T L L R v R v pe p = Ω Ω E M L T G G G R R Q m q R ~ ~ 2 2 r PWIA This relies on (unrealistic) model assumption.

45 Medium Modifications or FSI? Schrödinger LDA Dirac DWIA R G (1p 3/2 ) Dirac PWIA Q 2 [GeV 2 ] Calculations ( 16 O): T.D. Cohen, J.W. Van Orden, A. Picklesimer, Phys. Rev. Lett. 59, 1267 (1987). Data ( 12 C): G. Van der Steenhoven et al., Phys. Rev. Lett. 57, 182 (1986).

46 Another, less model-dependent, method Polarization Transfer

47 4 He(e,e'p) Mainz: S. Dieterich et al., Phys. Lett. B500, 47 (2001). E93-049: S. Strauch et al., Phys. Rev. Lett. 91, (2003). E03-104: Projected Data, Strauch, Ent, Ransome, Ulmer, cospokespersons

48 Color Transparency? K. Garrow, et al., Phys. Rev. C 66, (2002).

49 p(e,e'p)π 0 and γ * N Dynamical Model MAID pqcd 100% pqcd constant Sabit S. Kamalov et al., Phys Rev. C 64, (2001). JLab Hall C data (Q 2 =2.8, 4.0 GeV 2 ): V.V. Frolov et al., Phys. Rev. Lett. 82, 45 (1999); their analysis shown by stars.

50 Summary Single-particle picture describes some gross features of experiments at least in quasielastic kinematics. Quenching of strength gives indirect evidence of NN correlations. Also, some direct evidence, but Reaction dynamics still not well understood. Relativistic treatment essential at moderate/high Q 2, but also essential at low Q 2 for certain observables. NN interaction studies via d(e,e'p)n now being fully exploited: reaction dynamics/short-range structure of NN force. A wealth of new information now coming out on the nucleon: elastic and inelastic structure, medium modifications, color transparency, polarizabilities,

QUASI-ELASTIC PROTON KNOCKOUT FROM 16 O. KEES DE JAGER a. Thomas Jeerson National Accelerator Facility, Newport News, Va 23606, USA

QUASI-ELASTIC PROTON KNOCKOUT FROM 16 O. KEES DE JAGER a. Thomas Jeerson National Accelerator Facility, Newport News, Va 23606, USA QUASI-ELASTIC PROTON KNOCKOUT FROM 16 O KEES DE JAGER a Thomas Jeerson National Accelerator Facility, Newport News, Va 2366, USA E-mail: kees@jlab.org In Hall A at Jeerson Lab, we have measured cross sections

More information

Relativistic model of electromagnetic one-nucleon knockout reactions

Relativistic model of electromagnetic one-nucleon knockout reactions Nuclear Theory 22 ed. V. Nikolaev, Heron Press, Sofia, 2003 Relativistic model of electromagnetic one-nucleon knockout reactions F. D. Pacati, C. Giusti, and A. Meucci Dipartimento di Fisica Nucleare e

More information

Unraveling the ν-nucleus Cross-Section

Unraveling the ν-nucleus Cross-Section Unraveling the ν-nucleus Cross-Section Omar Benhar INFN and Department of Physics, Sapienza University I-00185 Roma, Italy Workshop on ν-nucleus Interaction in a Few-GeV Region KEK, Tokai Campus, November

More information

High Momentum Nucleons: where have we been and where are we going

High Momentum Nucleons: where have we been and where are we going High Momentum Nucleons: where have we been and where are we going Nadia Fomin High Energy Nuclear Physics with Spectator Tagging March 10 th, 015 High momentum nucleons where do they come from? Independent

More information

arxiv:nucl-th/ v3 7 Jun 1999

arxiv:nucl-th/ v3 7 Jun 1999 Quasielastic Scattering from Relativistic Bound Nucleons: Transverse-Longitudinal Response J.M. Udias 1,a, J.A. Caballero 1,b, E. Moya de Guerra 1, J.E. Amaro 2 and T.W. Donnelly 3 arxiv:nucl-th/9905030v3

More information

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d Other electrons Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus: electron sees all 11 protons approximately:!!&! " # $ %

More information

Many-Body Theory of the Electroweak Nuclear Response

Many-Body Theory of the Electroweak Nuclear Response Many-Body Theory of the Electroweak Nuclear Response Omar Benhar INFN and Department of Physics Università La Sapienza, I-00185 Roma Collaborators N. Farina, D. Meloni, H. Nakamura, M. Sakuda, R. Seki

More information

Upgrade for SRC/EMC Studies. Stephen Wood

Upgrade for SRC/EMC Studies. Stephen Wood Upgrade for SRC/EMC Studies Stephen Wood Outline Hall C 12 Hardware overview Standard Spectrometers Additional detectors Hall C SRC/EMC/Nuclear-effects physics program Deuteron EMC with LAD Standard Hall

More information

Shells Orthogonality. Wave functions

Shells Orthogonality. Wave functions Shells Orthogonality Wave functions Effect of other electrons in neutral atoms Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus:

More information

J.M. Udías Ladek 2009

J.M. Udías Ladek 2009 Survey of neutrino-nucleus interactions Main goals: Reviewing of neutrino-nucleus scattering with an emphasis on bringing together the knowledge from different areas Understanding the language of other

More information

Relativistic Calculations for Photonuclear Reactions (III): A Consistent Relativistic Analysis of the (e,e p) and (γ, p) Reactions

Relativistic Calculations for Photonuclear Reactions (III): A Consistent Relativistic Analysis of the (e,e p) and (γ, p) Reactions DOE/ER/4061 48 INT96 00 117 arxiv:nucl-th/960306v1 0 Mar 1996 Relativistic Calculations for Photonuclear Reactions (III): A Consistent Relativistic Analysis of the (e,e p) and (γ, p) Reactions J.I. Johansson

More information

The short-range structure of Nuclei

The short-range structure of Nuclei The short-range structure of Nuclei 1. Beyond the nuclear mean-field the role of Nucleon-Nucleon correlations 2. Review of recent 2-N knockout experiments a) (γ,nn) and (e,e'nn) experiments at Mainz and

More information

Kinetic energy of protons and neutrons in asymmetric nuclei

Kinetic energy of protons and neutrons in asymmetric nuclei 16 8 08 Pb neutron p n proton Kinetic energy of protons and neutrons in asymmetric nuclei A data-mining project using JLab CLAS data Meytal Duer Tel-Aviv University July 3, 017 International Workshop on

More information

Experimental Signatures for Medium Modifications

Experimental Signatures for Medium Modifications Experimental Signatures for Medium Modifications Steffen Strauch The George Washington University The Physics of Nuclei with 12 GeV Electrons Workshop Jefferson Lab, November 1 5, 2004 Outline Introduction

More information

Nuclear Short Range Correlations

Nuclear Short Range Correlations Nuclear Short Range Correlations Larry Weinstein Old Dominion University What are Correlations? Neutron stars EMC effect Hit the correlated pair Spectator correlated pairs np vs pp pairs Summary Elba Workshop,

More information

Spectral function at high missing energies and momenta

Spectral function at high missing energies and momenta PHYSICAL REVIEW C 70, 024309 (2004) Spectral function at high missing energies and momenta T. Frick, 1 Kh. S. A. Hassaneen, 1 D. Rohe, 2 and H. Müther 1 1 Institut für Theoretische Physik, Universität

More information

A zz in Quasielastic and Deep Inelastic Scattering at x>1

A zz in Quasielastic and Deep Inelastic Scattering at x>1 A zz in Quasielastic and Deep Inelastic Scattering at x> Fantasia on a theme of tensor polarizations Main Motivation: To use Tensor Polarizations to study short range distances in the deuteron & large

More information

Inclusive Electron Scattering from Nuclei and Scaling

Inclusive Electron Scattering from Nuclei and Scaling Inclusive Electron Scattering from Nuclei and Scaling Donal Day University of Virginia NUINT12 October 22 - October 27, 2012 Rio de Janeiro, Brazil Outline Inclusive Electron Scattering from Nuclei General

More information

Understanding/calculating the nucleon self-energy at positive and negative energy

Understanding/calculating the nucleon self-energy at positive and negative energy Understanding/calculating the nucleon self-energy at positive and negative energy INT 4/16/2013 Arnau Rios (Surrey) Arturo Polls (Barcelona) Carlo Barbieri (Surrey) Dimitri Van Neck (Ghent) Herbert Müther

More information

Nucleons in the Nuclear Environment

Nucleons in the Nuclear Environment Nucleons in the Nuclear Environment "The next seven years..." John Arrington Argonne National Lab Topic: Study of nucleons (hadrons, quarks) in nuclei 1 - The EMC effect and related measurements 2 - Color

More information

CLAS Approved Analysis Proposal. Out-of-plane Measurements of the Structure Functions of the Deuteron

CLAS Approved Analysis Proposal. Out-of-plane Measurements of the Structure Functions of the Deuteron CAS Approved Analysis Proposal Out-of-plane Measurements of the Structure Functions of the Deuteron G.P.Gilfoyle University of Richmond W.K.Brooks, B.A.Mecking Jefferson ab S.Kuhn,.Weinstein Old Dominion

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

Hall C Summer Workshop

Hall C Summer Workshop Classic Result from (e,e p) Measurements L. Lapikas, Nucl. Phys. A553 (1993) 297. Independent- Par+cle Shell- Model is based upon the assump+on that each nucleon moves independently in an average poten+al

More information

Electron scattering from nuclei in the quasielastic region and beyond

Electron scattering from nuclei in the quasielastic region and beyond Electron scattering from nuclei in the quasielastic region and beyond Donal Day University of Virginia Part 1 HUGS 2007 June 2007 Newport News, VA Nuclear Response Function Q 2 = q 2 ν 2 ν = (E E ) (ν

More information

Short Range Correlations and the EMC Effect

Short Range Correlations and the EMC Effect Short Range Correlations and the EMC Effect Or Hen, Tel-Aviv University Short Range Correlations The EMC Effect and nucleon modification The EMC SRC correlation Implications of the EMC-SRC correlation

More information

Short-range NN interactions: Experimental Past and Future

Short-range NN interactions: Experimental Past and Future Short-range NN interactions: Experimental Past and Future 7th Workshop of the APS Topical Group on Hadronic Physics Nadia Fomin University of Tennessee February 1 st, 017 Independent Particle Shell Model

More information

High Momentum Components Scaling, and Short Range Correlations Donal Day

High Momentum Components Scaling, and Short Range Correlations Donal Day High Momentum Components Scaling, and Short Range Correlations Donal Day University of Virginia Jefferson Users Group Annual Meeting May 31, 2013 1 IPSM Outline Corrections to IPSM Correlations and high-k

More information

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view Washington DC 10-16-06 Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view Other physical systems Status for stable

More information

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL Carlotta Giusti and Andrea Meucci Università and INFN, Pavia Neutrino-Nucleus

More information

The Hall A Tritium Target Physics Program Overview

The Hall A Tritium Target Physics Program Overview The Hall A Tritium Target Physics Program Overview Using A=3 Mirror Nuclei to Probe the Nucleon Structure 3H 3He Buddhini Waidyawansa (Argonne National Lab) Hall A & C Summer Collaboration Meeting June

More information

PREX Workshop 2008: Neutron Rich Ma:er in the Heavens and on Earth

PREX Workshop 2008: Neutron Rich Ma:er in the Heavens and on Earth KinemaNcs sca:ering plane e out of plane angle e' (ω,q) p φ x p A 1 θ pq reacnon plane Four momentum transfer: Q 2 q µ q µ = q 2 ω 2 = 4ee' sin 2 θ/2 Missing momentum: p m = q p = p A 1 = p 0 Missing energy:

More information

Hadron Propagation and Color Transparency at 12 GeV

Hadron Propagation and Color Transparency at 12 GeV Hadron Propagation and Color Transparency at 12 GeV Dipangkar Dutta Mississippi State University Hall C Users Meeting Jan 21-22, 2016 Hall C meeting Jan 2016 D. Dutta Hadron propagation in nuclear medium

More information

Radial Dependence of the Nucleon Effective Mass in 10B

Radial Dependence of the Nucleon Effective Mass in 10B University of Massachusetts Amherst From the SelectedWorks of Gerald Alvin Peterson May 4, 1998 Radial Dependence of the Nucleon Effective Mass in 1B L J de Bever R S Hicks, University of Massachusetts

More information

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Linking nuclear reactions and nuclear structure to on the way to the drip lines Linking nuclear reactions and nuclear structure to on the way to the drip lines DREB18 6/5/2018 Motivation Green s functions/propagator method Wim Dickhoff Bob Charity Lee Sobotka Hossein Mahzoon (Ph.D.2015)

More information

arxiv: v1 [nucl-th] 10 Apr 2018

arxiv: v1 [nucl-th] 10 Apr 2018 Meson-exchange currents and quasielastic predictions for neutrino-nucleus scattering M.B. Barbaro Dipartimento di Fisica, Universita di Torino and INFN, Torino, Italy E-mail: barbaro@to.infn.it arxiv:.33v

More information

Deuteron Electro-Disintegration at Very High Missing Momenta

Deuteron Electro-Disintegration at Very High Missing Momenta Deuteron Electro-Disintegration at Very High Missing Momenta K. Aniol California State University L.A. F. Benmokhtar Carnegie Mellon University W.U. Boeglin (spokesperson), P.E. Markowitz, B.A. Raue, J.

More information

The Electromagnetic Form Factors of the Nucleon

The Electromagnetic Form Factors of the Nucleon The Electromagnetic Form Factors of the Nucleon Introduction Proton Form Factors Neutron Form Factors Summary September 28, 2006 R. Alarcon @ MIT Symposium e i k r Form factor in quantum mechanics Elastic

More information

Inclusive Electron Scattering off 4 He

Inclusive Electron Scattering off 4 He Gesellschaft für Schwerionenforschung, Darmstadt Theory Division Inclusive Electron Scattering off He S. Bacca in coloration with: H. Arenhövel Johannes-Gutenberg Universität, Mainz N. Barnea The Racah

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

arxiv: v2 [nucl-ex] 23 Jan 2010

arxiv: v2 [nucl-ex] 23 Jan 2010 Precision Measurements of the Proton Elastic Form Factor Ratio D. W. Higinbotham arxiv:1001.3341v2 [nucl-ex] 23 Jan 2010 Jefferson Lab, Newport News, VA 23606, USA Abstract. New high precision polarization

More information

Spin structure of 3 He studied by deuteron and nucleon knockout processes

Spin structure of 3 He studied by deuteron and nucleon knockout processes Spin structure of 3 He studied by deuteron and nucleon knockout processes S. Širca, U. of Ljubljana, Slovenia Electron-Nucleus Scattering XIII Marciana Marina, Isola d Elba 25 June 2014 1 Experiments covered

More information

Correlations in isospin asymmetric matter and nuclei

Correlations in isospin asymmetric matter and nuclei Correlations in isospin asymmetric matter and nuclei INT 3/7/2018 Motivation (FRIB mostly) Green s functions/propagator method Wim Dickhoff Arturo Polls Arnau Rios Bob Charity Lee Sobotka Hossein Mahzoon

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering Journal of the Korean Physical Society, Vol. 66, No. 12, June 2015, pp. 1936 1941 Brief Reports Density Dependence of Parity Violation in Electron Quasi-elastic Scattering K. S. Kim School of Liberal Arts

More information

Electroproduction of p-shell hypernuclei

Electroproduction of p-shell hypernuclei Electroproduction of p-shell hypernuclei ASTRA workshop Petr Bydžovský Nuclear Physics Institute, Řež, Czech Republic in collaboration with D.J. Millener (BNL), F. Garibaldi and G.M. Urciuoli (Rome) Outline:

More information

Contents 1 Overview 3 2 Cross section uncertainties Motivation Uncertainties Summary of results Concluding remarks 11 Referenc

Contents 1 Overview 3 2 Cross section uncertainties Motivation Uncertainties Summary of results Concluding remarks 11 Referenc Systematic Uncertainties in E89-003 A Report to the Hall A Collaboration Kevin Fissum Lund University SE-221 00 Lund Sweden kevin.fissum@nuclear.lu.se Paul Ulmer Old Dominion University Norfolk, VA, 23529

More information

SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions

SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions SRC Studies using Triple Coincidence A(e,e'pp) & A(e,e'np) reactions A data-mining project using CLAS EG2 data Meytal Duer Tel-Aviv University July 12, 2018 NPWG meeting, JLab 1 SRC Pair Fraction [%] np-dominance

More information

The Neutron Structure Function from BoNuS

The Neutron Structure Function from BoNuS The Neutron Structure Function from BoNuS Stephen Bültmann 1 Physics Department, Old Dominion University, Norfolk, VA 359, USA Abstract. The BoNuS experiment at Jefferson Lab s Hall B measured the structure

More information

Inclusive electron scattering from nuclei in the quasielastic region

Inclusive electron scattering from nuclei in the quasielastic region Inclusive electron scattering from nuclei in the quasielastic region Data and its interpretation Donal Day University of Virginia NuInt07 May 30, 2007 - June 3, 2007 Fermilab, Batavia, Illinois USA Outline!

More information

arxiv: v4 [nucl-ex] 13 Apr 2017

arxiv: v4 [nucl-ex] 13 Apr 2017 Nucleon-Nucleon Correlations, Short-lived Excitations, and the Quarks Within Or Hen Massachusetts Institute of Technology, Cambridge, MA 02139 Gerald A. Miller Department of Physics, University of Washington,

More information

arxiv: v1 [nucl-th] 4 Mar 2011

arxiv: v1 [nucl-th] 4 Mar 2011 Nuclear effects in neutral current quasi-elastic neutrino interactions Omar Benhar a,b, Giovanni Veneziano b arxiv:1103.0987v1 [nucl-th] 4 Mar 2011 a INFN, Sezione di Roma, I-00185 Roma, Italy b Dipartimento

More information

Application of the Spectral Function Formalism to Electronand Neutrino-Nucleus Scattering

Application of the Spectral Function Formalism to Electronand Neutrino-Nucleus Scattering Application of the Spectral Function Formalism to Electronand Neutrino-Nucleus Scattering Artur M. Ankowski Center for Neutrino Physics, Virginia Tech ECT* Doctoral Training Program 2017 Microscopic Theories

More information

Probing high-momentum neutrons and protons in asymmetric nuclei

Probing high-momentum neutrons and protons in asymmetric nuclei Probing high-momentum neutrons and protons in asymmetric nuclei A data-mining project using JLAB CLAS data Meytal Duer Tel-Aviv University March 8, 017 Workshop on high-density nuclear matter, Weizmann

More information

Inclusive quasielastic electron-nucleus scattering

Inclusive quasielastic electron-nucleus scattering Inclusive quasielastic electron-nucleus scattering Omar Benhar* INFN, Sezione di Roma, I-00185 Roma, Italy and Dipartimento di Fisica, Università La Sapienza, I-00185 Roma, Italy Donal Day Department of

More information

Using A(e,e p Recoil ) in Tagged EMC and SRC Studies

Using A(e,e p Recoil ) in Tagged EMC and SRC Studies Using A(e,e p Recoil ) in Tagged EMC and SRC Studies Shalev Gilad, Barak Schmookler, MIT Motivation: Study the observed correlation between the measured slopes f(a/d) of the EMC effect and the measured

More information

Nuclear Transparency in A(e,e π/k)x Status and Prospects

Nuclear Transparency in A(e,e π/k)x Status and Prospects Nuclear Transparency in A(e,e π/k)x Status and Prospects Tanja Horn Small size configurations at high-t workshop 26 March 2011 1 Nuclear Transparency Color transparency (CT) is a phenomenon predicted by

More information

Recent Observation of Short Range Nucleon Correlations in Nuclei and their Implications for the Structure of Nuclei and Neutron Stars

Recent Observation of Short Range Nucleon Correlations in Nuclei and their Implications for the Structure of Nuclei and Neutron Stars Recent Observation of Short Range Nucleon Correlations in Nuclei and their Implications for the Structure of Nuclei and Neutron Stars arxiv:0806.4412v2 [nucl-th] 4 Sep 2008 Leonid Frankfurt School of Physics

More information

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009

Cross Section of Exclusive π Electro-production from Neutron. Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Cross Section of Exclusive π Electro-production from Neutron Jixie Zhang (CLAS Collaboration) Old Dominion University Sep. 2009 Exclusive π electro-production Detect e`, π and at least ONE of the two final

More information

Coulomb Sum Rule. Huan Yao Feb 16,2010. Physics Experiment Data Analysis Summary Collaboration APS April Meeting

Coulomb Sum Rule. Huan Yao Feb 16,2010. Physics Experiment Data Analysis Summary Collaboration APS April Meeting Coulomb Sum Rule 2010 APS April Meeting Huan Yao hyao@jlab.org Feb 16,2010 1 / 17 Physics Motivation The test of Coulomb Sum Rule is to shed light on the question of whether or not the properties of nucleons

More information

Form Factors with Electrons and Positrons

Form Factors with Electrons and Positrons HUGS2013, JLab, May 28 June 14, 2013 Form Factors with Electrons and Positrons Part 1: Overview and introduction Michael Kohl Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA

More information

arxiv:nucl-th/ v2 20 May 2003

arxiv:nucl-th/ v2 20 May 2003 Semi-relativistic meson exchange currents in (e, e ) and (e, e p) reactions J.E. Amaro 1, M.B. Barbaro 2,3, J.A. Caballero 3, F. Kazemi Tabatabaei 1 arxiv:nucl-th/0302004v2 20 May 2003 Abstract 1 Departamento

More information

Experimental Studies on the Electric Form Factor of the Neutron

Experimental Studies on the Electric Form Factor of the Neutron Nucleon 05 Workshop on Nucleon Form Factors Frascati, October 12-14, 2005 Experimental Studies on the Electric Form Factor of the Neutron Bodo Reitz Jefferson Lab Outline Introduction History: Neutron

More information

Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei Maria B. Barbaro University of Torino (Italy) and INFN Maria B. Barbaro NUFACT05, Frascati, June 21-26,

More information

Coulomb Corrections in Quasielastic Scattering off Heavy Nuclei

Coulomb Corrections in Quasielastic Scattering off Heavy Nuclei Coulomb Corrections in Quasielastic Scattering off Heavy Nuclei Andreas Aste Department of Physics and Astronomy Theory Division University of Basel, Switzerland Workshop on Precision ElectroWeak Interactions

More information

Recent applications of Green s function methods to link structure and reactions

Recent applications of Green s function methods to link structure and reactions INT-11-2d, Seattle, August, 2011 Recent applications of Green s function methods to link structure and reactions Wim Dickhoff Bob Charity Lee Sobotka Helber Dussan Jonathan Morris Seth Waldecker Hossein

More information

Nuclear Equation of State and Spectral Functions

Nuclear Equation of State and Spectral Functions Nuclear Equation of State and Spectral Functions W. H. Dickhoff Laboratory of Theoretical Physics, University of Gent, Proeftuinstraat 86, B-9000 Gent, Belgium Department of Physics, Washington University,

More information

arxiv: v2 [nucl-th] 16 Jul 2018

arxiv: v2 [nucl-th] 16 Jul 2018 EPJ manuscript No. (will be inserted by the editor) Removal and Binding Energies in Lepton Nucleus Scattering A. Bodek Department of Physics and Astronomy, University of Rochester, Rochester, NY 1467-0171

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

4 * Y SCALING IN d, 3He AND He

4 * Y SCALING IN d, 3He AND He SLAC-PUB-2942 June 1982 (T/E) 4 * Y SCALING IN d, 3He AND He P. Bosted, R. G. Arnold, S. Rock and Z. Szalata Department of Physics The American University, Washington, D.C. 20016 and Stanford Linear Accelerator

More information

2N and 3N Correlations in Few Body Systems at x > 1

2N and 3N Correlations in Few Body Systems at x > 1 2N and 3N Correlations in Few Body Systems at x > 1 Searching for 3N Correlations at x > 1 Donal Day University of Virginia Next generation nuclear physics with JLab12 and EIC 1 Outline Accepted Notions

More information

Electroproduction of Strangeness on 3,4 He

Electroproduction of Strangeness on 3,4 He Electroproduction of Strangeness on 3,4 He Motivation 1H(e,e K)L A(e,e K), A=2,3,4 Bound Λ Hypernuclei: 3 ΛH, 4 ΛH Outlook HYP2003, Jefferson Lab Frank Dohrmann, Forschungszentrum Rossendorf, Dresden !

More information

The Electric Form Factor of the Neutron for SBS

The Electric Form Factor of the Neutron for SBS The Electric Form Factor of the Neutron for SBS Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu July 1, 16 Seamus Riordan SBS 16 G n E 1/1 G E /G M at high Q - Spin Observables, Pol.

More information

Structure of the deuteron

Structure of the deuteron Seminar II Structure of the deuteron Author : Nejc Košnik Advisor : dr. Simon Širca Department of Physics, University of Ljubljana November 17, 004 Abstract Basic properties of the deuteron are given.

More information

PAVIA. Carlotta Giusti Matteo Vorabbi Franco Pacati Franco Capuzzi Andrea Meucci

PAVIA. Carlotta Giusti Matteo Vorabbi Franco Pacati Franco Capuzzi Andrea Meucci PAVIA Carlotta Giusti Matteo Vorabbi Franco Pacati Franco Capuzzi Andrea Meucci ELECTROWEAK REACTIONS ON STABLE AND EXOTIC NUCLEI quasielastic electron and neutrino-nucleus scattering electron scattering

More information

Nuclear Physics with Electromagnetic Probes

Nuclear Physics with Electromagnetic Probes Nuclear Physics with Electromagnetic Probes Lawrence Weinstein Old Dominion University Norfolk, VA Lecture 2 Hampton University Graduate School 2012 Course Outline Introduction to EM probes. Electron and

More information

MeasuringtheFifthStructureFunctionin

MeasuringtheFifthStructureFunctionin CLAS Collaboration Meeting, Oct, 1-1, 1 p. 1/ MeasuringtheFifthStructureFunctionin H( e, e p)n G.P. Gilfoyle, R. Burrell, C. Copos, K. Gill, K. Greenholt, M. Jordan, (Richond) W.K. Brooks, (USM) J.D. Lachniet,

More information

Cross section measurements of the elastic electron - deuteron scattering

Cross section measurements of the elastic electron - deuteron scattering Cross section measurements of the elastic electron - deuteron scattering for the A1 Collaboration Institut für Kernphysik, Johannes Gutenberg-Universität Mainz Johann-Joachim-Becher-Weg 45, 55128 Mainz

More information

Overview of the SRC/EMC experiments

Overview of the SRC/EMC experiments Overview of the SRC/EMC experiments Donal Day Hall C Winter Meeting 2016 E12-06-105 E12-10-008 PAC Report E12-06-105 (x > 1): Inclusive Scattering from Nuclei at x > 1 in the Quasi-elastic and Deep-inelastic

More information

Electron helicity-dependence in (e, e p) reactions with polarized nuclei and the fifth response function

Electron helicity-dependence in (e, e p) reactions with polarized nuclei and the fifth response function Nuclear Physics A 703 (2002) 541 570 www.elsevier.com/locate/npe Electron helicity-dependence in (e, e p) reactions with polarized nuclei and the fifth response function J.E. Amaro a, T.W. Donnelly b a

More information

Superscaling analyses of inclusive electron scattering and their extension to charge-changing neutrino cross sections in nuclei

Superscaling analyses of inclusive electron scattering and their extension to charge-changing neutrino cross sections in nuclei Superscaling analyses of inclusive electron scattering and their extension to charge-changing neutrino cross sections in nuclei A.N. Antonov 1, M.V. Ivanov 1, M.K. Gaidarov 1, E. Moya de Guerra 2,3, J.A.

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

EXPLORING NUCLEON-NUCLEON CORRELATIONS IN (e, e NN) REACTIONS

EXPLORING NUCLEON-NUCLEON CORRELATIONS IN (e, e NN) REACTIONS EXPLORING NUCLEON-NUCLEON CORRELATIONS IN (e, e NN) REACTIONS H. MÜTHER Institut für Theoretische Physik, Universität Tübingen, Germany June 25, 1999 Abstract Correlations in the nuclear wave-function

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

University of Regina, Regina, Canada.

University of Regina, Regina, Canada. Nucleon Electromagnetic Form Factors Dr. E.J. Brash University of Regina, Regina, Canada. March 8, 22 Outline ffl Introduction: elastic nucleon form factors ffl Proton Form Factors - Experimental Techniques

More information

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei High-energy nuclear physics with spectator tagging A. Deshpande, D. Higinbotham, Ch. Hyde, S. Kuhn, M. Sargsian, C. Weiss Topical Workshop, Old Dominion U., 9 11 March 015 High-energy ea scattering e e

More information

arxiv: v1 [nucl-th] 26 Mar 2013

arxiv: v1 [nucl-th] 26 Mar 2013 Superscaling in electron-nucleus scattering and its link to CC and NC E neutrino-nucleus scattering M.B. Barbaro Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, 5 Torino, ITLY

More information

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Overview Motivations Experiment Definition of Experimental Spin

More information

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON WEN-TAI CHIANG AND SHIN NAN YANG Department of Physics, National Taiwan University, Taipei 10617, Taiwan L. TIATOR AND D. DRECHSEL Institut

More information

Experimental Deuteron Momentum Distributions with Reduced Final State Interactions

Experimental Deuteron Momentum Distributions with Reduced Final State Interactions Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 7-3-2014 Experimental Deuteron Momentum Distributions with Reduced Final State Interactions

More information

Electron scattering from nuclei in the quasielastic region and beyond

Electron scattering from nuclei in the quasielastic region and beyond Electron scattering from nuclei in the quasielastic region and beyond Donal Day University of Virginia Part 2 HUGS 2007 June 2007 Newport News, VA Nuclear Response Function Q 2 = q 2 ν 2 ν = (E E ) (ν

More information

arxiv:hep-ph/ v1 15 Dec 2004

arxiv:hep-ph/ v1 15 Dec 2004 On the intrinsic limitation of the Rosenbluth method at large Q 2. E. Tomasi-Gustafsson DAPNIA/SPhN, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France (Dated: February 2, 2008) Abstract arxiv:hep-ph/0412216v1

More information

Electron scattering experiment off proton at ultra-low Q 2

Electron scattering experiment off proton at ultra-low Q 2 Electron scattering experiment off proton at ultra-low Q 2 Toshimi Suda Research Center for Electron-Photon Science, Tohoku University, Sendai Proton Radius Puzzle NEUROSCIENCE People Who Remember Everything

More information

Probing Dense Nuclear Matter

Probing Dense Nuclear Matter Probing Dense Nuclear Matter through Inclusive Electron Scattering Donal Day University of Virginia Winter Retreat on Cold Dense Nuclear Matter FIU, Miami, February 15-17, 2007 Outline Introduction Inclusive

More information

Correlations derived from modern nucleon-nucleon potentials

Correlations derived from modern nucleon-nucleon potentials Correlations derived from modern nucleon-nucleon potentials H. Müther Institut für Theoretische Physik, Universität Tübingen, D-72076 Tübingen, Germany A. Polls Departament d Estructura i Costituents de

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD γ* γ N N MERIEM BENALI November 09, 016 LPC-Clermont-Ferrand GDR-QCD Plan Generalized Polarizabilities (GPs) of the proton Extraction methods of GPs at Q²=0.45 GeV²: - Low Energy expansion approach (LEX)

More information

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary Outline Previous experiments. Evidence for a resonant structure at W=1.675 GeV in γn ηp data at GRAAL; Theoretical assumptions: D 15 (1675) or the nonstrange pentaquark? Comparison with MAID2000: Could

More information

Electrons for Neutrinos

Electrons for Neutrinos Electrons for Neutrinos 08/03/2018 INT Workshop INT-18-1a - Nuclear ab initio Theories and Neutrino Physics Or Hen, Larry Weinstein, Afroditi Papadopoulou,Mariana Khachatryan, Luke Pickering, Adrian Silva,

More information

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section Scattering Processes General Consideration Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section The form factor Mott scattering Nuclear charge distributions and radii

More information

Implications of G p E(Q 2 )/G p M(Q 2 ).

Implications of G p E(Q 2 )/G p M(Q 2 ). Implications of G p E(Q 2 )/G p M(Q 2 ). S. Dubnička 1, A. Z. Dubničková 2, OUTLINE: 1. JLab proton polarization data puzzle 2. Existence of two different G p E(t) behaviors in spacelike region 3. Consequences

More information